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Abstract—Different from grid-following inverters, grid-

forming (GFM) inverters tend to be unstable under stronger 
grid conditions. However, the instability mechanism is still 
absent in existing research. To fill this gap, the full-order 
multiple-input multiple-output (MIMO) small-signal model of 
the GFM inverter is simplified as a single-input single-output 
(SISO) model on quadrature axis, so that the destabilizing factor 
can be clearly observed. Based on this SISO model, it is revealed 
that the power synchronization loop introducing an integral 
term into the voltage control loop is the main reason for 
instability. Decreasing the grid strength or the power droop gain 
can reduce the gain of the integral term and enhance stability. 
Finally, simulation and experimental results verify the 
effectiveness of theoretical analysis. 

Keywords—grid-forming inverter, simplified small-signal 
model, sub-synchronous oscillation, instability mechanism 

I. INTRODUCTION 
Nowadays, grid-following (GFL) inverters have been 

widely used in renewable energy generation systems, such as 
wind and solar photovoltaic (PV) power plants [1]. However, 
GFL inverters have some limitations to provide inertia 
support. Thus, the power system might suffer from frequency 
stability issues as the penetration of renewable energy sources 
increases and the total inertia decreases [2]. Moreover, the 
grid-following inverters behave like current sources, which 
rely on the grid voltage to realize synchronization and normal 
operation. Thus, the islanded operation is a big challenge for 
grid-following inverters [3]. 

Differently, grid-forming (GFM) inverters can support the 
grid frequency to solve the frequency stability issues. Two 
commonly used methods are virtual synchronous generator 
(VSG) control and droop control. When the virtual inertia is 
set as zero, the VSG control is equivalent to the droop control 
[4]. Moreover, grid-forming inverters behave like voltage 
sources so that they have the islanded operation ability. The 
islanded operation and frequency support are two obvious 
advantages of GFM inverters compared with GFL inverters. 
Therefore, GFM inverters have attracted a lot of attentions in 
recent years [5]-[8]. 

However, it is reported in [9] that conventional dual-loop 
GFM inverters tend to be unstable under stronger grid 
conditions. A duality theory is summarized in terms of GFM 
and GFL inverters, which shows that the voltage (current) 
source characteristic of the GFM (GFL) inverter makes it tend 
to be unstable in strong (weak) voltage-source grids [9]. 
Besides, it is reported in [10] that the instability behavior of 
GFM inverters in stronger grids is the sub-synchronous 

oscillation, where the resonant frequency is lower than the 
fundamental frequency (i.e. 50 Hz). Nevertheless, the 
instability mechanism of the sub-synchronous oscillation has 
not been illustrated clearly. 

Considering that it is hard to analyze the stability of GFM 
inverter systems directly by using the nonlinear differential 
equations, the small-signal linearized model is an effective 
tool to analyze the stability of such nonlinear system around a 
fixed point [10]. Several small-signal models are introduced 
in [10]-[12] for stability analysis. The complex-valued small-
signal impedance model in the α-β frame is used in [10]. 
Besides, the d-q small-signal state-space model and 
impedance model are used in [11] and [12]. Although these 
full-order small-signal models can predict the stability of the 
system, the reason for the instability cannot be intuitively 
observed because the full-order models are complicated. 

In this paper, by properly simplifying the full-order 
multiple-input multiple-output (MIMO) small-signal model, a 
simplified single-input single-output (SISO) model is 
proposed, where the destabilizing factor can be clearly 
observed. Thus, an SISO open-loop transfer function can be 
calculated, and the Bode diagram can be used for stability 
analysis. From this SISO small-signal model, several 
conclusions can be summarized as below: 1) The power 
synchronization loop introducing an integral term into the 
voltage control loop is the reason for instability. 2) A stronger 
grid with a higher short-circuit ratio (SCR) leads to a higher 
gain of the integral term, which may worsen the stability. 3) 
Reducing the power droop gain can reduce the gain of the 
integral term and enhance stability. 

The rest of this paper is organized as follows. Section II 
introduces the configurations of the typical GFM inverter with 
droop control. Then, its full-order MIMO small-signal model 
is established. In Section III, the full-order MIMO small-
signal model is simplified as an SISO small-signal model by 
using some assumptions. In Section IV, the simulation and 
experimental results are provided to verify the theoretical 
analysis. Finally, this paper is concluded in Section V. 

II. FULL-ORDER SMALL-SIGNAL MODEL OF GRID-FORMING 
INVERTER WITH DROOP CONTROL 

A. Configuration of Typical Grid-Forming Inverter 
Fig. 1 shows the configuration of the typical dual-loop 

GFM inverter with droop control. Vc∠θc is the converter 
output voltage vector, Vo∠θo is the output voltage vector at the 
point of common coupling (PCC) and Vg∠θg is the grid 
voltage vector. 



 
Fig. 1. Schematic of dual-loop grid-forming inverter with droop control. 

 
Fig. 2. Schematic of voltage-oriented rotating d-q frames. 

The voltages vo(abc) are three-phase instantaneous output 
voltages at the PCC. The currents ic(abc) and io(abc) are three-
phase instantaneous converter currents and output currents at 
the PCC. The grid can be represented by a Thevenin 
equivalent impedance Zg = Rg + jωLg, where Lg and Rg are the 
equivalent grid inductance and resistance. The grid angular 
frequency ω is considered as a constant and equal to the 
nominal value ωN. Lf and Rf are the output filter inductance 
and resistance. Cf is the output filter capacitance. To avoid 
much reactive power consumption on the capacitor, the value 
of Cf is designed relatively small. The control diagram 
includes a d-axis and q-axis inner current control loop, a d-
axis and q-axis voltage control loop, and an outer active power 
droop control loop. The active power control loop is used for 
power synchronization. It should be pointed out that the 
reactive power droop control is omitted in this paper for 
simplifying analysis, so a constant reference vod

* = E* = 1 per 
unit (pu) is used for voltage control. The grid strength can be 
described by the SCR [13]. In this paper, a stronger grid 
condition with SCR=3 will be used to analyze the instability 
issues of the GFM inverter system. 

The control system in Fig. 1 is performed in the rotating d-
q frame, which is expected to oriented to the PCC voltage 
vector Vo∠θo. However, it is actually oriented to the angle θps 
by using the power synchronization control. The angles θps 
and θo are equal in the steady-state, but they have a small error 
in the dynamic state. Thus, the control d-q frame and the grid 
d-q frame are shown in Fig. 2. To be clear, the superscript ‘ctrl’ 
denotes the variables in the control d-q frame in this paper. 

B. Small-Signal Modeling 
In order to analyze the stability of such a nonlinear system, 

small-signal models are effective tools. Since the small-signal 
impedance model with the modular structure can reflect the 
visualized relationship among variables [14], it is preferable 
to be used for stability analysis in this paper. In the following 
sections, the subscript ‘0’ denotes a steady-state operating 
point, and the symbol ‘Δ’ denotes a small-signal perturbation 
of a variable. 

The small-signal expressions of the physical circuits in the 
grid d-q frame are given by (1)-(3). 
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where “s” represents the Laplace differential operator. 

Besides, the small-signal expression of the inner current 
control loop is provided by (4). 
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where Gpi_I = Kp_id + Ki_id / s = Kp_iq + Ki_iq / s. 

Similarly, the small-signal expression of the inner voltage 
control loop is shown as (5). 
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where Gpi_V = Kp_vd + Ki_vd / s = Kp_vq + Ki_vq / s. 

Moreover, the small-signal linearized expressions of the 
active power feedback and first-order low-pass filter (LPF) are 
shown as (6) and (7) respectively. 
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where ωLPF is the cut-off angular frequency of the LPF. 

In addition, the small-signal expression of the power 
synchronization control loop can be derived as (8). 
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Fig. 3. Full-order small-signal impedance model of grid-forming inverter system. 
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Substituting (6) and (7) into (8), the expression of Δθps can 
be derived as (9). 
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The small-signal linearized expressions of the coordinate 
transformation between the grid d-q frame and the control d-q 
frame are given by (10)-(13). 
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Substituting (10) and (11) into (9), the expression of Δθps 
can be derived as (14). 
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Given ΔP* = 0, then substituting (14) into (10), (12) and 
(13), the expressions can be derived as (15)-(17). 
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Overall, the 2×2 matrixes in (1)-(5) and (15)-(17) can be 
represented by symbols BLg, BCf, BLf, BPI-I, Bdecpl-I, BPI-V, 
Bdecpl-V, BVo-i, BVo-v, BIc-i, BIc-v, BVc-i and BVc-v. Thus, the full-
order small-signal model of the GFM inverter system in Fig. 
1 is shown in Fig. 3, where Zc(s) and Zg(s) are the equivalent 
impedances on the converter-side and grid-side. 

According to the small-signal control structure in Fig. 3, 
Zc(s) and Zg(s) can be derived as (18) and (19). 

 ( )s =g LgZ B  (19) 

The control parameters can be designed as follows. Take 
Gpi_I = ωiLf + ωiRf /s and Gpi_V = ωvCf + ωv/Rpo/s, where a pre-
set output resistor Rpo equal to 10 Ω is used for designing PI 
parameters of the voltage control loop. 

According to (18) and (19), the matrix Zc(s)·Zg(s)-1 can be 
used for the generalized Nyquist criterion (GNC) to analyze 
the stability of the system [10]. 



TABLE I.  PARAMETERS OF GRID-FORMING INVERTER SYSTEM 

Parameters Values 

Grid phase voltage (peak value), Vg 50 V 

Grid frequency, fg 50 Hz 

Rated power of inverter, SN 800 VA 

Maximum current of inverter (peak value), Imax 10.7 A 

DC-link voltage, Vdc 700 V 

Output filter inductor, Lf 5 mH 

Output filter capacitor, Cf 10 μF 

R/X ratio of grid impedance, Rg/Xg 0.01 

Short circuit ratio, SCR 1, 2, 3 

Grid inductor, Lg 15.3, 10.2, 5.1 mH 

Grid resistor, Rg 48, 32, 16 mΩ 

Switching/sampling frequency, fs 10 kHz 

Designed current-loop bandwidth, ωi 4000 rad/s 

Designed voltage-loop bandwidth, ωv 800 rad/s 

Active power droop coefficient, mp 5% ω0/P0 

Cut-off angular frequency of LPF, ωLPF 60 rad/s 

 

 
Fig. 4. Generalized Nyquist diagrams of full-order small-signal impedance 
model with different SCRs. 

According to the steady-state equations, the steady-state 
operating points can be derived as: vod0 = Vo = E*, voq0 = 0, icd0 
= iod0, icq0 = ioq0 + ωCfVo, vcd0 = vod0 + Rficd0 - ωLficq0, and vcq0 
= voq0 + Rficq0 + ωLficd0. 

Based on the generalized Nyquist stability analyses of 
Zc(s)·Zg(s)-1 and parameters sensitivity analyses, it is found 
that the unstable states of the GFM inverter have weak 
relationship with the power. Hence, the zero power condition 
is used for simplifying analysis. Thus, the steady-state 
operating points can be given as: iod0 = 0, ioq0 = 0, icd0 = 0, icq0 
= ωCfVo, vcd0 = Vo - ωLf ·ωCfVo, and vcq0 = Rf ·ωCfVo. 

The parameters of an 800 W dual-loop GFM inverter with 
droop control are shown in Table I, which is used as an 
example for stability analyses in this paper. Based on the 
matrix Zc(s)·Zg(s)-1, the generalized Nyquist diagrams with 
different SCRs are shown in Fig. 4. It can be seen that as the 
SCR increases, the stability of the system is getting worse. The 
system is unstable under a stronger grid condition (SCR ≥ 3). 
However, the reason for instability cannot be intuitively 
observed from the full-order small-signal model due to its 
complexity. In the next section, the model will be simplified. 

III. SIMPLIFIED SMALL-SIGNAL MODEL 
As analyzed in the previous section, the unstable states of 

GFM inverter still exist under the zero power conditions. 
Given iod0 = 0 and ioq0 = 0, thus, BVc-i, BIc-i, BVo-i are equal to 
0. Since Cf is very small, assuming that icq0 = ωCfVo ≈ 0, so 
BIc-v ≈ 0. Then, the small-signal model in Fig. 3 can be 
simplified as Fig. 5(a). 

Furthermore, due to high bandwidth of the inner current 
loop, the disturbance term after the current PI controller can 
be ignored. Thus, the current loop is assumed as 1. Then, the 
small-signal model in Fig. 5(a) can be simplified as Fig. 5(b). 

Based on Fig. 5(b), it can be found that the d-d channel 
element in the matrix (BVo-v·BLg-1) on the feedback loop is 0. 
Hence, the q-q channel should be responsible for instability. 
A similar assumption is used in [15] for analyzing GFL 
inverters. Thus, only considering the q-q channel and ignoring 
the dynamic of Lg, Fig. 5(b) can be simplified as Fig. 5(c). 

In addition, assuming that the LPF is equal to 1, then the 
open-loop transfer function Tol(s) of the SISO model in Fig. 
5(c) can be derived as (20). 
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f
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where k = mp·1.5Vo
2/(ωLg) is the gain of the integral term. 

The Bode diagram of Tol(s) is shown in Fig. 6. It can be 
seen that as k increases, the phase margin is reduced. When 
the phase margin is smaller than 0, the system is unstable. 
Therefore, the integral term k/s in (20) is the main reason for 
instability. Thus, when the SCR increases, the grid inductance 
Lg decreases and it leads to a larger k, which might worsen 
stability. Inversely, reducing the power droop gain mp can 
reduce k and enhance stability. 

However, reducing mp is not the optimal solution, because 
mp cannot be designed too small. Besides, under the super 
strong grid condition (Lg = 0), reducing mp is not effective, 
because the gain k is infinite. Thus, it is necessary to find better 
solutions to enhance stability of the GFM inverter under 
strong grid conditions, which needs further study. 



 
Fig. 5. Simplified small-signal model. 

 

 
Fig. 6. Bode diagram of open-loop transfer function Tol(s). 

 

IV. SIMULATION AND EXPERIMENTAL RESULTS 
In order to verify the correctness of the analysis above, a 

GFM inverter simulation model is established in Matlab/ 
Simulink, where the parameters in Table I are used. The 
simulation results with SCR=3 are shown in Fig. 7. 

 
Fig. 7. Simulation results with SCR=3. 

As shown in Fig. 7, when the power droop gain mp is 
increased from 0.5% to 5% at the moment of 4s, the system 
becomes unstable. However, when mp is decreased to 0.5% at 
the instant of 6s, the system becomes stable again. These 
simulation results reflect that increasing mp can worsen the 
stability, which agrees with the theoretical analysis in Fig. 6. 



 
Fig. 8. Photo of experimental setup. 

 
Fig. 9. Experimental results with SCR=3. 

To verify the above analysis, the experimental tests are 
carried out on an 800 W GFM inverter. The experimental 
setup is shown in Fig. 8. The infinite grid is realized by using 
a grid simulator Chroma 61845. The grid-connected inverter 
is implemented by using the Danfoss FC 103P11KT11, and 
the control algorithms are implemented through the device 
dSPACE1007. The experimental results with SCR=3 are 
shown in Fig. 9, where the parameters in Table I are used for 
experiments. 

As shown in Fig. 9, the system is stable initially. When the 
power droop gain mp is increased from 0.5% to 5%, the system 
becomes unstable. Then, when mp is decreased from 5% to 
0.5%, the system becomes stable again. The sub-synchronous 
oscillation at 11.5 Hz can be observed during the unstable 
period. These experimental results agree with the simulation 
results in Fig. 7. 

It is worth mentioning that the accuracy of the small-signal 
model is reduced during the simplifying process, which means 
that the simplified SISO model cannot take place of the full-
order MIMO model for the quantitative analysis. Therefore, 
this paper provides a qualitative analysis by using the 
simplified SISO model. Although the accuracy of the 
simplified model is lower than that of the full-order model, it 
provides an intuitive view to observe the main destabilizing 
factor of the GFM inverter system. 

V. CONCLUSION 
A simplified SISO small-signal model of the typical dual-

loop GFM inverter with droop control is proposed in this 
paper. Based on this SISO model, it is revealed that the power 
synchronization loop introducing an integral term into the 
voltage control loop is the reason for instability. A stronger 
grid with a higher SCR leads to a higher gain of the integral 
term, which might worsen the stability. Reducing the power 
droop gain can reduce the gain of the integral term and 
enhance stability. However, when the grid strength is very 
high, reducing power droop gain is not an effective way. It is 
necessary to find better solutions to address this problem, 
which will be follow-up work in the future. 
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