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Motivated by recent experiments, here we study the indirect interactions between magnetic impurities
deposited on top of a clean Pb(110) surface, induced by the underlying conduction electrons. Our approach
makes use of ab initio calculations to characterize the clean Pb(110) surface and avoids self-consistency, a
feature that greatly reduces the computational cost. In combination with second-order perturbation theory in the
microscopic s-d exchange parameter Jsd between a magnetic adatom and the conduction electrons, we are able
to systematically derive the Ruderman-Kittel-Kasuya-Yosida, the Dzyaloshinskii-Moriya, and the anisotropic
tensor interactions emerging at the Pb(110) surface between magnetic impurities. The only adjustable parameter
is Jsd , which is fitted to reproduce the experiments. Our results show important anisotropy effects arising
both from the rectangular geometry of the (110) unit cell and from the strong Rashba spin-orbit interaction
due to the broken inversion symmetry at the Pb(110) surface. In addition to Pb(110), the characterization of
the indirect spin interactions described here could be extended to other realistic metallic surfaces for weakly
coupled impurities and would enable us to fabricate atomic-size nanostructures with engineered interactions and
on-demand magnetic properties, anticipating useful applications in nanotechnology.
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I. INTRODUCTION

The Rudermann-Kittel-Kasuya-Yosida (RKKY) exchange
interaction is an indirect magnetic coupling between localized
magnetic moments, mediated by the conduction electrons in
a metallic substrate [1–3]. This type of interaction plays a
crucial role in systems displaying giant magnetoresistance [4],
heavy-fermion magnetism, and quantum criticality [5–7] and
in dilute magnetic semiconductors [8,9]. More recently, it has
also been observed in atomic-scale magnetic systems fabri-
cated with scanning tunneling microscopy (STM) techniques
[10–15] . In these atomic-sized structures the RKKY interac-
tion plays a major role. For instance, it was recently proposed
as a key ingredient in magnetic atomic chains deposited on
conventional superconductors with a strong Rashba spin-orbit
coupling (SOC), systems predicted to host Majorana-fermion
quasiparticles (MQPs) [16–18]. These works have triggered
a great amount of theoretical and experimental research
seeking to observe MQPs, which could be instrumental in the
fabrication of qubits for topological quantum computers. In
recent experimental works involving atomic Fe chains on top
of clean Pb(111) or Pb(110) surfaces, preliminary evidence of
MQPs has been reported [19–22].

Assuming an idealized isotropic free-electron conduc-
tion band, the standard result for the RKKY interaction is
JRKKY (r) ∼ cos (2kF r) /rD, where kF is the Fermi momen-
tum and r = |r| is the distance between the magnetic impu-
rities [1–3]. However, the behavior of real adatom systems
on metallic surfaces is strikingly different, and departs from
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an ideally isotropic interaction have been reported experi-
mentally. For instance, one of the most relevant results in
Refs. [10–12,15] is the anisotropic character of the RKKY
interaction on surfaces. Considering the growing interest in
the fabrication of magnetic devices with specific function-
alities and potential applications in quantum computing and
spintronic and magnetic memories, a detailed characterization
of realistic magnetic interactions would be highly desirable.
From a more fundamental perspective, a realistic characteri-
zation of the RKKY interaction on specific metallic surfaces
could also be useful to simulate, in a controlled manner, the
physics of strongly correlated materials. For instance, using
self-assembled metal-organic networks deposited on clean
metallic surfaces, a controlled study of the celebrated Kondo
lattice model, typically used to understand the exotic low-
temperature behavior of heavy-fermion materials, has become
possible with STM techniques [23–25].

Among the many possible metallic surfaces typically stud-
ied with STM, the surface of Pb has become an ideal plat-
form to study the interplay between superconductivity and
atomic magnetism. The interest is twofold: (1) Pb becomes
a conventional s-wave superconductor at low temperatures,
with a standard phonon-mediated pairing mechanism. In ad-
dition, its relative simplicity to grow in films by evapo-
ration techniques makes it a widely used superconducting
material in the laboratory. (2) A large Rashba SOC exists
at the surface of Pb, a property that is known to induce
large Dzyaloshinskii-Moriya interactions. This property could
be exploited in order to engineer noncollinear chiral mag-
netic nanostructures, such as skyrmions [14,26]. Both fea-
tures could prove extremely useful in novel spintronic de-
vices [27–31]. In previous works, perturbative approaches
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combined with numerical and/or semianalytical methods for
realistic band-structure calculations were used for the calcu-
lation of the RKKY indirect-exchange interaction between
nuclear moments [32–35]. However, none of these works
have focused on magnetic impurities on Pb, where relativistic
effects are unavoidable. On the other hand, the calculation of
the Dzyaloshinskii-Moriya interaction was tackled in previous
works using highly idealized model Hamiltonians [26,36–38],
which ignore the real electronic structure. Therefore, there are
no systematic studies of the realistic magnetic interactions on
the surface of Pb.

Motivated by the aforementioned experimental advances,
in this paper we focus on the derivation of realistic mag-
netic interactions between impurities on top of a clean Pb
surface. For concreteness and in order to make a comparison
with Refs. [19–22], we have chosen the particular case of
Pb(110). However, we stress that our method is not restricted
to any specific system. Using a combination of an analyt-
ical approach, i.e., second-order perturbation theory in the
s-d exchange interaction Jsd , and density functional theory
(DFT) to obtain the full band structure of Pb(110), including
relativistic SOC effects, we systematically derive the RKKY,
the Dzyaloshinskii-Moriya (DM), and the anisotropic tensor
interactions between magnetic impurities. Our results show
important anisotropy effects arising both from the rectangular
geometry of the (110) unit cell and from the strong Rashba
SOC originating in the broken inversion symmetry at the
Pb(110) surface. Since within our perturbative approach only
the band structure of the clean Pb(110) surface is needed,
the computational cost can be significatively reduced. This
represents one of the main advantages of our method: The
possibility to describe indirect magnetic interactions realis-
tically (i.e., without having to resort to any a priori model
or approximation), combined with low computational cost
compared to standard self-consistent methods, such as the
Korringa-Kohn-Rostoker method. Within our formalism, the
only adjustable parameter is the s-d exchange parameter Jsd ,
which is fitted to reproduce experiments [39].

Like any perturbative approach, the method outlined in
this work relies on the impurities being weakly coupled
to the metallic surface. More explicitly, it is required that
ρ3DJsd � 1, where ρ3D is the density of conduction states per
unit volume at the Fermi level. This fact, however, does not
constitute a major drawback for its applicability since many
of the interesting systems realized in experiments fall within
the weak-coupling regime. This is the case of metal-organic
complexes such as MnPc molecules [39] and iron II porphyrin
molecules [40] deposited on top of Pb(110), where the organic
ligand of the molecule tends to isolate the effective magnetic
moment from the surface, leading to a small effective coupling
Jsd , and organic molecules of the nitronyl nitroxide side group
adsorbed on an Au(111) surface [41].

The rest of the paper is organized as follows. In Sec. II
we present the theoretical model and the derivation of the
generic RKKY, DM, and tensor interactions directly from the
conduction-electron propagators. In Sec. III we give details
about the technical aspects of the ab initio calculations and
about the convergence of the RKKY interaction. In Sec. IV
we present the results; specifically, in Sec. IV A we present
our results for the band structure of the clean Pb(110), and in

Sec. IV C we show our results for the magnetic RKKY, DM,
and tensor interactions. Finally, in Sec. V we summarize the
main results and present the conclusions.

II. THEORETICAL MODEL AND DERIVATION
OF THE EFFECTIVE INTERACTIONS

The theoretical model describing two spin impurities on
a Pb(110) surface, located at sites r1 = (x1, y1, 0) and r2 =
(x2, y2, 0), where z = 0 is the coordinate of the surface
plane, is

H = H0 + Hsd (1) + Hsd (2) . (1)

Here

H0 =
∑
k,n

ε
(0)
k,nc†

k,nck,n (2)

is the unperturbed Hamiltonian describing the bands of clean
Pb(110). The quantum numbers k and n are, respectively, the
crystal momentum parallel to the surface belonging to the
first Brillouin zone and the spin-orbital band index, which
results from a combination of the spin and the azimuthal
angular momentum (recall that in the presence of Rashba
and/or Dresselhaus SOC, s, the spin projection along z, is
no longer a good quantum number. In the absence of Rashba
SOC, the index n splits into s and the usual band index
α). The operator ck,n annihilates a fermionic quasiparticle in
the conduction band and obeys the usual anticommutation
relation {ck,n, c†

k′,n′ } = δk,k′δn,n′ . Finally, ε
(0)
k,n is the dispersion

relation computed in the absence of the magnetic impurities.
The s-d exchange interaction between a magnetic moment

and the conduction-electron spin density at point r j is [6]

Hsd ( j) = Jsd S j · s(r j ) (3)

= Jsd S j ·
∑

s,s′={↑,↓}
�†

s (r j )

(
σ̂

2

)
ss′

�s′ (r j ), (4)

where S j is the spin of the impurity, which is assumed to be a
classical quantity, and where σ̂ = (

σ̂x, σ̂y, σ̂z
)

is the vector of
Pauli matrices. The field operator

�s
(
r j

) =
∑
k,n

ψ
(s)
k,n(r j )ck,n (5)

annihilates a fermionic quasiparticle with spin projection s =
{↑,↓} along the z axis at point r j , and ψ

(s)
k,n (r) are the

normalized Bloch wave functions computed via DFT (see
Sec. III). The field operator obeys the usual relations:∑

k,n

ψ
∗(s)
k,n (ri ) ψ

(s′)
k,n (r j ) = δ(ri − r j )δs,s′ , (6)

{�s(ri ), �
†
s′ (r j )} = δ(ri − r j )δs,s′ . (7)

The idea now is to use knowledge of the realistic band
structure of Pb(110), encoded in ε

(0)
k,n and ψ

(s)
k,n

(
r j

)
, in order

to systematically derive all the effective interactions between
S1 and S2 mediated by the conduction electrons using second-
order perturbation theory in Jsd and without resorting to any
specific model. In the process, not only is the RKKY exchange
obtained, but so are Dzyaloshinskii-Moriya and anisotropic
tensor interactions.
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We start from the full partition function of the system,
which is formally written as

Z = Tr
{
e−β(H0+

∑
j Hsd ( j))},

= TrS Trψ
{
e−β(H0+

∑
j Hsd ( j))}, (8)

where β = 1/T (here we have assumed kB = 1). In Eq. (8)
we have split the total trace into partial traces over fermionic
(denoted Trψ ) and spin (denoted TrS) degrees of freedom. This
allows us to define the quantity ZS ≡ Trψ {e−β[H0+

∑
j HK ( j)]},

where the partial trace over the electrons is taken considering
a particular “frozen” configuration of the spins S1 and S2. In
the zero-temperature limit β → ∞, this quantity allows us
to define an effective spin Hamiltonian where the electronic
degrees of freedom have been integrated out,

ZS = Z0e−βHeff[S1,S2] (β → ∞) . (9)

Using the path-integral formalism [42], ZS can be
expressed as

ZS =
∫

D [c̄, c] e−S0[c̄,c]−∑
j Ssd, j[S j ,c̄,c],

where c̄, c are Grassmann variables and S0 [c̄, c] and
Ssd, j

[
S j, c̄, c

]
are, respectively,

S0 [c̄, c] =
∑
k,n

∫ β

0
dτ c̄k,n (τ )

(
∂τ − ε

(0)
k,n

)
ck,n (τ ) , (10)

the Euclidean action of the unperturbed Pb(110), expressed as
an integral over Matsubara time τ in the interval [0, β], and

Ssd, j[S j, c̄, c] = Jsd S j

∑
s,s′

∫ β

0
dτ�†

s (r j, τ )
σ̂ss′

2
�s′ (r j, τ ),

(11)

the Euclidean action of the s-d interaction. The advantage of
the path-integral formalism is that it allows us to express ZS

as a series expansion in powers of Jsd as

ZS = Z0

∞∑
m=0

1

m!

˝⎛
⎝∑

j

Ssd, j[S j, c̄, c]

⎞
⎠

m˛

0

, (12)

where the notation 〈A〉0 means the average of operator A with
respect to the action S0, i.e., 〈A〉0 = ∫

D [c̄, c] e−S0[c̄,c]A0/Z0,
with Z0 = ∫

D [c̄, c] e−S0[c̄,c] being the partition function of
unperturbed electrons in Pb(110).

Equations (8)–(12) are formally exact, but in order to make
progress we need to introduce a truncation in the infinite series
in Eq. (12), assuming Jsd → 0. At second order, and introduc-
ing a subsequent cumultant expansion [43], the quantity ZS

can be approximated as

ZS ≈ Z0e
1
2 〈(Ssd,1[S1,c̄,c]+Ssd,2[S2,c̄,c])2〉0 (13)

[note that the first-order term in (12) has vanished due to
the time-reversal symmetry of the Pb(110) conduction band].
Comparing Eqs. (9) and (13), we obtain the precise analytical
form for the effective spin Hamiltonian at second order in Jsd :

Heff = lim
β→∞

− 1

2β
〈(Ssd,1[S1, c̄, c] + Ssd,2[S2, c̄, c])2〉0, (14)

where the conduction electrons of the Pb(110) band have been
integrated out. The effective Hamiltonian can be expressed as

Heff = lim
β→∞

J2
sd

8

1

β

∑
l

∑
i, j=1,2

× tr{(Si.σ̂ )ĝ0(ri, r j, iνl )(S j .σ̂ )ĝ0(r j, ri, iνl )}, (15)

where tr{· · · } is the usual trace of a matrix and ĝ0
(
ri, r j, iνl

)
is the matrix of the unperturbed conduction-electron propaga-
tors in Pb(110),

ĝ0(ri, r j, iνl ) =
(

g(↑↑)
0 (r j, ri, iνl ) g(↑↓)

0 (r j, ri, iνl )

g(↓↑)
0 (r j, ri, iνl ) g(↓↓)

0 (r j, ri, iνl )

)
,

(16)

with matrix elements

g(ss′ )
0 (r j, ri, iνl ) =

∑
k,n

ψ
(s)
kn (r j )ψ

∗(s′ )
kn (ri )

iνl − ε
(0)
k,n

(s, s′ = {↑,↓}).

(17)

In this expression we have introduced the fermionic Matsub-
ara frequencies iνl = 2π i

(
l + 1

2

)
/β. Physically, the Green’s

function g(ss′)
0

(
r j, ri, iνl

)
measures the probability that an

electron created at ri with spin s′ arrives at r j with spin
s in the unperturbed surface of Pb(110). Note that in the
absence of SOC, the spin-projection labels s and s′ would
be good quantum numbers, and therefore, the off-diagonal
elements would vanish. Moreover, due to the SU(2) symme-
try in the absence of SOC and externally applied magnetic
fields, g(↑↑)

0

(
r j, ri, iνl

) = g(↓↓)
0

(
r j, ri, iνl

)
, and therefore, the

matrix ĝ0
(
ri, r j, iνl

)
would be a scalar proportional to the

unit matrix. In what follows, we introduce a more convenient
representation of the propagator matrix (16) in terms of the
2 × 2 Pauli matrices [44],

ĝ0(ri, r j, iνl ) = g0
0(ri, r j, iνl )12×2 + gx

0(ri, r j, iνl )σ̂x

+ gy
0(ri, r j, iνl )σ̂y + gz

0(ri, r j, iνl )σ̂z, (18)

where the new propagators gk
0

(
ri, r j, iνl

)
(with k =

{0, x, y, z}) are linear combinations of the propagators
(17), which allow us to readily evaluate the trace in Eq. (15)
and express the Hamiltonian as

Heff [S1, S2] = JRKKY (r1, r2) S1 · S2 + DDM (r1, r2) · (S1 × S2)

+ 2S1 · T (r1, r2) · S2 + S1 · T (r1, r1) · S1

+ S2 · T (r2, r2) · S2. (19)

Here we have defined the scalar RKKY exchange
interaction as

JRKKY (r1, r2) = J2
sd

2

1

β

∑
l

[
g0

0 (r1, r2, iνl ) g0
0 (r2, r1, iνl )

−
∑

j={x,y,z}
gj

0 (r1, r2, iνl ) gj
0 (r2, r1, iνl )

]
.

(20)
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The next term in Eq. (19) corresponds to the Dzyaloshinskii-
Moriya interaction

D j
DM (r1, r2) = i

J2
sd

2

1

β

∑
l

[
g0

0 (r1, r2, iνl ) gj
0 (r2, r1, iνl )

− gj
0 (r1, r2, iνl ) g0

0 (r2, r1, iνl )
]

× ( j = {x, y, z}) , (21)

which is an anisotropic vector interaction. Finally, the last
terms are anisotropic tensor interactions of the form

T jk (r1, r2) = J2
sd

4

1

β

∑
l

[
gj

0 (r1, r2, iνl ) gk
0 (r2, r1, iνl )

+ gj
0 (r2, r1, iνl ) gk

0 (r1, r2, iνl )
]

× ( j, k = {x, y, z}) , (22)

which generalize the Ising and the single-ion magnetocrys-
talline contributions. Note that in (19) we have neglected the
RKKY self-interaction terms JRKKY

(
r j, r j

)
S2

j since they are
only a renormalization of the energy.

Although the three contributions (20)–(22) are of the
same order, O

(
J2

sd

)
, their relative magnitude strongly depends

on the magnitude of the Rashba SOC parameter αR. This
can be understood directly at the level of the propagators
g(x,y)

0 (r1, r2, iνl ) appearing in these expressions, which are
directly proportional to the SU(2) symmetry-breaking terms
in the Hamiltonian, as shown in previous works [26,44]. Then,
it is easy to see that

JRKKY (r1, r2) ∼ O (1) ,

|DDM (r1, r2)| ∼ O (αR) ,

‖T (r1, r2)‖ ∼ O
(
α2

R

)
.

III. METHODS AND TECHNICAL CONSIDERATIONS

A technical point in the derivation of the RKKY inter-
action (20) concerns the sum over the band index n, whose
convergence is very slow. In principle, this sum runs over
an infinite number of bands but in practice must be limited
by a cutoff energy Ec that ensures the convergence of the
involved quantities. Due to its poor convergence properties,
for a reasonable accuracy in the value of JRKKY (r1, r2)
an unfeasibly large value of Ec would be necessary (even
for values of the order of Ec = 100 eV, errors would still
be over 100%). However, it is physically expected that
above a certain Ec the system wave functions are indistin-
guishable from the corresponding free-electron wave func-
tions at the same energy. In other words, at sufficiently high
energies ε

(0)
k,n, it is expected that

ε
(0)
k,n ≈ εfree

k = h̄2 (k + Gn)2

2m
, (23)

ψ
(s)
kn (r) ≈ ei(k+Gn )·r

√
V

, (24)

with Gn being a reciprocal-lattice vector. Taking this into
account, the RKKY exchange interaction (20) at T = 0 can
then be recast as

JRKKY (r1, r2) = J0
RKKY (r1, r2) + J free

RKKY (r1, r2) , (25)

where

J0
RKKY (r1, r2) = J2

sd

4

∑
s={↑,↓}

εkn<EF∑
k,n

1

V

EF <εk′n′<Ec∑
k′,n′

1

ε
(0)
kn − ε

(0)
k′n′

× [
ψ

(s)
kn (r1) ψ

∗(s)
kn (r2) ψ

(s̄)
k′n′ (r2) ψ

∗(s̄)
k′n′ (r1)

− ψ
(s)
kn (r1) ψ

∗(s̄)
kn (r2) ψ

(s̄)
k′n′ (r2) ψ

∗(s)
k′n′ (r1)

]
,

(26)

J free
RKKY (r1, r2) = J2

sd

4

∑
s={↑,↓}

εkn<EF∑
k,n

1

V

Ec<εk′∑
k′

[
ψ

(s)
kn (r1) ψ

∗(s)
kn (r2)

−ψ
(s)
kn (r1) ψ

∗(s̄)
kn (r2)

] eik′ ·(r2−r1 )

ε
(0)
kn − εfree

k′
, (27)

where in this last equation we have dropped the index n′ and
let k′ run over the extended Brillouin zone. J free

RKKY (r1, r2) is
then a free-electron correction term that can be analytically
integrated and that only depends on states below the Fermi
energy and on the numerical value of Ec. In this way, instead
of summing over a large number of bands, Eq. (25) needs to be
evaluated only until convergence with respect to Ec is attained.

The wave functions ψ
(s)
k,n

(
r j

)
required to calculate the

interactions (20)–(22) for both impurities were obtained from
DFT calculations performed by using the VASP code [45–47].
The Pb(110) substrate was modeled as a periodic slab con-
sisting of a 1 × 1 surface with N layers of Pb atoms and a
vacuum layer of 15 Å to avoid coupling between surfaces
in different periodic cells. Three top layers were allowed to
relax while the other ones where kept fixed at their bulk lattice
coordinates. Ionic forces were converged to be lower than 0.01
eV/Å, with a cutoff of 150 eV and using a Monhorst-Pack
[48] grid of 10 × 10 × 1 k points. All calculations were per-
formed within the projector augmented wave method [49] and
using Perdew-Burke-Ernzerhof revised for solids exchange-
correlation functional [50]. Since the interactions (20)–(22)
are highly dependent on the accuracy of the wave functions
ψ

(s)
k,n

(
r j

)
, a more stringent convergence condition and a larger

number of empty bands were needed in their calculation. In
order to obtain errors within 5% we used 120 empty bands and
1600 k points. Calculations were performed with and without
atomic spin-orbit interaction.

IV. RESULTS

A. Band structure of Pb(110) and estimation
of Rashba coupling parameter

The band structure of Pb(110) bulk and surface was first
studied by Würde et al. [51] using the empirical tight-binding
method (ETBM) combined with the scattering-theory method
to determine the different surface and resonant states. Given
the large atomic number of Pb, the effect of the spin-orbit
interaction cannot be neglected for this system and needs to
be taken into account. In the present work the Pb(110) band
structure was obtained by self-consistent DFT calculations
by including spin-orbit coupling and by also considering
relaxation effects on the (110) surface. In Fig. 1 we show
the calculated band structure for a Pb(110) slab with N = 29
layers. The surface and resonant states (red dots) are identified
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S2 
S3 

S1 

E
 

 E
F 

(e
V

)

FIG. 1. Calculated band structure for a 29-layer Pb(110) slab
along high-symmetry paths of the Brillouin zone. Surface and reso-
nant states, represented by red dots, have been obtained by requiring
the density for a given state projected onto the surface layers (top
and bottom) be greater than 0.3. The surface states are labeled S1, S2,
and S3.

as those for which the sum of the square projections onto the
top and bottom layers of the slab is greater than 30%. These
results are in excellent agreement with the ETBM calculations
of Würde et al. The large gap in the range between −6.5 and
−4 eV corresponds to the marked energy difference between
s and p levels in bulk Pb. Surface states (denoted as S1, S2,
and S3 in Fig. 1) are mainly localized near the edges of the
gaps arising along the X and Y directions and extend between
−2.4 and 3 eV. Bands S1 and S2 (S3) consist mostly of p
states parallel (perpendicular) to the 110 surface. While the
gap opening at point S for E = −2 eV is a consequence of
spin-orbit coupling, the splitting of bands S1 and S2 arises
from the Rashba shift at S, generated by the breaking of the
symmetry along z. Indeed, by using the k · p approximation
to fit bands S1 and S2, it is possible to estimate the Rashba
parameter to be αR = 0.97 eV Å.

The excellent agreement with the results by Würde et al.
justifies the use of the Kohn-Sham orbitals as the wave func-
tions ψ

(s)
kn

(
r j

)
appearing in the expression of the unperturbed

propagator Eq. (17) and in the calculation of the magnetic
interactions (20)–(22).

B. Convergence of the RKKY interaction

In order to ensure the convergence of the RKKY inter-
action with respect to the cutoff Ec, we evaluated the func-

FIG. 2. Convergence of the RKKY interaction JRKKY (green
squares) computed as in Eq. (25) as a function of the plane-wave cut-
off energy Ec − EF . Convergence is attained when the free-electron
correction J free (red triangles) exactly mirrors the uncorrected RKKY
term J0 (blue circles) for Ec = 22 eV above EF .

tion JRKKY (r1, r2) as in Eq. (25). Since the magnitude of
the correction term J free

RKKY (r1, r2) varies inversely with the
distance between the two impurities, impurities located at
larger distances would require smaller values of Ec in order
to converge. For this reason the cutoff energy needs to be
optimized for the minimum distance considered, which in our
case corresponds to one half of the b lattice parameter (or, in
other words, when |r2 − r1| = 0.5b). In Fig. 2 we display the
total coupling JRKKY ≡ JRKKY (0, 0.5b ŷ) together with J0 ≡
J0

RKKY (0, 0.5b ŷ) and its correction J free ≡ J free
RKKY (0, 0.5b ŷ),

corresponding to a Pb(110) slab with N = 11 Pb layers for
different values of the cutoff energy Ec, taken with respect
to EF . Two observations become apparent in the plot. On the
one hand, we have the slowly decreasing rate of the correc-
tion terms (actually, oscillatory and analogous to the integral
sine and cosine functions), which makes them impossible
to neglect even for a very high energy cutoff. On the other
hand, we observe that the correction closely compensates the
variation of J0 with respect to the cutoff. Despite the fact that
for small values of Ec the free-electron approximation is still
too crude and the errors are large, for values of Ec larger than
EF + 20 eV, the rate of variation of J free clearly mirrors J0.
In this last case, the total JRKKY becomes flat and converges
within 2% of the error. The same calculations were repeated
for a N = 17 layer slab, leading to a similar cutoff and the
same values for JRKKY (always within 2% error) as for the
11-layer case. In the light of these results and for the sake of
simplicity, the rest of our calculations were performed for an
11-layer slab using the value Ec = EF + 22 eV.

C. Magnetic interactions

As mentioned in the Introduction, the free parameter Jsd

must be determined to provide the correct energy scale of
the magnetic interactions in Eqs. (20)–(22). The effective
coupling ρ3DJsd can be reliably extracted from experiments
[39,41] using the third-order Anderson-Appelbaum perturba-
tive approach [52–54]. From the aforementioned experiments,
typical values of ρ3DJsd between 0.04 and 0.12 were obtained
for magnetic impurities in the weak-coupling limit. In what
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FIG. 3. Top (Bottom): RKKY, DM, and T12 magnetic interaction
parameters for configurations with the reference impurity (blue)
placed at the middle of the shorter (longer) bridge between two Pb
atoms on the (110) surface and the second impurity (yellow) placed
at na/2 (nb/2) lattice parameters away along the a (b) direction.

follows, we illustrate our results using ρ3DJsd = 0.1, which
falls within the experimentally relevant regime. We then use
DFT to calculate ρ3D [i.e., the density of states at the Fermi
level for Pb located on the (110) surface] to obtain Jsd =
10.80 eV Å3.

Once the parameter Jsd is determined, the different mag-
netic interactions in Eqs. (20)–(22) are calculated as a function
of distance for impurities located along the a and b direc-
tions on the Pb(110) surface. We considered two inequivalent
positions for each impurity at the surface, locating it either
halfway on the bridge between two Pb atoms of the top
layer or above a Pb atom belonging to the layer immediately
below [i.e., at (0.5a, 0.5b)]. In Fig. 3 we plot the RKKY, DM,
and anisotropic-tensor (T12) interactions locating a reference
impurity at the bridge between two Pb atoms and letting the
second impurity be located at either inequivalent position in
such a way that the distance between impurities is either an
integer or half integer of one of the in-plane lattice parameters.
The top and bottom panels in Fig. 3 display the calculated
interactions for the reference impurity at a bridge location and
the second impurity at different distances along the a and b
directions, respectively. In Fig. 4 we repeated the calculations
but this time locating the reference magnetic impurity at
(0.5a, 0.5b). In spite of the fact that all interactions follow the
expected oscillatory behavior, their character departs signifi-
cantly from the smooth and monotonic decay of the classical
RKKY. It is also worth noticing the anisotropic character
of the interactions: While we still encounter large peaks
for impurities located four lattice parameters apart along a,
interactions are significantly reduced for the same relative
distance along b. This behavior, which at first glance may
seem counterintuitive (since the impurities are at a closer

FIG. 4. Top (Bottom): RKKY, DM, and T12 magnetic interaction
parameters for configurations with the reference impurity (blue)
placed at (0.5a, 0.5b) on the (110) surface and the second impurity
(yellow) placed at na/2 (nb/2) lattice parameters away along the a
(b) direction.

distance along b), can be qualitatively understood by noticing
that the flatter bands along a give rise to a larger density of
states along this direction than along b, thus enhancing the
magnitude of the interactions.

With the calculated magnetic interactions (JRKKY, DM,
T12) it is then possible to search the spin configurations that
minimize the effective Hamiltonian (19); that is, we can obtain
the classical ground-state configuration. In the top and bottom
panels of Fig. 5, we display these configurations together
with their corresponding energies for interacting spins located
at r1 = (0.5a, 0.5b, 0) and r2 = ((0.5 + n)a, 0.5b, 0) and at
r1 = (0.5a, 0.5b, 0) and r1 = (0.5a, (0.5 + nb), 0), respec-
tively. Taking, for instance, impurities one lattice parameter
apart along the a direction, we see from Fig. 4 that in this
case the dominant interaction is DM, thus favoring a canted
spin configuration, like the one shown in Fig. 5. Analogously,
when the impurities are located two lattice parameters apart
along the a direction, both DM and T12 interactions nearly
vanish, and the dominant interaction is RKKY, resulting in
a collinear spin configuration, which, since JRKKY < 0, is
ferromagnetic. Along the b direction, the behavior of magnetic
ground-state energy is approximately monotonic, and its value
is abruptly reduced after n = 3b and beyond. Contrarily, along
the a direction the overall behavior is clearly not monotonic,
and the magnetic energy gain has a minimum at a distance
n = 4a. This is a clear deviation from the RKKY interaction
mediated by an idealized parabolic band.

Finally, we note that the orders of magnitude of the in-
teractions in Figs. 3, 4, and 5 are in agreement with re-
cent experimental works on Fe atoms deposited on top of
Pt(111) [14].
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FIG. 5. Top: Ground-state energies and their corresponding spin
configurations for the magnetic Hamiltonian of Eq. (15) with a
reference impurity (blue) located at (0.5a, 0.5b) interacting with
impurities (yellow) located at (0.5na, 0.5b) on the Pb (110) surface.
Bottom: Now the impurities interact along the b direction; that is, the
second impurity is placed at (0.5a, 0.5nb).

V. SUMMARY AND CONCLUSIONS

We have investigated the indirect spin-spin interactions at
the (110) surface of Pb, mediated by conduction electrons.
Our study is motivated by the alluring prospect of engineering
spin-spin interactions in nanodevices with specific function-
ality at the surface of metals. In particular, the choice of
Pb was motivated by its importance in experiments where
superconductivity and strong spin-orbit Rashba interactions
(which emerge due to the lack of inversion symmetry at the
surface) are combined. We have been able to estimate the
Rashba parameter as αR ≈ 0.97 eV Å.

In this work, assuming classical impurity spins S1 and S2

weakly coupled to the Pb substrate via a generic s-d model
(a situation that corresponds to a large class of experimen-
tal systems), we have developed a method which combines
realistic ab initio calculations with low-cost computational
effort. Using second-order perturbation theory and realistic
DFT calculations for the electronic band structure of clean
Pb(110), we have been able to systematically obtain the
effective spin Hamiltonian between S1 and S2 at order J2

sd with
no additional assumptions. Since our method is perturbative,
the underlying electronic structure of clean Pb(110) obtained
within ab initio is not modified. Technically, this means that
the method, which is suitable for DFT band-structure calcu-
lations based on a periodic lattice, involves relatively small
unit cells. This fact results in a considerable minimization of
computational effort. It is worth mentioning that, in general,
the calculation of realistic nanoscale spin interactions through

ab initio methods involves a great deal of computational effort
(see, e.g., Ref. [55]). Our method allows us to systematically
track the contribution of the conduction-electron propagators
to the magnetic interaction functions [see Eqs. (20)–(22)]. In
addition to the well-known RKKY interaction, the presence
of Rashba spin-orbit coupling induces finite DM and tensor
matrix interactions, proportional to αR and α2

R, respectively. In
particular the DM interaction is responsible for noncollinear
magnetism and chiral effects (see Fig. 5, where we obtain non-
collinear configurations from the minimization of the effec-
tive Hamiltonian). These types of interactions were recently
investigated in relation to Majorana proposals and skyrmion
systems, which are currently being investigated for magnetic
storage technology.

The philosophy of our work is reminiscent of those of
Imamura et al. [44], Zhu et al. [56], and Bouaziz et al. [26],
in which generic indirect magnetic interactions are obtained
directly from the conduction electrons. However, in contrast
to those works we have not assumed any specific model
Hamiltonian for the conduction electrons. In that sense, this
represents an important improvement since it allows us to
use the knowledge of realistic band-structure calculations. We
point out that in many cases where Rashba spin-orbit coupling
is present, there is a tendency to use phenomenological two-
dimensional (2D) conduction band models [26,44]. However,
it is known that bulk electrons cannot be neglected and that
they play an important role in systems of adatoms on metallic
surfaces [57–59]. A consequence of neglecting bulk electrons
is the unrealistic slow decay of the RKKY and other indirect
exchange interactions. In addition, in certain cases it has been
identified that the presence of Van Hove singularities in the
idealized 2D band structure produces anomalous long-range
interactions [26].

Being a perturbative approach based on the second-order
expansion (i.e., the “RKKY approximation”), our method
does not take into account higher-order scattering terms,
and therefore, it is intrinsically limited to the weak-coupling
regime ρ3DJsd � 1. In that respect, we briefly mention that
extensions to include higher-order scattering terms have been
proposed in the past [26,55,60]. However, in the case of im-
purities in the strong-coupling Kondo regime, even including
higher-order scattering terms might not be enough due to
the breakdown of the perturbative expansion. In that case,
many-body effects such as Kondo correlations, mixed-valence
behavior, charge excitations, etc., should be addressed from
the beginning for a proper description. In fact, one of the
most severe limitations of the perturbative method is its failure
to describe the competition between the RKKY interaction
and the Kondo effect. In that respect, Allerdt et al. [61,62],
Mitchell et al. [63], and Schwabe et al. [64] recently consid-
ered many-body nonperturbative effects of the s-d exchange
on the interaction between quantum impurities at the surface
of metals by implementing the density-matrix renormalization
group or the numerical renormalization group. While the
method described in this work is certainly not applicable to
such situations, we stress that numerous experimental realiza-
tions of adatoms on top of metallic surfaces never reach the
strong-coupling Kondo limit, and therefore, the perturbative
approach can be safely applied. Such is the case when the tem-
perature is T > TK or when the external magnetic fields are
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B > kBTK/μB, with TK being the Kondo temperature. In those
cases, the crossover to the strong-coupling limit is interrupted
by the energy scales associated with T and B, respectively.
In addition, it is usually the case that impurities deposited
on metallic surfaces exhibit a large spin value together with
large single-ion anisotropy terms [such as D (Sz )2], effects
which tend to quench quantum fluctuations and the Kondo
effect, making it possible to treat the impurities as classical
objects. In particular, the Appelbaum-Anderson perturbative
approach [52–54] was successfully applied by Zhang et al.
[41], showing remarkable agreement with experiment.

Another important conclusion of our work is the strong
anisotropy of the induced interactions depending on the di-
rectionality (a or b direction in Figs. 3 and 4) as a result
of the symmetry of the Pb(110) surface. This result was
also obtained theoretically [55] and experimentally [12] in
different systems. In addition, the interaction is nonmonotonic
with the distance. These two aspects are in stark contrast with
respect to the usually idealized parabolic-band RKKY.

Finally, we note that the band structure of Pb has been
computed for the normal state and that the superconducting

gap in the spectrum of quasiparticle excitations of Pb has been
ignored. We speculate that this approximation will not affect
our results, as the superconducting effects should appear at
distances of the order of the coherence length ξPb ≈ 80 nm,
which are much larger than the interatomic distances in our
calculations.

In summary, by combining ab initio methods with per-
turbation theory, we have studied the realistic indirect spin-
spin interactions mediated by conduction electrons in the
metallic surface of Pb(110). We speculate that this approach
might be helpful in the design of weakly coupled magnetic
nanostructures with tailored interactions in order to obtain
specific functionalities.
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