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In general relativity, traversable wormholes are possible provided they do not represent shortcuts in the
spacetime. Einstein equations, together with the achronal averaged null energy condition, demand to take
longer for an observer to go through the wormhole than through the ambient space. This forbids wormholes
from connecting two distant regions in the space. The situation is different when higher-curvature corrections
are considered. Here, we construct a traversable wormhole solution connecting two asymptotically flat
regions, otherwise disconnected. This geometry is an electrovacuum solution to the Lovelock theory of
gravity coupled to an Abelian gauge field. The electric flux suffices to support the wormhole throat and to
stabilize the solution. In fact, we show that, in contrast to other wormhole solutions previously found in this
theory, the one constructed here turns out to be stable under scalar perturbations.We also considerwormholes
in anti–de Sitter (AdS). We present a protection argument showing that, while stable traversable wormholes
connecting two asymptotically locally AdS5 spaces do exist in the higher-curvature theory, the region of the
parameter spacewhere such solutions are admitted lies outside the causality bounds coming fromAdS=CFT.
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I. INTRODUCTION

Wormholes are one of the most fascinating solutions of
gravitational field equations. Originally conceived as a
hypothesis on the structure of matter in classical physics
[1], wormholes have served as illustrative examples on how
abstruse the topology of spacetime can be [2], allowing us
to investigate to what extent causality, locality, and energy
conditions are interrelated [3]. These geometries have also
provided a particularly rich source of inspiration for science
fiction literature. The science fiction wormholes, however,
are radically different from those seriously considered in
theoretical physics; the main difference being their invi-
ability at macroscopic scales. The existence of wormholes
demands the violation of certain energy conditions, which
is only possible in quantum physics.
In the past few years, the interest on wormhole geom-

etries have been renewed. Both traversable and nontravers-
able wormhole geometries were recently considered in
relation to quantum gravity and notably to holography
[4–13]. In [13], an explicit example of a metastable,
traversable wormhole was constructed.1 The solution

describes a pair of extremal magnetically charged black
holes connected by a long throat, in such a way that it takes
longer for an observer to go through the wormhole than
through the ambient space, as demanded by the inalienable
achronal averaged null energy condition [18]. Einstein
equations, once such an energy condition on the matter
fields was imposed, do not allow for wormholes with a
short throat. In particular, wormholes connecting two
distinct asymptotically flat regions are excluded. The
situation is different when higher-curvature corrections
to the gravitational action are taken into account. In that
case, the higher-degree2 terms can effectively act as the
exotic matter contribution needed for such wormholes
to exist.
Here, we will explicitly show that higher-curvature

models in five dimensions do allow for stable wormholes
that connect two asymptotically flat—or asymptotically
anti–de Sitter (AdS)—regions without introducing extra
exotic matter. As a working example, we will consider the
Einstein-Maxwell theory supplemented with the quadratic
Gauss-Bonnet higher-curvature terms; namely

S ¼ 1

16π

Z
d5x

ffiffiffiffiffiffi
−g

p ðR − 2Λ − FμνFμν

þ αðRμνρσRμνρσ − 4RμνRμν þ R2ÞÞ þ B; ð1Þ
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1There have been other interesting papers recently on worm-
hole geometries; see for instance [14–17] and references therein
and thereof.

2In dimensions greater than four, higher-curvature terms do not
necessarily yield higher-order terms in the field equations. They
can well lead to second-order field equations that are nonlinear in
the second derivative of the fields.
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where B stands for the boundary term that renders the
variational problem well posed. This theory is the favorite
model to study the effects of higher-order terms in the
context of AdS5=CFT4 correspondence [19,20], the reason
being that it is analytically solvable in many physically
attractive scenarios such as AdS black holes. Besides,
action (1) can be motivated from string theory: it resembles
the α0-corrected low energy effective action of heterotic
string theory, and it also appears in Calabi-Yau compacti-
fication of M theory to five dimensions.3 The specific
combination of quadratic terms in (1) is the only one that
yields second-order field equations [24,25]. As a conse-
quence, the theory is free of Ostrogradsky instabilities. It
also results as free of ghosts around its perturbative
maximally symmetric vacuum [26]. The theory, however,
exhibits some causality issues [27] and other notorious
features [28]. In [27], the causality constraints of higher-
curvature models were studied, and it was shown in
particular that a theory such as (1) has to be supplemented
with massive higher-spin fields in order to be free of
causality problems. Causal structure of Einstein-Gauss-
Bonnet (EGB) theory has also been studied in [29,30],
where different notions closely connected to causality are
studied in detail, such as the relation between Killing
horizons and characteristic hypersurfaces, hyperbolicity in
the near horizon regions.
Theory (1) is a particular case of the so-called Lovelock

theory of gravity [31], which is a natural generalization of
Einstein theory to higher dimensions [25]. It is defined as
the dimensional extension of a topological invariant that, in
virtue of the Chern-Weil generalization of the Gauss-
Bonnet theorem, computes the Euler characteristic of a
4-manifold. In such a theory, we will construct traversable
wormhole geometries supported by a Maxwell field with-
out introducing exotic matter and, as a consequence,
satisfying the energy conditions. Our wormhole solution
connects two different asymptotically flat or AdS regions.
In other words, it represents a “short” wormhole. The
impediments that one finds when trying to construct such a
solution in Einstein theory are circumvented here due to the
presence of higher-curvature terms, which suffice to sup-
port the throat. This implies, in particular, that the worm-
hole will be microscopic, i.e., with a throat of the size

ffiffiffi
α

p
.

The geometry still represents an exact solution to (1) which,
in contrast to other solutions found previously [32–34], is
stable under S-perturbations. It is the presence of the Uð1Þ
charge that stabilizes the wormhole and makes the asymp-
totically flat solution possible.
The fact that the wormhole throat is of order

ffiffiffi
α

p
raises an

immediate objection: At that scale, terms that are higher in

the curvature would contribute, and so they cannot be
neglected. If we think of (1) as the truncation of an
ultraviolet complete theory, the effective theory would
break down at that scale. In addition, we will see that
the geometric construction of the higher-curvature worm-
holes requires one to consider certain internal patches of the
spacetime solutions to (1) that are nonperturbative, in the
sense of having Son-shell ∼ 1=α—these solutions are some-
how analogous to the self-accelerated solutions of higher-
derivative models. However, one can in principle answer
these objections in the following way: Despite that higher-
curvature terms cannot be neglected at length scales

ffiffiffi
α

p
,

one has the expectation that the qualitative features intro-
duced by the terms quadratic in the curvature will not be
drastically affected by the introduction of, say, quartic or
higher terms. More precisely, one can imagine a window in
the parameter space such that the wormhole throat,
although microscopic, is still larger than the length at
which quartic terms become relevant. We will adopt here a
pragmatic point of view: As in other works in which higher-
curvature actions such as (1) are considered—notably in the
context of AdS5=CFT4—and even when such actions seem
to violate the logic of effective field theory and require fine-
tuning, we will take into account that holography does not
exclude such models, and so they might in principle be
considered [35].
We should probably add that wormhole solutions in five-

dimensional EGB theory (1) have already been discussed in
the literature [36–40]. Our solutions, however, differ from
those considered before in many aspects. For example, the
main differences between the wormhole solutions consid-
ered in [36–38] and ours are the following: First, the
solutions considered therein only exist at the so-called
Chern-Simons point Λα ¼ −3=4 [41], while our solutions
exist for a continuous range of the parameter α after the
cosmological constant has been fixed. Second, the base
manifold in the solution of [36–38] is different from those
of our examples: while we consider three-dimensional
constant curvature manifolds for the constant-time,
constant-radius foliation of the geometry, the base manifold
of the solution considered in [36–38] is the product of
a two-dimensional locally hyperbolic space H2=Γ and a
circle S1. A third difference is that our solutions are
constructed by gluing together different patches, all of
them corresponding to different values of ξ in the spheri-
cally symmetric solution (3) below. In contrast, the solution
of [36–38] is given by a smooth C∞ single manifold—at
the Chern-Simons point, the different effective cosmological
constants of the higher-curvature Lovelock theory coincide.
Our solutions also differ from the class of solutions studied in
[39]. There, the authors find some conditions and no-go
propositions for the existence of wormhole-type solutions in
EGB theory coupled to matter. Those results are certainly
consistent with our finding: For instance, in proposition 2 of
[39], the point ismade that the null energy condition has to be

3The first higher-curvature correction of M theory in 11
dimensions is a quartic term, R4 [21,22]. When compactifying
the theory on a six-dimensional Calabi-Yau, the effective five-
dimensional theory exhibits R2 terms as those in (1); see for
instance Eqs. (2.6)–(2.9) in [21]; see also Eq. (1) in [23].
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violated if thewormhole’s throat is embedded in the so-called
general relativity (GR) branch of EGB theory [which
corresponds to the choice ξ ¼ 1 in (3) below]. Our solution
does obey the null energy condition on the throat precisely
because its throat is embedded in the opposite branch [the
branch ξ ¼ −1 of (3) below].Related to this, it is important to
mention that the solutions we consider here also differ from
those considered in Ref. [32], where non-GR branches were
also considered: In contrast to those in [32], the solutions we
construct here have attached an asymptotic region with an
arbitrary small effective cosmological constant. In addition,
the presence of the electric flux renders our solutions stable
under scalar perturbations, unlike those in [32]; this also
makes our solutions different from those analyzed, for
instance, in [40].
This paper is organized as follows: In Sec. II, we will

consider the spherically symmetric, static solutions to the
higher-curvature theory coupled to a Maxwell field. These
solutions will be the building blocks of our geometry, while
the blinder agentwill be the junction conditions derived from
the boundary term B in (1). These conditions are the
generalization of the Israel junction conditions of general
relativity. We will discuss this also in Sec. II. In Sec. III, we
will construct the wormhole by assembling different patches
of the spacetime. We will do this without resorting to exotic
matter. The electric field and the higher-curvature terms will
suffice to support the wormhole throat. In Sec. IV, we will
study the stability conditions for our wormhole solution. We
will show that, in certain regions of the parameter space, the
solution turns out to be stable under scalar perturbations.
In Sec. V, we will generalize the solution to the case of
asymptotically AdS5 wormholes, and we will make some
comments in relation to AdS=CFT correspondence.

II. HIGHER-CURVATURE GRAVITY

Let us begin by considering the black hole solutions of
the theory defined by (1), namely [42,43]

ds2 ¼ gμνdxμdxν ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2; ð2Þ

where dΩ2 is the metric on a 3-space of constant curvature
k ¼ 0;�1, and where the function f is given by

fðrÞ¼ kþ r2

4α

 
1þξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ16αM

r4
−
8αQ2

3r6
þ4αΛ

3

s !
; ð3Þ

where ξ ¼ �1. Here, t ∈ R, r ∈ R≥0. The solution with
ξ ¼ −1, k ¼ 1, and Λ ¼ 0, in the large r limit, tends to
the five-dimensional Reissner-Nordström solution of
the Einstein-Maxwell theory. The nonzero components
of the spherically symmetric electromagnetic field are
Ftr ¼ Q=r3, withQ being the electric charge. We consider4

α > 0 and, mainly, asymptotically flat spacetimes which
correspond to ξ ¼ −1 solutions and vanishing cosmologi-
cal constants. These are k ¼ 1 spherical geometries with a
branch singularity at r ¼ rS, shielded by two horizons for
charges jQj < Qc ¼

ffiffiffi
3

p jM − αj, with M the Arnowitt-
Deser-Misner mass. If jQj ¼ Qc, there is one horizon only,
and for jQj > Qc there is a naked singularity at the radius
where the radicant in (3) vanishes; i.e., at the surface
r ¼ rS, where rS is the largest real solution to the equation
r6Sð1þ 4αΛ=3Þ þ r2S16αM − 8αQ2=3 ¼ 0. The outer hori-
zon for jQj < Qc is at r ¼ rH, where

r2H ¼ Qcffiffiffi
3

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

c −Q2

3

r
: ð4Þ

As said in the Introduction, our wormhole will be
constructed by joining together different patches of the
geometry (2). As junctures, we consider timelike shells
which separates two bulk geometries with some f−ðrÞ and
fþðrÞ as in (3). These shells are described by radial
coordinate r ¼ ρðτÞ and time coordinates t∓ ¼ T∓ðτÞ,
where the parameter τ is the proper time on the shell
[44]. The induced metric dh2 ¼ −dτ2 þ ρ2ðτÞdΩ2 is the
same from both sides, and then f∓ _T2∓ − f−1∓ _ρ2 ¼ 1 at the
shell. The induced stress tensor Sij at the hypersurface is
given by

−8πSij¼ðKij−Khijþ2αð3Jij−Jhijþ2PikljKklÞÞjþ− ; ð5Þ

where Latin indices label the coordinates on the joining
surface of induced metric hij, F jþ− ≡ Fþ − ηF−, with η ¼
�1 depending on the relative orientation in both sides of the
shell, Kij is the extrinsic curvature tensor over the hyper-
surface at each side, and the divergence-free parts of the
Riemann tensor Pijkl and the tensor Jij are defined as

Pijkl ¼ Rijkl þ Rjkhli − Rjlhki − Rikhlj þ Rilhkj

þ 1

2
Rðhikhlj − hilhkjÞ; ð6Þ

Jij¼
1

3
ð2KKikKk

jþKklKklKij−2KikKklKlj−K2KijÞ: ð7Þ

Junction conditions (5), which follows from the boundary
term B in (1), are the generalization of the Israel conditions
to the case in which higher-curvature terms are
included [45].

III. WORMHOLE SOLUTION

We will construct electrovacuum wormhole solutions to
(1) with two asymptotic regions. The spacetime is sym-
metric across the throat, and outside the mouth of the
wormhole the solution corresponds to a charged, static
black hole geometry. We mainly focus on the case of4This is the sign compatible with string theory.
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asymptotically flat configurations, but we keep track of a
nonvanishing cosmological constant to later extend it to the
case of wormholes in AdS5 and make some comments in
relation to AdS=CFT.
Our solution is constructed with four bulk pieces, four

distinct patches joined by three 4-surfaces. Each piece is a
region obtained from metric (2) by removing part of the
geometry on one side of some codimension-one hypersur-
face defined at a fixed radial coordinate. The four bulk
regions are pasted to construct the geodesically complete
manifold M describing our traversable wormhole. We
denote the four regions as left exterior Me

L, left interior
Mi

L, right interior M
i
R, and right exterior Me

R, with their
respective coordinates xαL;R for the left (L) and right (R)
bulks. Explicitly, they are

Me
L ¼ fxαL=rL ≥ bg; Mi

L ¼ fxαL=b ≥ rL ≥ ag;

Mi
R ¼ fxαR=a ≤ rR ≤ bg; Me

R ¼ fxαR=b ≤ rRg;

and the complete manifold isM¼Me
L∪Mi

L∪Mi
R∪Me

R.
Each external region Me

L;R is joined to its corresponding
inner region Mi

L;R at the hypersurface of a bubble Σb
L;R. In

other words, Σb
L;R ¼ Mi

L;R ∩ Me
L;R. The left bubble is

placed at rL ¼ b and the right bubble is placed symmet-
rically at rR ¼ b. Inner regions are also glued to each other
at the throat located at rL ¼ a ¼ rR, with a < b; i.e.,
Σa ¼ Mi

L ∩ Mi
R. This is depicted in Fig. 1. The junction

hypersurfaces are described as Σb
L ¼ ∂Me

L ¼ ∂Mi
Ljb and

Σb
R ¼ ∂Me

R ¼ ∂Mi
Rjb which define bubbles, and Σa ¼

∂Mi
Lja ¼ ∂Mi

Rja which corresponds to the wormhole
throat.
The metric function is fiðrL;RÞ for interior geometries

and feðrL;RÞ for the exteriors, with mass parameters
Mi ¼ MLi ¼ MRi and M ¼ MLe ¼ MRe, respectively.
The exterior metrics must belong to the general relativity
branch ξe ¼ −1 and have a vanishing cosmological con-
stant in order to have flat asymptotics and, consequently,

we set Λ ¼ 0. The hypersurface at the throat determines
that the inner regions must both be of the ξi ¼ þ1 branch to
construct the symmetric wormhole.5 The configuration
implies a throat whose radial coordinate is greater than
the branch singularity of the interior metrics, a > rSi , while
bubbles’ radii must be greater than the would-be horizons
of the external black hole metrics or their singularity
surfaces; b > MaxfrSe ; rHg.
We are looking for solutions without matter sources, so

that the construction requires zero energy density and
pressure at the bubbles and throat, implying vanishing
induced stress tensor at the shells. A Gauss law integration
of Maxwell equations across the noncharged surfaces of the
shells,

H
FμνdXμν ¼ 0 with dXμν ¼ r½μtν�dΩ, gives the

continuity of the electromagnetic field in the temporal tμ

and radial rν directions, as

ðηFμνtμrνÞjþ− ¼ 0; ð8Þ

where þ and − indicate the bulks at each side of the shell,
with the orientation factor η of each bulk region as η ¼ þ1
for radial coordinates pointing from left to right in the
wormhole manifold, or η ¼ −1 if the radial coordinates
point in the opposite direction. The latter condition can be
given in an orthonormal frame as ðηFt̂ r̂Þþ ¼ ðηFt̂ r̂Þ− or,
using the metric function f ¼ −gtt ¼ g−1rr , directly as
ðηFtrÞþ ¼ ðηFtrÞ−. From the continuity of the electromag-
netic field across the shells, it is seen that the charges
are Q ¼ QR ¼ −QL.
Junction conditions for a generic timelike hypersurface

separating two bulk regions with metric functions f− and
fþ, located at radial coordinate r ¼ ρ̃≡ ρðτÞ, establish a
diagonal stress tensor (5) at the shell with components
given explicitly by

Sττ¼η
α

2πρ̃3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðρ̃Þþ _̃ρ2

q �
3

�
kþ ρ̃2

4α

�
−fðρ̃Þþ2_̃ρ2

�����þ
−
; ð9Þ

Sθθ ¼ Sϕϕ ¼ Sχχ ¼ η
1

4πρ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðρ̃Þ þ _̃ρ2

q
×

�
α

ρ̃

�
kþ ρ̃2

4α
− fðρ̃Þ

�
f0ðρ̃Þ þ fðρ̃Þ þ _̃ρ2

þ 2α ̈ρ̃
ρ̃

�
fðρ̃Þ þ 2_̃ρ2 þ kþ ρ̃2

4α

������þ
−
; ð10Þ

where the dots stand for derivatives with respect to τ. For a
static timelike shell at r ¼ ρ, such that _̃ρ ¼ 0 and ̈ρ̃ ¼ 0, we
obtain

FIG. 1. Scheme of the wormhole geometry.

5A static throat with null or positive energy density (and α > 0)
is incompatible with bulk regions of the ξ ¼ −1 branch at both
sides of the hypersurface [32].
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Sττ¼
α

2πρ3

�
ηþ

ffiffiffiffiffiffiffiffiffiffiffiffi
fþðρÞ

p
−η−

ffiffiffiffiffiffiffiffiffiffiffiffi
f−ðρÞ

p 	

×

�
3

�
kþ ρ2

4α

�
−fþðρÞ−f−ðρÞ−ηþη−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþðρÞf−ðρÞ

p �
;

ð11Þ

Sθθ¼Sϕϕ¼Sχχ

¼
�

ηþffiffiffiffiffiffiffiffiffiffiffiffi
fþðρÞ

p −
η−ffiffiffiffiffiffiffiffiffiffiffiffi
f−ðρÞ

p �h
k−ζðρÞ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþðρÞf−ðρÞ

p
ηþη−

i
;

ð12Þ

where we used the definition

ζðρÞ≡ −
2α

ρ

�
kþ ρ2

4α
− fðρÞ

�
f0ðρÞ þ k − fðρÞ

¼ Q2

3ρ4
þ ρ2Λ

3
; ð13Þ

and in the last equality of (12) it is assumed that Q2 and Λ
are the same at both sides of the hypersurface. We recall
that, despite that we are mainly interested in Λ ¼ 0 and
k ¼ 1, we keep track of cosmological constant solutions
and curvature parameter k in some general expressions to
be able to compare cases, as well as for comments
on Sec. V.
We first consider vanishing stress tensor components in

the static case to apply them to the construction of the
throat. The inner regions of our wormhole have metric
functions fiðaÞ at the position of the throat, at rL ¼ rR ¼ a,
and the orientation factor for each bulk region at the throat
is given by ηLi ¼ −1 and ηRi ¼ 1. Putting all together in
(11) and (12) the following two equations are obtained:

fiðaÞ ¼ 3

�
kþ a2

4α

�
; ð14Þ

fiðaÞ ¼ ζðaÞ − k: ð15Þ

On the other hand, at the left and right side bubbles placed
at rL ¼ b and rR ¼ b, the exterior regions have metric
functions feðbÞ, while the left and right interior regions
have fiðbÞ. The orientation factor for the bulk regions at
each bubble is given by ηLi ¼ −1 and ηLe ¼ −1 for the left
side bubble, and ηRe ¼ 1 and ηRi ¼ 1 for the right side
bubble. By demanding a vanishing stress tensor, the
following two equations are obtained:

ffiffiffiffiffiffiffiffiffiffiffi
feðbÞ

p ffiffiffiffiffiffiffiffiffiffiffi
fiðbÞ

p
¼ 3

�
kþ b2

4α

�
− feðbÞ − fiðbÞ; ð16Þ

ffiffiffiffiffiffiffiffiffiffiffi
feðbÞ

p ffiffiffiffiffiffiffiffiffiffiffi
fiðbÞ

p
¼ k − ζðbÞ: ð17Þ

The latter four equations determine the possible configu-
rations for the wormhole spacetime. A priori, from the
simultaneous requirements in (15) and (17), we see that
there are no solutions with a vanishing charge and a
vanishing cosmological constant. Considering a nonvan-
ishing charge only, k ¼ −1 and k ¼ 0 curvatures are not
admissible either. The remaining possibility with Λ ¼ 0
and Q ≠ 0 is the spherical (k ¼ 1) wormholes which are
shown to exist and are studied below. The inclusion of
Λ ≠ 0 generates a variety of possibilities commented in the
last section.
Now, let us study the space of solutions. To analyze the

wormhole construction we use the following definitions for
the configuration parameters:

x≡ a2

4α
; y≡ b2

4α
; ð18Þ

mi ≡Mi

α
; m≡M

α
; ð19Þ

q2 ≡ 1

3

�
Q
4α

�
2

; λ≡ 4αΛ
3

: ð20Þ

Squaring conveniently Eq. (14), and combining it with
(15), the static equations for a general symmetric vacuum
throat are

4kx2 þ ð4k2 −miÞxþ 3q2 ¼ 0; ð21Þ

3ð3 − λÞx2 þ 16kxþ ð4k2 −miÞ ¼ 0; ð22Þ

with the condition xþ k > 0, not to lose the information of
the sign in the original unsquared equation. Additionally,
the requirement x > xs, where xs ¼ ðrSiÞ2=ð4αÞ is the
branch singularity corresponding to the interior radial
coordinate rSi , must be considered. The latter equations
establish the relation among x, mi, q, and λ as compatible
with a generic symmetric vacuum throat.
It is worth pointing out that the existence of the worm-

hole solutions demands the presence of the higher-
curvature terms. This is why the GR limit α → 0 in the
equations above does not yield any configuration of this
class. Both finite values of the higher-curvature coupling α
and the electric charge Q are necessary for having solutions
like the oneswe presented here.Nevertheless, the role played
by the higher-curvature terms and by the charge are different:
while the former are needed and are sufficient to have
wormhole solutions in five-dimensional EGB theory [46],
the latter is what, as we will see below, suffices to render the
solution stable under radial perturbations; cf. [32].
On the other hand, the vacuum bubbles at radial coor-

dinates b are constructed from the junction of an interior
metric with fiðbÞ ¼ kþ yð1þ IyÞ and an exterior feðbÞ ¼
kþ yð1 − EyÞ, where Iy ≡ ð1þ mi

y2 −
2q2

y3 þ λÞ1=2 and
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Ey≡ð1þm
y2−

2q2

y3 þλÞ1=2, respectively. From Eqs. (16) and

(17) of the shell we read the general conditions kþy>0

and k > ζy, with ζy ≡ ζðbÞ ¼ ðq=yÞ2 þ yλ. Additionally,
after some manipulations, we have the inequalities Iy >
Ey > Iy=2. Considering these conditions, the combined
vacuum bubble equations can be expressed as

yIyEy ¼ ½3ðkþ yÞ − yðIy − EyÞ�ðIy − EyÞ; ð23Þ

ζy þ y ¼ yðIy − EyÞ: ð24Þ

We stress that y > yh ¼ r2H=ð4αÞ if the charge is lower than
the critical value for the exterior metric, or if not, then
y > ys ¼ ðrSeÞ2=ð4αÞ to avoid branch singularity. The latter
equations and conditions give the relations among y, mi, m,
q, and λ compatible with the static vacuum bubble. Note that
the positivity of each side in (24) is fixed by the aforemen-
tioned conditions and, therefore, M < Mi for the construc-
tion of the bubbles.
We are mainly interested in the spherical k ¼ 1 solutions

with λ ¼ 0; the static throat configurations in this case are
described by

q2 ¼ 4x2 þ 3x3; ð25Þ

mi ¼ 4þ 16xþ 9x2: ð26Þ

Evaluating with λ ¼ 0 and k ¼ 1, the condition k > ζy ¼
ðq=yÞ2 becomes an inequality for charge and bubble radii
which reads

jqj < y; ð27Þ

and Eqs. (23) and (24) give mi and m in terms of q and y,

mi ¼
1

2

�
6yþ 3y2 þ ð6þ 8yÞ q

2

y2
−
q4

y4

þ
�
3

�
4þ 3y −

q2

y2

��
yþ q2

y2

�
3
�
1=2
�
; ð28Þ

m ¼ 1

2

�
6yþ 3y2 þ ð6þ 8yÞ q

2

y2
−
q4

y4

−
�
3

�
4þ 3y −

q2

y2

��
yþ q2

y2

�
3
�
1=2
�
: ð29Þ

Combining the latter functions with those obtained for mi

and q2 in terms of x, from the shell in the throat, (25) and
(26), we establish our vacuum wormhole solutions in
parameter space. The compatible configurations are shown
in the figures presented in the next section, with the
corresponding stability analysis.
Small wormholes with λ ¼ 0 can be studied assuming

the existence of configurations with x≲ y ≪ 1. From (25)

and (26), the interior mass and charge in this approximation
are mi ≃ 4þ 16x and q2 ≃ 4x2. Under this consideration
ζy ¼ ðq=yÞ2 ≃ ð2x=yÞ2. Besides, considering the inequality
Ey > Iy=2, we have

m > 1þ 4xþ 6x2=yþ 3

2
ð3x2=2 − y2=2þ 3x3=yÞ; ð30Þ

for the exterior mass. Using the latter and Eqs. (28) and (29)
to express the sum mi þm to first order in the small
parameters, we have

−ζy2 þ 6ζy þ yθ ≳ 5; ð31Þ

where θ ¼ 13
2
ζy − 10ζy

1=2 þ 6 ∼Oð1Þ, and positive, for
0 < ζy < 1. Defining ϵ as a positive quantity of the same
order as x, y, and q in the small wormhole, the inequality
(31) establishes that 1 > ζy

1=2 > 1 − ϵ, which is consistent
with the assumptions and conditions. Finally, under this
approximation,

2x ≃ yζy1=2 ¼ y −Oðϵ2Þ ð32Þ

and q2 ¼ y2 −Oðϵ3Þ. Using the latter to evaluate (29) we
obtain

m ¼ 1þ 4jqj −Oðϵ2Þ: ð33Þ

The charge is jqj ¼ m−1
4

þOðϵ2Þ and, in terms of the
original parameters of the metric, a small wormhole
solution is compatible with a charge greater but approx-
imately equal to the critical value, jQj=α ≃

ffiffiffi
3

p ðM=α − 1Þ,
of the external black hole geometry. These solutions are
shown in the small parameter regions of the figures in the
next section, i.e., small dimensionless radii of the shells,
a=

ffiffiffi
α

p
and b=

ffiffiffi
α

p
, in Figs. 2(a) and 2(b), and small

dimensionless charge jQj=α in Fig. 3(a).

IV. STABILITY ANALYSIS

The dynamics of throat and bubbles is determined from
the junction conditions by analyzing the radii aðτÞ and bðτÞ
as dynamical variables, introducing small perturbations
around the equilibrium. We will consider the method
originally introduced in [47] to study the stability of thin
shells in GR. This amounts to finding an effective potential
for the variables aðτÞ and bðτÞ and then studying the
conditions for its convexity. This method of studying the
thin shells “bounded excursion” has been considered
extensively in the GR literature—see for instance
Sec. 4.1 of [48]—and in the context of wormholes it has
been originally considered in [44]. Here, we will first
consider the stability of the throat alone, and then we add
the analysis for the bubble to determine the stability of the
complete configuration.
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The dynamics of the throat at radius ã≡ aðτÞ is
described by _̃a2 þ VðãÞ ¼ 0, with the effective potential

VðãÞ ¼ kþ x̃ − x̃
Ĩx
2
; ð34Þ

which follows from Sττ ¼ 0 in (9), where we used x̃≡ α2ðτÞ
4α ,

and Ĩx ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mi

x̃2 −
2q2

x̃3 þ λ
q

. The first derivative of the

potential evaluated at the static radius a is V 0ðaÞ ¼ 0,
while for the second derivative we obtain

V 00ðaÞ ¼ 3q2 − 4kx2

4αx2ðkþ xÞ ; ð35Þ

where the prime stands for the derivative with respect to the
radius of the shell. Evaluating the latter for the wormhole

(a) (b)

FIG. 3. Solid curves represent stable configurations (only possible with supercritical charge values). Dashed curves are unstable
solutions. (a) Charge against external mass. (b) Bubble radii (upper curve) and throat radius (lower curve).

(a) (b)

FIG. 2. Solid curves represent stable configurations (only possible with supercritical charge values). Dashed curves are unstable
solutions. (a) Bubble radius against throat radius. (b) Interior mass (upper curve) and exterior mass (lower curve).
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configurations, with parameters given as in (25) and (26) in
the throat, the second derivative of the potential at the
equilibrium position is

V 00ðaÞ ¼ 8þ 9x
4αð1þ xÞ > 0; q ≠ 0; λ ¼ 0; k ¼ 1; ð36Þ

yielding stable symmetric vacuum throats in every case;
cf. [40]. The complete stability of shells in the wormhole
we are interested in will exclusively depend on stability of
the bubbles.6

Dynamics of the bubbles with radius b̃≡ bðτÞ is

described by _̃b
2 þ Vðb̃Þ ¼ 0, with the effective potential

Vðb̃Þ ¼ kþ ỹ −
ỹ
3

�
Ĩy − Ẽy þ

ĨyẼy

Ĩy − Ẽy

�
; ð37Þ

where the dynamical parameter is ỹ≡ b2ðτÞ
4α . Evaluating at

the static position of radius b we have ỹ ¼ y, Ĩy ¼ Iy, and
Ẽy ¼ Ey. The first derivative of the potential at the
equilibrium position is V 0ðbÞ ¼ 0, while for the second
derivative we obtain

V 00ðbÞ ¼ 1

α

�
3q2=y3

Iy − Ey
−
Iy − Ey

IyEy
− 1

�
: ð38Þ

The stability requirement V 00ðbÞ > 0 can be expressed
generically as

9q2ðkþyÞ− ðζyþyÞ½3q2þy2ð3ðkþyÞ−ζyÞ�> 0; ð39Þ

where we used Eqs. (23) and (24), together with the
general condition ζy þ y > 0 for vacuum static bubbles.
From the latter, a general feature can be mentioned;
bubbles are unstable without electromagnetic field for
any possible value of the cosmological constant. Then,
only charged configurations would admit stable vacuum
bubbles.
The complete stability of the shells in our wormhole is

therefore obtained from the latter inequality with k ¼ 1 and
ζy ¼ q2=y2. The space of solutions for the electrovacuum
wormhole spacetime with flat asymptotics, together with
the stability condition, are shown in the following figures.
Figure 2 shows the dimensionless bubble radius and

dimensionless mass parameters against dimensionless
throat radius a=

ffiffiffi
α

p
. Figure 3 shows the dimensionless

charge and shells radii against dimensionless external mass
M=α. The curves in the different sets of parameter axes
represent the wormhole solutions. Solid line curves re-
present stable configurations, and dashed lines are unstable.
Stable configurations occur only with charges greater than
the critical value given by the external asymptotically flat
black hole metric, the cases with jQj > Qc are painted in
blue, while jQj ≤ Qc are in red.
The neutral equilibrium condition V 00ðbÞ ¼ 0 for the

configuration space of the bubble can be obtained by
equating to zero the left-hand side of (39) with k ¼ 1 and
λ ¼ 0. This gives the relation between y and the dimen-
sionless charge q in the configuration of neutral equilib-
rium of the bubble, namely

q2ne ¼
y2ne
2

�
3þ 2yne −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 6yne − 2y2ne

q 	
: ð40Þ

By introducing this charge in the formulas for the static
configurations (28) and (29) we would obtain the mass
parameters for the neutral equilibrium curves of the bubble;
these are m ¼ mðyneÞ and mi ¼ miðyneÞ. On the other
hand, considering Eqs. (25) and (26) for the static throat of
our wormhole we can write the charge in terms of interior
mass as

q2 ¼ 1

243
½ð28þ 9miÞ3=2 − 80 − 108mi� ð41Þ

for mi > 4. Requiring these two square charges to be
the same, by evaluating the latter at mi ¼ miðyneÞ, we
achieve the neutral equilibrium point in the wormhole
space of solutions. Solving accordingly we obtain that
yne ≃ 0.70 and, for the original metric parameters at
the neutral equilibrium point, we have ane ≃ 0.94

ffiffiffi
α

p
,

bne ≃ 1.68
ffiffiffi
α

p
, jQjne ≃ 3.28α, Mne ≃ 2.82α, and Mine≃

7.94α. Each of these neutral equilibrium parameters can
be read in the corresponding plotted figure. Stable worm-
holes occur with bubble radius b < bne and charges
greater than the critical charge of the exterior black hole
manifolds. The corresponding mass and charge for these
solutions ranges in α < M < Mne and 0 < jQj < jQjne,
respectively.
From the stability analysis, we conclude that the Uð1Þ

charge Q is what stabilizes the wormhole solution under
small scalar perturbations; cf. [32]. It is worth pointing out
that the stable solutions require supercritical values
jQj > Qc. This might be relevant for some questions on
quantum gravity: In the path integral approach, one
formally defines the theory as the fluctuations about saddle
points that obey certain asymptotic conditions that define
charges at infinity. One picks such saddles from a set of
physically sensible classical solutions, typically excluding

6For completeness, we mention here that, including cosmo-
logical constant solutions, the general symmetric throat has
λ ¼ 3þ 4k=x − q2=x3, mi ¼ 4k2 þ 4kxþ 3q2=x and is stable
if 3q2 > 4kx2, as it is given by (35) by using the general condition
kþ x > 0. We note that if there were a vanishing charge, the
stability would depend exclusively on the value of the curvature
k. Particularly, if q ¼ 0 and k ¼ 1 solutions exist only for λ > 0
and are unstable under radial perturbations.
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naked singularities and other pathological configurations.
This means that certain regions of the space of charges will
in principle be excluded. For example, solutions (2) and (3)
with jQj > Qc are expected to develop a branch singularity,
and therefore one excludes such values of the charge.
Here, we are finding that completely regular solutions—
with two asymptotic regions—actually exist for supercriti-
cal values of the charge, and thus such a bound should be
reconsidered. Conversely, the analysis above also tells us
that wormhole solutions with jQj < Qc are unstable,
and this means something about the uniqueness of the
solutions (2) and (3) for a given set of variables M
and jQj < Qc.

V. ANTI–DE SITTER SPACE

Wormhole solutions also exist in (A)dS spacetime
provided Λ ≠ 0. Probably, the most interesting examples
are the AdS wormholes, as they allow one to think of their
implications for AdS=CFT. These geometries have two
asymptotically AdS5 regions of effective cosmological
constant

Λeff ¼
3

2α
ð ffiffiffiffiffiffiffiffiffiffiffi

1þ λ
p

− 1Þ: ð42Þ

There are several questions one can ask about the interest
of these solutions in the context of holography: First, one
could ask whether the theory admits locally AdS5 solutions
with flat base manifolds (i.e., k ¼ 0). These solutions
correspond to the boundary being locally R1;3.
Interestingly, the theory (1) with Λ < 0 does admit7 both
planar (k ¼ 0) and hyperbolic (k ¼ −1) wormhole solu-
tions. In these cases, condition (17) at the vacuum bubbles
is only compatible for negative Λ, while chargeQ is, again,
an essential ingredient to satisfy Eq. (15) in a planar
wormhole throat. The locally AdS solution with k ¼ 1 is
also possible; it requires the presence of a nonzero
electromagnetic field, as it follows from (15).
A second question one can ask is whether the

wormhole solutions are allowed by the so-called
causality bounds. To answer this question one has to
compare the range of the dimensionless parameter λ where

the stable AdS5 wormholes are possible with the causality
segment8

−
9

25
< λ <

7

9
ð43Þ

that comes from AdS5=CFT4. It turns out that stable worm-
hole solutions can be seen to exist within the range
−1 ≤ λ≲ −0.83, which means that the causality bound
excludes such solutions.An interesting particular case,which
cannot be excluded by the standard causality arguments, is
λ ¼ −1. At this point of the parameter space, the theory can
be written as five-dimensional SOð4; 2Þ Chern-Simons
gauge theory, it has a unique maximally symmetric vacuum,
and it also exhibits other special features. At this point, there
are no local degrees of freedom around the vacuum [41], and
this is why it cannot be excluded by the standard causality
arguments.AdS5wormholes at λ ¼ −1 have previously been
considered in the context of AdS5=CFT4, for instance, in
Refs. [49,50]. Traversable AdS5wormholes are dual to a pair
of CFT4 ’s interacting with each other. In [49,50], configu-
rations in which a pair of charges is present in each copy of
theCFT4were considered.A phase transition is seen to occur
when the particles of each pair are separated from each other.
A similar phenomenon is expected to occur in the wormhole
geometries we constructed here, although there are some
differences: Appropriate boundary conditions for the string
configuration have to be considered in the nondifferentiable
junctions Σb

L;R and Σa, and the effect of the nonvanishing
charge has to be taken into account.Weplan to investigate the
holographic interpretation of the wormhole solution at λ ¼
−1 in the future.

ACKNOWLEDGMENTS

The authors thank Mariano Chernicoff and Julio Oliva
for discussions. This work has been supported by
CONICET and University of Buenos Aires Facultad de
Ciencias Exactas y Naturales-UBA.

7The case k ¼ þ1 is possible with both positive and negative
Λ. The cases k ¼ 0 and k ¼ −1 are only possible with Λ < 0.

8It is worth comparing with Ref. [19], where the cosmological
constant is denoted Λ ¼ −6=L2 and the coupling constant of the
Gauss-Bonnet quadratic terms is denoted α ¼ λGBL2=2. Here, we
define the parameter λ≡ 4Λα=3, i.e., λ ¼ −4λGB. Therefore, the
causality bounds on the Gauss-Bonnet coupling coming from
AdS5=CFT4 reads as (43); see for instance the bound after Eq. (4.9)
of [19], which translates into the lower bound in (43). In the
notation of [19], the Chern-Simons point λ ¼ −1 reads λGB ¼ 1=4.
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