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Abstract 

A family of Ce-doped LaCoO3 perovskites are presented as possible catalyst for Cl-

VOCs elimination. These materials with different contents of Ce are obtained through 

the citrate and the reactive grinding methods. The insertion of Ce in the original 

perovskite structure favours the presence of Co
2+

/Co
3+

 and Ce
3+

/Ce
4+

 redox pairs and a 

higher content of oxygen vacancies that enhances the catalytic performance in 

chlorobenzene combustion based in differential kinetics studies. The family obtained by 

the grinding method presents a performance as high as the synthesized by citrate 

method. Thus, the reactive grinding is a feasible green chemistry alternative to obtain a 

catalyst with the same performance than that obtained from traditional methods. Finally, 

the stability of samples was evaluated under total combustion reaction conditions 

showing an excellent activity during 45 h time on stream. 
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1. Introduction 

Chlorinated volatile organic compounds (Cl-VOCs) including 

polychloromethanes (PCMs), polychloroethanes (PCAs) and polychloroethylenes 

(PCEs), are widely used as solvents, degreasing agents and a variety of commercial 

products 
1
. These contaminants are mainly regarded as persistants and resistant to 

biodegradation in the environment 
2
. Cl-VOCs have been classified as hazardous gas 

pollutants and were included in the list of highly harmful chemicals targeted in the 

emission reduction efforts of most counties due to its toxicity and carcinogenic nature. 

Chlorobenzene is one of the chlorinated compounds from industrial processes which is 

usually used as model for Cl-VOC because it is a precursor or intermediate product of 

polychlorinated wastes 
3,4

. A number of techniques have been used to eliminate 

chlorinated VOCs, and catalytic combustion is considered to be an efficient and low 

energy cost option 
5,6

. 

Vanadium based catalysts 
3,7

, nobel metals (Pt, Pd Ru) supported on zeolites 
7,8

 

and transition metal oxides 
9–11

 have been reported as catalysts used for the catalytic 

combustions of Cl-VOC. The use of noble metals is limited due to their high cost and 

low resistance to chlorine poisoning 
12,13

. Transition metal oxides, including cobalt, 

manganese, copper and chromium, present not only a better thermal stability, a strong 

poisoning resistance and low costs but also enhance catalytic activity by the 

modification with rare earth elements 
14,15

. Dai et al. 
16

 studied CeMnLa catalysts and 

presented a high catalytic activity, selectivity and stability at 350 °C. Yang et al. 
17

 

reported the catalytic performance of mixed transition oxides of CeMOx ( M: V, Cr, Mn, 

Fe, Co, Ni and Cu) for Cl-VOC combustion reaction. Moreover, Chen et al. 
18

 showed 
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that Co-Cu-Mn mixed oxide catalysts exhibited high catalytic activity in the oxidation 

of VOCs. Co3O4/La-CeO2 catalyst was found to provide more adsorbed species and 

lattice oxygen species due to the interaction between Co
3+

/Co
2+

 and Ce
4+

/Ce
3+ 

couples, 

which resulted in the enhancement in the catalytic activity. 

Rare earth perovskites have been widely studied in Cl-VOCs oxidation due to 

the high structural and thermal stability that favour their use in industrial conditions 

(Thermal shock, chorine poisoning, water vapour, etc.). It has been made many efforts 

to enhanced redox abilities and surface acidities by the substitution of A or B cations 

19,20
, because the oxidation state at A-site or B-site can be modified. Further, anion 

vacancy could be produced by charge compensation. Kießling et al. 
21

 have shown that 

rare earth perovskites present high potentials as catalysts for the destruction of 

chloromethanes, chloroethanes and chloroethenes. 

In this work the influence of Ce doping of LaCoO3 perovskite in its 

physicochemical characteristics and thus in chlorobenzene combustion catalytic activity 

was widely studied. Additionally, the effect of the used synthesis method was analysed 

considering the importance of this step when large amount of catalysts must be 

synthetized for an industrial use. For this purpose, two methods will be employed at lab 

scale, the citrate and the reactive grinding methods. Both have been widely used in 

perovskites synthesis. The first one has been used because it provides solids with high 

surface area and purity 
22

. The second one is well known to provide perovskites with 

high crystallinity at lower temperatures than other common techniques. Additionally, 

reactive grinding does not produce liquid effluents or hazardous vapours because single 

oxides are the perovskite precursors in agreement with green chemistry procedures 
23

. 

The durability of catalysts was also studied in order to evaluate its possible industrial 

application. 
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2. Experimental 

2.1 Catalysts preparation 

La1−xCexCoO3 (x = 0, 0.05, 0.1, 0.2, 0.5) perovskites were prepared by two 

different methods. In citrate method 
24

, metal nitrate solutions were added to a citric 

acid solution (10% in excess) and agitated during 15 min. The resulting solution was 

concentrated with a slowly evaporation in a rota vapour at 75 °C under vacuum until a 

gel was obtained. This gel was dried at 100 °C overnight in a vacuum stove, producing 

a solid amorphous precursor. The resulting precursor was milled and calcined in air at 

700 °C for 2 h. The samples were named as CMx, where CM: Citrate method and x: 0, 

0.05, 0.1, 0.2, 0.5 corresponding to the Ce substitution level. In the reactive grinding 

method, the starting reagents were commercial La2O3 and CeO2 (Sigma Aldhrich) and 

Co3O4 obtained from the thermal decomposition of cobalt acetate (Sigma Aldrich) 

calcined in air at 500 °C for 2 h. The milling process was carried out in a planetary ball 

milling (Fritsch Pulverissette 6) equipped with a cylindrical tungsten cabide vial (80 

cm
3
) and 15 mm diameter WC balls. The ball weigh-powder weight ratio was fixed at 

10:1 and the rotation speed at 500 r/min. The milling time was 8 h and samples were 

finally calcined at 700 °C during 2 h. These samples were named: RGx, RG considering 

reactive grinding method and x: 0, 0.05, 0.1, 0.2, 0.5 corresponding to the Ce 

substitution level. 

 

2.2 Catalysts Characterization 

 BET specific surface area (SBET) of samples was calculated by the BET 

method. A Gemini V from Micromeritics apparatus was used. Samples were degassed 

overnight at 350 °C.  X-ray diffraction (XRD) patterns were obtained with a Rigaku 
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(ULTIMA IV) diffractometer operated at 30 kV and 25 mA using Cu Kα radiation with 

Nickel filter ( = 0.15418 nm).  X-ray photoelectron spectroscopy (XPS) was recorded 

with a Multitecnic UniSpecs equipment with a dual X ray source of Mg/Al and a 

hemispheric analyzer PHOIBOS 150 was used to obtained XPS data. The pressure was 

kept under 29×10
–8

 mbar. The samples were previously reduced at 600 °C in 50 mL/min 

5% of H2/N2 stream. Temperature programmed reduction (TPR) was performed in a 

quartz tubular reactor using a TCD detector. Samples of 100 mg were reduced with a 

mixture of 5 vol% H2/N2, at a total flow rate of 30 mL/min. The temperature was 

increased at a rate of 10 °C/min from room temperature to 700 °C.  

2.3 Catalytic tests 

The catalytic activity was made using a fixed-bed quartz reactor (12 mm 

diameter) at atmospheric pressure. Data were obtained in steady state. A sample of 200 

mg (0.5–0.8 mm particle diameter) diluted with 1.5 g quartz particles of the same size 

was used. The feed was a mixture of 1000 ppm of chlorobenzene in air at a total flow 

rate of 200 mL/min. The reagents and exhaust gas were analyzed online by a Hewlett-

Packard 5790 gas chromatograph equipped with a Carbowax 20 M / Chromosorb W 

column and a flame ionization detector (FID). The concentration of Cl2 in the exhaust 

was analyzed by bubbling effluent stream in a 10 wt% NaOH solution. Then Cl2 

concentration was determined adding a known volume of this solution to a KI solution, 

followed by a titration of free iodine with a known concentration of Na2S2O3 solution 

following the method reported elsewhere 
24

. Stability tests were performed under the 

same conditions mentioned above. The reaction temperature was kept constant at 500 

°C, which corresponds to total chlorobenzene conversion. 

 

3. Results and discussion 
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3.1 Catalytic performance in chlorobenzene combustion 

The samples synthetized in this work were evaluated in the catalytic combustion 

of chlorobenzene. Due to the high toxicity of dioxins and the need for laboratory safety, 

this compound was used as a model reagent in order to predict destruction behaviour of 

the synthetized catalysts. 
3,25

. The catalytic activity results are shown in Figs. 1, 2 and 

Table 1. Fig. 1 shows the light off curves of chlorobenzene combustion for catalysts 

prepared by the reactive grinding method. As can be seen, catalysts presented a different 

behaviour as a function of temperature. At low reaction temperatures (lower than 350 

°C) RG0, RG0.2 and RG0.5 presented a higher chlorobenzene combustion. However, at 

higher temperatures RG0.05 and RG0.1 became more active. Effectively, these catalysts 

presented the lower T50 and T90 values (Temperatures corresponding to 50% and 90% 

of total conversion). This different behaviour could indicate a different reaction 

mechanism which would involve the presence of intermediate compounds specially at 

low reaction temperature 
26

 
27

 
28

 
15

. The amount of Cl2 determined at the end of the 

catalytic tests resulted similar to the theoretic value, 1.18×10
–3

 mol (Table 1). 

Additionally, the total carbon balance closed around 0% for all catalysts indicating that 

at high reaction temperature, chlorobenzene was converted completely to CO2 and Cl2. 

Fig. 2 shows the results of catalysts synthetized by the citrate method.  It is interesting 

to note that at low temperature (lower than 300 °C) the chlorobenzene conversion 

increased in the following order: CM0CM0.1CM0.05CM0.2CM0.5. CM0.5 

catalyst presented a higher conversion at low temperature but its behavior changed at 

high reaction temperature presenting the higher T50 and T90 values (Table 1). At high 

reaction temperatures the order changed as: CM0.5CM0.1CM0.2CM0CM0.05. 

The catalyst with the better catalytic activity was CM0.05. Cl2 moles and carbon 

balance determined at the end of the reaction indicated total combustion in all cases. 
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Even if CM0.05 was slightly more active than RG0.05 there is not a marked effect of 

the synthesis method in the catalytic performance. The results were quite similar. 

However, Ce content presented a defined influence on catalysts activity with both 

methods. Only a small amount of Ce could enhance the activity of unsubstituted 

perovskite, specifically at high reaction temperature. Indeed, CM0.05 and RG0.05 

presented lower reaction temperatures than CM0 and RG0. The addition of a higher 

content of Ce did not improve the catalysts performance. It could be deduced that a 

higher substitution degree of Ce (higher that 0.05) did not enhanced the catalytic 

activity of CMx catalysts. Something similar happened with RGx catalysts, even if the 

addition of Ce clearly improved the catalytic activity of RG0 catalyst, it could be 

deduced that a small value of x (x=0.05) was enough to improve the catalyst behavior. 

In fact, RG0.05 and RG0.1 were more active than RG0.2 and RG0.5 catalysts. 

The activation energies of catalysts in the chlorobenzene combustion are 

summarized in Table 1 and Fig. 3.  These values were calculated on the basis of a 

conversion less than 20%.  The study of differential kinetics was conducted by 

assuming steady state before and after reaction. Then, a regression line was obtained by 

plotting ln k versus 1/T, and activation energy (Ea) was calculated by Arrhenius 

equation. As it was expected lower activation energies were obtained for CM0.05 and 

RG0.05 catalysts, 38 and 33 kJ/mol respectively. Again, Ea increased with the increased 

of Ce content. The Ea values obtained with the catalysts prepared in this work resulted 

in the same order than those presented by Hao Huang and coworkers 
1,3

 with Ru/CeO2 

and VOx/CeO2 catalysts for catalytic combustion of chlorobenzene and also resulted 

similar to those presented by Gu and coworkers with WOx/CeO2 catalysts in the same 

reaction 
29

. The turnover frequencies (TOF) were calculated as moles of converted 

chlorobenzene per hour and per surface area of catalyst according to the reaction rates at 
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200 °C. These values are also useful to describe the catalytic performance. As can be 

seen in Table 3, the higher TOF values were obtained with CM0.05 and RG0.05 

catalysts, 6.1×10
–3

 and 5.57×10
–3

 mmol·m
2
/h, respectively. These results confirmed the 

excellent catalytic performance of the above mentioned catalysts. 

3.2 Catalysts characterization 

A complete characterization of catalysts was made in order to determinate the 

physicochemical characteristics and its relationship with the catalytic results. Table 2 

shows the textural features of prepared catalysts. As can be observed, the synthesis 

method did not present a defined influence in catalysts surface area (SBET). Catalysts 

prepared by reactive grinding presented a higher SBET, however, the difference is not 

as marked as it would be expected. The citrate method has been extensible used in the 

synthesis of perovskites because it is known to provide solids with higher surface area 

in comparison with other methods like the ceramic ones 
30

. In this case, probably, the 

SBET that the citrate method could provide due to the generated porosity would be 

comparable to SBET of catalysts prepared by reactive grinding due to the decrease of 

particle size during the milling process 
23

. The partial doping of La with Ce produced a 

decrease of surface area, from 15 to 7 m
2
/g for RG0 and RG0.05, respectively and from 

11 to 4 m
2
/g for CM0 and CM0.05, respectively. However, a higher substitution level 

did not significantly increase the surface area of catalysts. Evidently, the phases 

generated after the substitution did not present the same textural characteristics than the 

original perovskite. The different morphology of perovskites would also indicate 

structural differences in the samples. The XRD analysis confirms the presence of 

perovskite structure and, at high Ce content, the presence of CeO2 and Co3O4 phases. 

This behaviour is similar in both series: CM and RG. The XRD patterns measured in 

step mode for all compounds were refined using the Rietveld method. Three phases 
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were used in the refinements: La1–yCeyCoO3 (S.G.: R ̅c), CeO2 (S.G.: Fm ̅m) and 

Co3O4 (S.G.: Fd ̅m). The Rietveld plots are showed in Fig. 4(a, b). The main obtained 

parameters: cell parameters, crystallite size and strain and phase amounts, are 

summarized in Table 3. From these parameters, several crystal features can be used to 

understand the physicochemical and catalytic properties. The paramount parameter to 

know is the effective doping of Ce in the perovskite structure, however, this value is 

impossible to refine from X-ray pattern because La and Ce cations are virtually 

indistinguishable in terms of scattering factors. In spite of this, the Ce content in the 

perovskite structure also generates changes in the lattice (unit-cell volume and atomic 

distances) which can be used to estimate the Ce substitution. Regarding to the changes 

in the unit-cell volume, some aspects should be considered in terms of ionic radii; 

rLa
3+

=0.136 nm, rCe
3+

= 0.134 nm, rCe
4+

=0.114 nm, rCo
3+

=0.0745 nm and 

rCo
2+

=0.061 nm 
31

. The substitution of Ce
3+

 (or Ce
4+

) instead La
3+

 cations induces a 

reduction in the unit-cell, but the presence of Ce
4+

 would induce Co
2+

 instead of Co
3+

 

producing the opposite effect. The oxygen vacancies, which are likely in materials 

obtained with the presented methods, can increase the unit-cell volume. Similarly, the 

<(La/Ce)–O> and <Co–O> distances also are sensitive of Ce doping in the structure. In 

addition, the presence of CeO2 and Co3O4 are indicative of incomplete doping and their 

amount can also be used to estimate the effective doping value. Thus, the nominal 

doping proposed in the synthesis and the obtained system can be understood as:  

La1–xCexCoO3 → (1–x/1–y) La1–yCeyCoO3 + (x–y/1–y)CeO2 + (x–y/3–3y)Co3O4 

where x and y are the nominal and effective value of the Ce substitution. From this 

relationship is possible to estimate the effective value of Ce substitution (y) from the 

amount of each phase obtained in the Rietveld refinement. Fig. 5 illustrates the unit-cell 

volume and interatomic distances vs x value. The dashed and dotted lines correspond to 
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a well-crystallized undoped phase (LaCoO3). These plots reveal that the Ce doping in 

perovskite structure is more significant with the citrate method. It is known that textural 

properties, structure and composition of perovskites are strongly related to its redox 

property. Then, in order to investigate the reducibility of samples, H2-TPR 

characterization was performed and the results are shown in Fig. 6. RG0 sample 

presented a reduction profile similar to those reported in literature for the same phase, 

LaCoO3. The curve presents two main reduction zones, one of them from 300 to 500 °C 

and the other from 550 to 750 °C. The former corresponds to the reduction of Co
3+

 to 

Co
2+

, while the latter is attributed to the reduction of Co
2+

 to Co
0 32,33

. The addition of 

Ce induces changes in the reducibility of LaCoO3 perovskite, evidenced by the shift of 

the first peak to lower temperatures, the overlapping of the two signals of the second 

peak and a shift of this peak to higher temperatures. The same was observed by other 

authors, 
34–36

 with the same perovskites. The deconvolution of this second signal is 

shown in order to enhance the visualization. At higher substitution levels, additional 

reduction signals could be detected from 500 to 600 °C. These additional signals could 

be assigned to the reduction of segregated CeO2 species 
37,38

. This fact is more evident 

in the case of RG0.2 and RG0.5. A similar behaviour was also observed in the case of 

CMx samples, an overlapping of signals was detected in the rage of high reduction 

temperatures and additional reduction signals were detected specially with CM0.5 

catalyst. These facts are in agreement with the higher amount of CeO2 observed by 

DRX for x = 0.5 in both synthesis methods. Total H2 consumptions of catalysts are 

displayed in Table 2. It is interesting to note that the H2 consumption decrease with a 

small addition of Ce, from 3.41 to 3.05 mmol/g catalyst for RG0 and RG0.05 and from 

3.65 to 3.21 mmol/g catalyst for CM0 and CM0.05 respectively. Assuming that the 

peaks at low substitution levels are attributed to the reduction of Co species, it could be 
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considered that the addition of Ce would facilitate the presence of Co
2+

 species in 

addition to Co
3+

 species, as observed by the Rietveld refinement. This redox pair 

Co
2+

/Co
3+

 would be one of the positive factors that influence the catalytic performance. 

H2 consumption increased with the increase in Ce substitution level for both synthesis 

methods. This could be due to the reduction of segregated CeO2 species in addition to 

Co species in accordance with the reduction signals observed. Evidently, the presence of 

segregated CeO2 at the surface of high substitution level catalysts generated low active 

catalytic sites. In order to study the disposition of cations at the surface of catalysts 

which is the responsible of the catalytic behaviour, the XPS analysis was carried out and 

the profiles of Ce 3d, Co 3d and O 1s are shown in Figs. 7–9, respectively. The main 

XPS data are listed in Table 4. Ce3d spectra could be deconvoluted into eight peaks 

assigned to four pairs of spin-orbit doublets (Fig. 7). The peaks named as u and v are 

characteristics of Ce3d3/2 and Ce 3d5/2 multiples, respectively. The doublet u’ (902.9 

eV) and v’ (883.4 eV) refers to Ce
3+

 3d final state, while the peaks  (881.8 eV), v’’ 

(887.9 eV), v’’’(897.5 eV), u ( 900.1 eV), u’’(906.6 eV), and u’’’(916.1 eV) feature 

Ce
4+ 

[36]. As can be seen in Table 4, the Ce
3+

/Ce
4+

 ratio decreased from 1.6 to 1.1 for 

RG0.05 and RG0.5, respectively. A similar effect can be observed with CM catalysts. 

These results are in line with RTP results, the segregation of CeO2 is also evident at the 

surface of catalysts with higher substitution levels. Table 4 shows the binding energies 

of Co 2p1/2 and Co 2p3/2. It is known that the difference between these two levels is 

about 15.1 eV which indicates Co
3+

 presence
39,40

. For all catalysts prepared by both 

methods in this work, the difference is higher than 15.1 eV which indicates that some 

Co
2+

 (where the difference is about 16 eV) coexists with Co
3+

. The Co 2p3/2 peak is 

deconvoluted into two components at 779 and 781 eV, assignable to surface Co
2+

 and 

Co
3+

 species respectively (Fig. 8). The Co
2+/

Co
3+

 ratio (see Table 4) increased from 
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0.31 to 0.44 for RG0 and RG0.05, respectively, and from 0.27 to 0.39 for CM0 and 

CM0.05 catalysts. The Co
2+/

Co
3+

 ratio decreased with a higher Ce substitution levels. 

This could be attributed to the fact that the valence state of some Co cations in B-sites 

changes from Co
3+ 

to Co
2+

 in order to maintain the electronic neutrality when Ce is 

introduced into the perovskite structure. The higher presence of this Co
2+

/Co
3+

 redox 

pair in RG0.05 and CM0.05 catalysts, would the responsible of its higher catalytic 

activity in chlorobenzene combustion. It is widely known that the catalytic activity of 

perovskite oxides is related to transition metal ions oxidation states, the amount of non-

stoichiometric oxygen and the structural defects of lattice. The nature of VOC molecule 

to be oxidised will define which of these aspects will be more relevant for the catalytic 

performance and will give an idea about the reaction mechanism. Chlorobenzene is 

generally adsorbed and dissociated on surface active sites via a nucleophilic attack on 

C–Cl bond. Then the adsorbed species react with active oxygen species to produce CO2, 

and H2O. Simultaneously, the dissociative Cl
–
 species adsorbed are oxidized into Cl2 by 

surface reactive oxygen species through the Deacon reaction (2HCl + O2Cl2 + H2O). 

Finally, the consumed oxygen species are replenished by the gas-phase oxygen 

adsorbed on the oxygen vacancies. Thus, it is of great importance to study the surface 

oxygen in order to understand the catalysts behaviour. As shown in Fig. 9, the O1s 

spectra could be deconvoluted into two components. The peak at high binding energies 

(531.3–532.2 eV) corresponds to the surface adsorbed oxygen (Oads) such as O2
2–

 or O
–
 

and hydroxyl OH
–
, while the peak at low binding energies (529.2–530.0 eV) is 

attributed to lattice oxygen O
2–

 (Olat)
41,42

. As it can be observed in Table 4 Oad/Olat 

ratio increased with a small addition of Ce from 0.50 to 0.86 for RG0 and RG0.05 and 

from 0,78 to 0.84 for CM0 and CM0.05 respectively. At higher Ce substitution levels 

this value decreased indicating that the incorporation of cerium in the perovskite 
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structure can significantly increase the surface concentration of adsorbed oxygen. 

Effectively, catalysts with the higher Oad/Olat ratio, RG0.05 and CM0.05, presented a 

higher catalytic activity that those catalysts with an excess of cerium at the surface as 

segregated CeO2. As mentioned above, the higher concentration of adsorbed oxygen in 

these catalysts would favour the HCl oxidation reaction by the Deacon Process, which 

would lead to a higher removal of Cl species from the catalyst surface.  

 

3.3 Catalysts stability and characterization of used samples 

The main problem to solve during chlorinated combustion process is the 

deactivation of catalysts due to the presence of Cl species on surface active sites. Thus it 

is essential to investigate catalysts stability since it is an important indicator for 

determining whether the catalysts can be used in the industry. Therefore, the durability 

of CM0.05 and RG0.05 catalysts was studied. Fig. 10 shows the chlorobenzene 

conversion evolution time on stream at different temperatures corresponding to 80% 

and 100% of chlorobenzene conversion with each catalyst. The selected temperatures 

were 380 and 420 °C for the stability of CM0.05 and RG0.05 respectively for a 

conversion level of 80% and 500 °C for both catalysts in the case of 100% of 

chlorobenzene conversion. As it was expected the stability of both catalysts was lower 

at low reaction temperature. At 80% conversion level both catalysts remained stable 

during the first 24 h and then, chlorobenzene  conversion started to decrease up to 10% 

when the reaction time was 38 h. A different behaviour was observed at higher reaction 

temperature. As can be seen both catalysts showed an excellent stability during the first 

40 h in the case of CM0.05 and during 45 h in the case of RG0.05 catalyst keeping 

100% of chlorobenzene conversion. The comparison of catalysts stability presented in 

reported literature is difficult due to the differences in experimental conditions. 
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However, the stability of catalysts presented in this work is higher than that presented 

by Deng et al. 
37

 with cobalt based mixed oxides derived from layered double 

hydroxides with a space velocity of 30000 mL/(Lg·h) and 1000 ppm of Chlorobenzene. 

Wang and col, 
43

 presented a stability test of 20 h in chlorobenzene combustion using a 

space velocity of 20000 h
–1

 and 660 ppm. Some other authors, 
44

  reported stability tests 

with the addition of 5% water vapour and showed the stability during 10 h  with 500 

ppm of chlorobenzene and a sapace velocity of 15000 ml L/(g·h). 

 It is worthy mentioned that both catalysts presented in this work started to 

deactivate and chlorobenzene conversion decreased to almost 50% after 52 h on stream 

at 500°C. The amount of Cl2 determined at the end of reaction tests at 500 °C were 0.79 

×10
–3

 and 0.65×10
–3

 moles for RG0.05 and CM0.05 catalysts, respectively. While the 

amount of Cl2 at the end of reaction test performed at lower temperatures were 0.51×10
–

3 
and 0.47×10

–3 
mol for RG0.05 and CM0.05, respectively. In all cases these values 

resulted lower than the theoretical one, 1.18×10
–3

 mol. A higher difference among these 

values was observed at low reaction temperature. Carbon balance was also determined 

and it closed almost to 0% in both catalysts at 500 °C, but at lower reaction 

temperatures it closed to 1.32% and 2.4% for RG0.05 and CM0.05 catalysts, 

respectively. The low amount of Cl2 detected could indicate that some by-products as 

chlorinated hydrocarbons were formed during the combustion process. This fact is more 

probable at low reaction temperature considering the amount of Cl and carbon balance 

at the end of reaction test.  However, carbon balance obtained at 500 °C revealed that no 

additional carbon products were obtain, so this fact is unprovable at this reaction 

temperature. Therefore, the decrease of activity could be attributed to the adsorption of 

Cl species on the surface of catalysts that may block the active sites as it was previously 

found by several researchers 
45–48

. At lower reaction temperatures, the formation of 
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some by-products at the surface catalysts would be the responsible of catalysts 

deactivation. Clearly, at low temperature the removal of Cl species is more difficult than 

it is at higher temperature
49

. It interesting to note, that even though these results are 

interesting in order to study the causes of deactivation of catalysts, the stability test at 

500 °C corresponding to a 100% of chlorobenzene conversion is more relevant if a 

possible real catalytic application is considered, where a complete destruction of 

chlorobenzene is needed. The diffraction patterns of used catalysts are presented in Fig. 

11. As can be seen, the diffractograms obtained after the stability tests are quite 

different to the ones of fresh catalysts. The intensity of diffraction peaks corresponding 

to the perovskite phase (PDF 00-048-0123) decreased notably and additional peaks 

could be detected in all catalysts which were identified as CeO2 (PDF 00-048-0123), 

Co3O4 (PDF 96-900-5888) and LaOCl (PDF 96-900-9171) phases. These results explain 

the drop in chlorobenzene conversion. Evidently Cl species adsorb on catalysts surface 

preferentially on La cations, due to its basic character, forming the LaOCl compound. 

Consequently, the perovskite phase is destroyed and is decomposed in the 

corresponding simple oxides. The same was reported by Sinkin et al.  
50

 with LaCoO3 

perovskites used in the combustion of CH2Cl2, CHCl3 and CCl4.  

 Evidently, the excellent activity provided by the Co
2+

/Co
3+

 and Ce
3+

/Ce
4+

 pair 

redox and the oxygen vacancies present in the perovskite decreases with time on stream 

after around 45 hs due to the partial surface deactivation of perovskite structure by 

means of chlorine incorporation. However, this fact probably is reversible because it is 

possible to recover catalysts introducing water vapour, since water would depress 

Deacon reaction and promote the removal of Cl species 
51

. Besides, we could 

demonstrate in this article that a reactive grinding process would be useful to recover 

the perovskite structure from it corresponding oxides. Several studies about the 
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regeneration of catalysts taking into account the process steps mentioned above are 

being developed and will be published elsewhere. 

Conclusions  

In this work, a series of Ce-doped LaCoO3 perovskites catalysts were 

synthetized by two methods, the citrate and the reactive grinding methods. Both 

methods provided active catalysts in the studied reaction reaching only total combustion 

products, CO2, Cl2 and H2O at high reaction temperatures. The most active catalysts 

were those with the low substitution level (x=0.05) synthetized by both methods. Thus, 

this fact results interesting considering the possibility of a future scale up. The reactive 

grinding method could be easily reproduced in large scale with zero contaminant 

effluents. The Ce-doping in the original perovskite structure was observed up to a level 

of x=0.05. For higher substitutions levels, segregated CeO2 was detected in all catalysts. 

The insertion of Ce favored the presence of Co
2+/

Co
3+

 and Ce
3+/

Ce
4+

 redox pairs and a 

higher content of oxygen vacancies that enhance the catalytic performance in 

chlorobenzene combustion based in differential kinetics studies. Finally, durability tests 

were carried out in order to determinate the stability of catalysts on time on stream. It 

was demonstrated that catalysts presented a stable catalytic performance with 100% of 

chlorobenzene conversion during 45 h. After that time, the catalysts started to deactivate 

due to the adsorption of Cl species on catalyst surface. Finally, all results support the 

promising properties of La1–xCexCoO3 with x = 0.05 as a suitable catalyst to treat 

chlorinated volatile organic compounds of industrial waste. 
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Catalyst T50 T90 Total carbon 

balance (%) 
n(Cl2) (mol) 

as a reaction 

product 

Activation 

Energies (Ea) 

(kJ/mol) 

TOF
a
  

(mmol/(m
2
·h)) 

RG 0 454 491 0.90 1.02×10
–3

 42.55 1.86×10
–3 

RG 0.05 377 434 0.30 0.94×10
–3

 33.69 5.57×10
–3 

RG 0.1 389 422 0.30 1.15×10
–3

 71.77 2.19×10
–3 

RG 0.2 438 476 0.80 1.22×10
–3

 100.68 2.20×10
–3 

RG 0.5 421 473 0.60 1.15×10
–3

 95.46 1.95×10
–3 

CM 0 356 439 0.60 1.17×10
–3

 44.33 1.82×10
–3 

CM 0.05 313 425 0.40 1.22×10
–3

 38.22 6.10×10
–3 

CM 0.1 385 456 0.50 1.08×10
–3

 84.95 5.40×10
–3 

CM 0.2 325 461 0.70 1.16×10
–3

 111.33 4.25×10
–3 

CM 0.5 425 474 0.80 1.18×10
–3

 112.97 3.16×10
–3 

a TOF calculated as moles of converted chlorobenzene per hour based on catalyst 

surface area 

 

Table 2.  SBET, pore size and H2 consumption from RTP results 

 

 

Catalyst 
BET 

surface 

(m
2
/g) 

Pore 

Size 

(nm) 

H2 

consumption 

(×10
-4

 

mol/gcat) 

RG0 15 3.442 3.40 

RG0.05 7 3.425 3.05 

RG0.1 8 7.348 3.14 

RG0.2 7 5.864 3.64 

RG0.5 6 3.588 3.86 

CM0 11 7.699 3.65 

CM0.05 4 13.607 3.21 

CM0.1 5 12.819 3.33 

CM0.2 4 12.306 3.68 

CM0.5 6 10.097 4.19 

 

 

 

 

Table 3 Parameters obtained by Rietveld Method. 

a) Reactive Grinding  

                                                                                 Ce content  
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Ce-doped LaCoO3 0% 5% 10% 20% 50% 

a (nm) 0.54357(4) 0.54354(3) 0.54361(4) 0.54313(6) 0.54336(8) 

c (nm) 1.3137(1) 1.3136(1) 1.3146(1) 1.3159(2) 1.3230(4) 

V(nm
3
) 0.33616(5) 0.33609(4) 0.33642(5) 0.33615(7) 0.3383(1) 

                                                                              Amount (%P/P) 

La1–yCeyCoO3 100 100 89(2) 89(3) 37(1) 

CeO2 - - 4.1(4) 5(1) 43(1) 

Co3O4 - - 5.6(8) 6(2) 20(2) 

                                                                          Crystallite size (nm) 

La1–yCeyCoO3 51.9 55.1 32.5 20.8 17.9 

CeO2 - - 14.4 11.9 11.5 

Co3O4 - - 37.4 25.2 9.3 

b) Citrate method  

                                                                                 Ce content  

Ce-doped 

LaCoO3 

0% 5% 10% 20% 50% 

a (nm) 0.54360(6) 0.54303(7) 0.54295(7) 0.54258(3) 0.5439(2) 

c (nm) 1.3121(2) 1.3127(2) 1.3152(2) 1.3210(1) 1.3156(6) 

V (nm
3
) 0.33578(6) 0.33523(7) 0.33578(8) 0.33680(4) 0.3371(2) 

                                                                              Amount (%P/P) 

La1-yCeyCoO3 100 100 95.1 95(1) 47(3) 

CeO2 - - - 5.0(5) 46(2) 

Co3O4 - - - 0.3(1) 7(1) 

                                                                          Crystallite size (nm) 

La1–yCeyCoO3 35.3 72.6 47.9 34.4 19.9 

CeO2 - - - 7.0 9.5 

Co3O4 - - - - - 

 

Table 4 XPS results 

 

Catalyst Oadd/Olatt Ce
3+

/Ce
4+

 Co
2+

/Co
3+

 Energy difference (eV) 

Co
2+

/Co
3+

 

RG0 0.50 ----- 0.31 15.47 

RG0.05 0.86 1.60 0.44 15.47 

RG0.1 0.62 1.40 0.12 15.36 

RG0.2 0.62 1.50 0.12 15.36 

RG0.5 0.29 1.10 0.14 15.36 

CM0 0.78 ----- 0.27 15.12 

CM0.05 0.84 1.03 0.39 15.00 

CM0.1 0.62 0.89 0.32 15.24 

CM0.2 0.35 0.99 0.29 15.12 

CM0.5 0.41 0.91 0.31 15.24 
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Figure Captions 

 

Figure 1. Catalytic performance of RG catalysts in Chlorobenzene combustion reaction. 

Figure 2. Catalytic behaviour of CM catalyst in Chlorobenzene combustion reaction. 

Figure 3. Arrhenius plot for rate constant of chlorobenzene conversion with RG (a) and  

CM catalysts (b). 

Figure 4. XRD patterns with Rietveld refinements plots for RG catalysts. 

Figure 5. XRD patterns with Rietveld refinements plots for CM catalysts. 

Figure 6. (a) Unit-cell volume vs x value; (b) Interatomic distances vs x value.  

Figure 7. H2-temperature programed reduction (H2-TPR) profiles of RG (a) and CM (b) 

catalysts.  

Figure 8. XPS spectra of Ce 3d for RG (a) and CM (b) catalysts 

Figure 9. XPS spectra of Co2p for RG (a) and CM (b) catalysts 

Figure 10. XPS spectra of O1s for RG (a) and CM (b) catalysts 

Figure 11. Stability tests. Chlorobenzene conversion evolution on time on stream. 

Figure 12. XRD patterns of RG0.05 and CM0.05 catalysts before and after the stability 

tests at 80% and 100% of chlorobenzene conversion.  LaCoO3-PDF 00-048-0123; ▲ 

CeO2-PDF 96-900-9009;  Co3O4-PDF 96-900-5888; ◼ LaOCl-PDF 96-900-9171. 
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Graphical Abstract Description 

 

Ce-doped LaCoO3 perovskites catalysts prepared by two different methods (citrate and 

reactive grinding) present an excellent catalytic activity and stability in the 

chlorobenzene total combustion reaction with zero formation of by-products. 
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Highlights 

 

 A green synthesis method was feasible to use in order to obtain active catalysts. 

 The redox combination of the substituted catalysts increases the catalytic activity. 

 Catalysts oxidize chlorobenzene to its total oxidation products, without final 

intermediates. 

 Differential kinetic studies corroborated the catalytic capacity of the catalysts 

obtained. 

 Samples presented an excellent stability during 45 hs time on stream 
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