
 

  

 

Aalborg Universitet

Composition to Structure

Statistical Mechanics for Glass Modeling

Bødker, Mikkel Sandfeld

DOI (link to publication from Publisher):
10.54337/aau456471890

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Bødker, M. S. (2021). Composition to Structure: Statistical Mechanics for Glass Modeling. Aalborg
Universitetsforlag. Ph.d.-serien for Det Ingeniør- og Naturvidenskabelige Fakultet, Aalborg Universitet
https://doi.org/10.54337/aau456471890

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.54337/aau456471890
https://vbn.aau.dk/en/publications/de74a50e-c5a2-41d0-8a48-0c186e1dee3b
https://doi.org/10.54337/aau456471890




M
ik

k
el l. B

ø
d

k
er

C
O

M
PO

SiTiO
N

 TO
 STr

U
C

TU
r

e: STATiSTiC
A

l M
eC

H
A

N
iC

S FO
r

 G
lA

SS M
O

d
eliN

G

COMPOSiTiON TO STrUCTUre:
STATiSTiCAl MeCHANiCS FOr

GlASS MOdeliNG

By
Mikkel l. Bødker

Dissertation submitteD 2021





COMPOSITION TO STRUCTURE: 

STATISTICAL MECHANICS FOR 

GLASS MODELING 

A PHD THESIS 

by 

Mikkel L. Bødker 

Dissertation submitted 2021 



Dissertation submitted: September, 2021

PhD supervisor:  Professor Morten M. Smedskjaer,
   Aalborg University, Denmark

PhD committee:  Professor with Special Responsibilities 
   Kim Lambertsen Larsen (chair)
   Aalborg University

   Professor Jincheng Du
   University of North Texas

   Senior Researcher Daniel R. Neuville
   University of Paris

PhD Series: Faculty of Engineering and Science, Aalborg University

Department: Department of Chemistry and Bioscience

ISSN (online): 2446-1636
ISBN (online): 978-87-7210-990-9

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Mikkel L. Bødker

Printed in Denmark by Rosendahls, 2021



 
 

5 

ENGLISH SUMMARY 

Oxide glasses are extensively researched, but the number of possible glass 

compositions is enormous because of the amorphous nature of the glassy structure. 

Data-based models accelerate the design of new oxide glasses with tailored properties 

by establishing composition-property relations. These composition-property models 

are often limited in their prediction to a limited compositional space similar to the 

training data because of the complex composition-property relation. Short-range order 

(SRO) structure-property models better predict properties in unknown glass 

compositions, but the amount of structure data available is limited, so data-based 

composition-structure-property models are not yet an option. This thesis investigates 

the composition-structure relation using a statistical mechanical model to capture the 

enthalpic and entropic contributions to structure formation. This work aims to shed 

light on the interactions governing structure formation and use this knowledge to 

model the structure of glasses with unknown compositions.  

To investigate the composition-structure relation mentioned above, good-quality 

structure data is required in multiple glass families. Other than reliable SRO structure 

characterization, performed by nuclear magnetic resonance (NMR) spectroscopy, 

chemical composition and glass transition temperature (Tg) should be measured 

experimentally as these influence the SRO structure. Oxide glass systems investigated 

in this thesis include a) binary silicate, phosphate, and borate glasses, b) ternary 

borosilicate, phosphosilicate, and aluminoborate, c) multi-component glasses with Si, 

P, B, or Al. For a, b, and c, structure, composition, and Tg values were obtained from 

the literature. Additional Na2O-K2O-SiO2 and Cs2O-Al2O3-B2O3 glasses were made 

for this study by the traditional melt-quenching technique and analyzed by NMR, 

Inductively coupled plasma (ICP) atomic emission spectroscopy, and differential 

scanning calorimetry (DSC). 

A statistical mechanical model was tailored to predict the SRO structure evolution in 

the binary oxide glasses by accounting for the enthalpic and entropic contributions to 

the modifier-former interactions occurring in the glass-forming melt. Good-quality 

fits were obtained with no more than 1-3 glass compositions as input for the models. 

The modifier-former interactions captured in binary glasses were then used to predict 

SRO structures in the ternary glass systems. For example, interactions in Na2O-SiO2 

and Na2O-B2O3 were used to predict structures of Na2O-SiO2-B2O3 glasses. Using 

binary glass data to predict ternary glass structure worked well for borosilicate and 

aluminoborate glasses, but in the phosphosilicate glasses, additional interactions 

occurred between P and Si, which had to be captured. Finally, the statistical 

mechanical models were combined with machine learning to obtain good structure 

prediction in unknown glasses. Machine learning learned the composition-structure 

relation captured by statistical mechanics to reduce the amount of required input data 

to obtain a good structure prediction.  
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DANSK RESUME 

Der foregår megen forskning og udvikling indenfor oxidglas, men den amorfe struktur 

af glas betyder at antallet af mulige glassammensætninger er enormt. Databaserede 

modeller bliver brugt til at accelarere udvilklingen af nye glassammensætninger med 

specifikke egenskaber ved at etablere en korrelation mellem sammensætning og 

egenskaber. Disse databasered modeller er ofte begrænsede til sammensætninger tæt 

på sammensætningerne af data, da relationen mellem sammensætning og egenskaber 

er komplex. Atomar glasstruktur har vist sig at korrelere bedre med egenskaber af 

glas, men mængden af glasstrukturdata er begrænset i forhold til egenskabsdata, så 

databaserede sammensætning-struktur-egenskabsmodeller er endnu ikke en 

mulighed. Denne afhandling undersøger sammenhængen imellem 

glassammensætning og struktur ved hjælp af statistisk mekanik til at fange de 

entalpiske og entropiske bidrag til formationen af strukturer. Afhandlingen bestræber 

sig på at kaste lys over de interaktioner, som driver formationen af glasstruktur og 

bruge denne vide til at forudsige struktur af glas med ukendte sammensætninger.  

For at undersøge sammensætning-struktur-forholdet nævnt ovenfor kræves 

strukturdata af god kvalitet i flere glasfamilier. Andet end pålidelig 

strukturkarakterisering, udført ved nuclear magnetic resonance (NMR) spektroskopi, 

bør kemisk sammensætning og glasovergangstemperatur (Tg) måles eksperimentelt, 

da disse påvirker glasstrukturen. Oxidglassystemer undersøgt i denne afhandling 

omfatter a) binære silikat-, phosphat- og boratglas, b) ternært borosilikat, fosfosilikat 

og aluminoborat, c) flerkomponentglas med Si, P, B eller Al. For a, b og c blev 

struktur, sammensætning og Tg-værdier indsamlet fra litteraturen. Yderligere Na2O-

K2O-SiO2- og Cs2O-Al2O3-B2O3 glas blev fremstillet til denne undersøgelse ved hjælp 

af den traditionelle smeltekølende teknik og analyseret ved NMR, induktivt koblet 

plasma (ICP) atomemissionsspektroskopi og differentiel scanningskalorimetri (DSC). 

En statistisk mekanisk model blev skræddersyet til at forudsige strukturudviklingen i 

de binære oxidglas ved at tage højde for de enthalpiske og entropiske bidrag til 

modifer-former interaktioner, der forekommer i den glasdannende smelte. 

Forudsigelse af god kvalitet blev opnået med ikke mere end 1-3 glaskompositioner 

som input til modellerne. Modifer-former interaktioner ëtableret i binære glas blev 

derefter brugt til at forudsige strukturer i de ternære glassystemer. For eksempel blev 

interaktioner i Na2O-SiO2 og Na2O-B2O3 brugt til at forudsige strukturer af Na2O-

SiO2-B2O3-glas. Brugen af binære glasdata til at forudsige ternær glasstruktur 

fungerede godt for borosilicat- og aluminoboratglas, men i fosfosilikatglas optrådte 

der yderligere interaktioner mellem P og Si, som skulle forstås. De statistiske 

mekaniske modeller blev kombineret med maskinlæring for at opnå god 

strukturforudsigelse i ukendte glassammensætninger. Maskinlæring lærte 

komposition-struktur-forholdet etableret af statistisk mekanik for at reducere 

mængden af nødvendige inputdata for at opnå en god strukturforudsigelse. 
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CHAPTER 1. INTRODUCTION  

1.1. MOTIVATION 

Glasses have played a massive role in the rapid the industrial and technological 

development throughout the ages.[1] Glass was first discovered in the form of 

obsidian, formed when lava touched water and colored dark due iron and other 

transition metals. Later, when people started melting metals at high temperatures, 

glass could form by accident with when sand and coke were kept close to the heat. 

Like obsidian, this form of glass was of poor quality for any practical application but 

often possessed colors because of metals and was prized for its transparency. Because 

of the transparency and coloring, glass beads were used for personal decorations, and 

later, glass mosaics were used to decorate churches and other important buildings.[2] 

With transparency and high durability, glass was commonly used for windows in the 

early 17th century, allowing natural light to enter buildings while protecting the inside 

against weather and wind.[3] In the 20th century, glass became a high-tech material 

used in technologies like optical fibers[4,5], nuclear waste encasement[6,7], and bone-

and tissue regeneration[8,9]. 

With the extensive range of high-and low-tech applications of glasses came an 

increased interest in researching both glass chemistry and post-treatment to tune their 

physical properties to each use.[10] Here, another challenge arose due to the 

fascinating state of glasses. Commonly, a liquid becomes solid by crystallizing when 

the temperature becomes too low for the atoms/molecules in the liquid to rearrange 

freely.[11] In crystalline materials, the atoms/molecules are connected in crystalline 

lattices, limiting the components of those materials because of the requirements of the 

lattice structure. For example, water readily crystallizes into ice because of the 2:1 

ratio between hydrogen and oxygen, with hydrogen coordinating to two oxygen and 

oxygen coordinating to four hydrogens.[11] However, glasses are materials that do 

not readily crystallize from their parent melts, or are cooled below the melting 

temperature dater than the crystallization happens, and as such, the components do 

not follow any fixed ratios.[12] It has previously been estimated that somewhere in 

the range of 1052 different glass compositions are obtainable because many of the 

elements in the periodic table can form glasses, and the number of different elements 

can reach beyond twenty.[13] 

While traditional trial-and-error methods of finding new glass compositions have been 

successful, the number of possible glass compositions far exceeds what is feasible to 

investigate with this method.[14] In recent years, glass development has become 

increasingly modeling-dependent.[15-17] Here, large datasets with glass 

compositions and their resulting properties are empirically used to predict new 

compositions with optimal properties.[18-20] However, the composition to property 

relation is often complex, so these models are typically limited to interpolating within 
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the compositions already known.[14] However, short-range order (SRO) structure has 

recently been found to correlate well with many properties, and structure-property 

models have been successful in the extrapolative prediction of glass properties.[17,21-

23] Unfortunately, obtaining structure data is difficult and time-consuming due to the 

amorphous nature of glass structure.[24,25] Obtaining a good understanding of the 

composition-structure relation for glasses would thus allow for better structure-

property modeling and enable accurate composition-structure-property modeling. 

This would be significant for developing new property models as structure knowledge 

can improve the property prediction of future models.  

1.2. SCOPE AND OBJECTIVES 

The overall goal of the work presented in this thesis has been to improve the 

understanding of composition-structure relation in oxide glasses, focusing on SRO 

structure. Specifically, statistical mechanics was used to capture the energies 

associated with the formation of structural units in oxide glasses. With the energies 

governing structure formation established, general composition-structure models 

were developed. Furthermore, this thesis focused only on oxide glass families as 

similarities in these systems are similar in their SRO structure, making it the obvious 

limitation of this work. This thesis aims to elucidate on the following aspects: 

• The composition-SRO structure relation in binary oxide glasses 

• Statistical mechanics as a tool for structure prediction 

• The impact of thermal history on SRO glass structure 

• The correlation between binary glass structures and ternary glass structures 

• The potential to predict glass structures with state-of-the-art modeling 

techniques 

In this thesis, the essential findings by the author are highlighted with appropriate 

introductions. First, the thesis introduces the glass formation and atomic-scale 

structures of common oxide glass families in Chapter 2. In Chapter 3, the statistical 

mechanics-based model investigated is introduced with practical examples from some 

of the studies included in the thesis. Chapters 2 and 3 will lay the theoretical 

foundation for the results discussed in Chapters 4 and 5. In Chapter 4, statistical 

mechanical modeling is used to find the interaction enthalpies governing the 

formation of structural units in binary oxide glasses. Additionally, the effect of the 

thermal history on the glass structure is discussed. In Chapter 5, the enthalpy values 

obtained in Chapter 4 are used to predict the structures of multi-component glasses 

with complex structures. In Chapter 6, the main findings are summarized and 

discussed. 
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1.3. THESIS CONTENT 

The first part of this thesis is an extended summary of the results and discussions 

reported in scientific papers published in peer-reviewed journals during the project. 

This thesis is part two of an integrated Ph.D. project. A Master’s thesis was prepared 

and defended after the first two years of the project. Three papers were published 

during the first part and were included in the Master’s thesis. These papers are not 

included as content in this thesis but will be referred to as “Paper A”[26], “Paper 

B”[27], and “Paper C”[28]. The papers listed below are part of the thesis content and 

will be referred to by their roman numerals throughout the thesis.  

I. Mikkel S. Bødker, Rasmus Christensen, Luna G. Sørensen, Martin B. 

Østergaard, Randall E. Youngman, John C. Mauro, Morten M. Smedskjaer, 

”Predicting Cation Interactions in Alkali Aluminoborate Glasses using 

Statistical Mechanics”, Journal of Non-Crystalline Solids, 544 (2020) 

120099 

II. Mikkel S. Bødker, Randall E. Youngman, John C. Mauro, Morten M. 

Smedskjaer, ”Mixed Alkali Effect in Silicate Glass Structure: Viewpoint of 
29Si Nuclear Magnetic Resonance and Statistical Mechanics”, The Journal 

of Physical Chemistry B, 124 (2020) 10292-10299 

III. Mikkel S. Bødker, Collin J. Wilkinson, John C. Mauro, Morten M. 

Smedskjaer, “StatMechGlass: Python based Software for Composition-

Structure Prediction in Oxide Glasses using Statistical Mechanics”, 

SoftwareX, (In revision) 

IV. Mikkel L. Bødker, Johan B. Pedersen, Francisco Muñoz, John C. Mauro, 

Morten M. Smedskjaer, ”Statistical Mechanical Model for the Formation of 

Octahedral Silicon in Phosphosilicate Glasses”, Journal of the American 

Ceramic Society, (In revision) 

V. Mikkel L. Bødker, Mathieu Bauchy, John C. Mauro, Morten M. 

Smedskjaer, ”Predicting the Structure of Oxide Glasses by Statistical 

Mechanics-Informed Machine Learning”, (Under Preparation) 
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CHAPTER 2. ATOMIC-SCALE 

STRUCTURE OF OXIDE GLASSES 

2.1. GLASS FORMATION 

Most liquids will undergo an abrupt phase transition once reaching a critical 

temperature during cooling, where the system's internal energy is too low for the 

atoms to rearrange freely.[29] Crystallization occurs at this temperature (Tm in Figure 

2-1), resulting in an abrupt decrease in enthalpy.[11] Some liquids, however, will 

bypass this critical temperature without crystallizing and become supercooled liquids. 

Continuous cooling will increase the viscosity of the supercooled liquids until 

reaching such a high viscosity that the atoms can no longer freely rearrange (Tf in 

Figure 2-1), and a rigid glass is formed.[30] As shown in Figure 2-1, the fictive 

temperature is dependent on the cooling rate as the time it takes for the atoms to 

rearrange is constant at a given temperature, cooling faster than the rearrangement 

time will result in a glassy structure frozen in at a higher temperature.[31] As such, 

glasses are solid materials with atomic structures resembling the supercooled liquid at 

the fictive temperature.  The cooling rate will influence the atomic structure of the 

glass as a glass made with a faster cooling rate will have an atomic structure 

resembling the supercooled liquid at a higher temperature than a slow-cooled glass. 

The glass transition temperature (Tg) is generally accepted as the temperature where 

the glass-forming liquid becomes solid. Tg is defined as the temperature at which the 

glass-forming liquid reaches a viscosity of 1012 Pa×S and is not cooling rate 

dependent.[30] Tf is estimated to be equal to Tg at a cooling rate of 10K/min.[32] 

 

Figure 2-1. Enthalpy of a glass-forming liquid is illustrated as a function of temperature. Tm is 
the melting temperature of the corresponding crystal, Tffast and Tfslow are fictive temperatures 
obtained with a fast and slow cooling rate, respectively. Figure adapted from literature[29].  
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Oxide glasses are a subgroup of glasses made from metal oxides by melting at 

relatively high temperatures and cooling to room temperature.[10] The backbone of 

oxide glasses is made up of network formers that form covalent bonds to oxygen. 

Ordinary glass-forming metal oxides include silica (SiO2), phosphate (P2O5), and 

borate (B2O3). The metal cations in these glass systems are linked together through 

bridging oxygen (BOs), forming three-dimensional networks. Because of the covalent 

bonds between oxygen and network forming cations, these materials possess high Tm 

and Tg values and are expensive to produce. To reduce the oxide glasses' working 

temperatures, where the melt's viscosity is low enough for processing, network 

modifiers such as Li2O, Na2O, and K2O are added to the glass-forming mixture.[29] 

These metal oxides form ionic bonds to oxygen and form non-bridging oxygen 

(NBOs) in the glass forming network. This reduces the connectivity and the number 

of covalent BOs in the glass and consequently reduces the working temperatures. 

Other network modifiers such as CaO, ZnO, and CuO are introduced to commercial 

glasses to alter physical properties or as colorants.[33] 

The following sections will address the specific atomic-scale structures found in some 

typical glass families, which will be considered in this thesis. 

2.2. SILICATE NETWORKS 

Silica is the most common glass family and is mainly used for bulk glass in windows, 

containers etc.[34,35] Si atoms are the network forming cations in Silica (SiO2), 

forming tetrahedral structural units with 4 BOs in the pure form.[36,37] As glasses 

possess no ordered structures in the long-range (periodicity over thousands of atoms) 

and only to some degree in the intermediate-range (periodicity over tens of atoms), 

the structure of interest in this thesis is in the short-range order (SRO), which refers 

to only the nearest neighbor of each atom. Intermediate-range order has also been 

shown to affect glass properties but is harder to characterize and model, thus SRO is 

the focus of this thesis.[38,39] In the silicate network, the SRO structures refer to the 

environment of the four oxygen bonded to the central Si atom. The possible structural 

units are named according to the Qn naming convention, where n is the number of 

BOs per Si atom.[40] In pure SiO2, all Si atoms are bridging through 4 BOs, and the 

network then consists of only Q4 structural units. Upon the addition of network 

modifiers such as Na2O, NBOs are formed. A Q3 unit is a Si atom with 3 BOs and 1 

NBO, charge stabilized by the Na+ ion from Na2O. All possible SRO structural units 

in the Na2O-SiO2 network are shown in Figure 2-2. 
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Figure 2-2. Qn structural units in a Na2O-SiO2 glass system. Green symbols are Na+ ions, red 
symbols are oxygen atoms, and black symbols are silicon atoms. Covalent bonds are 
represented by a straight blue line and ionic bonds by the separate charges. 

 

2.3. BORATE NETWORKS 

Borate is another common glass family, often used to improve the thermal expansion 

of the final material.[41] While borate is often used with silica or alumina, binary 

borate glasses hardly see any commercial use.[42] Boron is found in the 13th periodic 

table group and has three valence electrons, forming three covalent bonds to obtain a 

favorable electronic state. The SRO structures are named by the Bn convention (Figure 

2-3) for the borate network, where n is the number of BOs on the central B atom.[43] 

B2O3 then consists of only trigonal B3 units. Upon addition of modifier ions to the Bn 

network, BOs may be broken to form NBOs and Bn-1 units similarly to the silicate 

network. However, a B3 unit can also be converted to a tetrahedral B4 unit with 4 BOs 

and charge-stabilized by the network modifier. This is known as the boron anomaly 

as the  
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Figure 2-3. Bn structural units in M2O-B2O3 glass. Red symbols are oxygen atoms, and black 
symbols are boron atoms. A straight blue line represents covalent bonds, and M+ modifier ions 
balance negative charges. 

2.4. PHOSPHATE NETWORKS 

Phosphorous is found in the 15th group of the periodic table and has five valence 

electrons to form five covalent bonds to obtain a favorable electronic state. Since the 

tetrahedral configuration is favorable, P2O5 forms Q3 units with three BOs and 

terminal oxygen with a double bond to the central P atom, as seen in Figure 4.[44] 

The phosphate units are found in tetrahedral configurations. Like the silicate units, 

they are named using the Qn convention, where n refers to the number of BOs 

associated with the central P atom.[45] In future Sections where both Si Qn and P Qn 

units are referenced, these will be referred to as Sin and Pn, respectively. The addition 

of modifier ions to the P2O5 system breaks BOs to form NBOs, and Qn units become 

Qn-1 units. 
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Figure 2-4. Phosphate Qn structural units in M2O-P2O5 glass, where M refers to an alkali metal. 
Negative charges on oxygen are partial charges, while the outer charge is the total charge of 
the unit. Total negative charges are charge-stabilized by M+ ions. 

 

2.5. BOROSILICATE NETWORKS 

Borosilicate glasses consist of both borate and silicate as network formers and any 

number of network modifiers, making it the first mixed network former glass family 

reviewed in this thesis. Borosilicate is one of the most commonly used mixed former 

glass families with uses in high-temperature glassware. The possible SRO structures 

of borosilicate glasses are summarized in Figures 2-2 and 2-3. As such, the number of 

possible SRO structures significantly increases when multiple network formers are 

included in a glass. As these structure units are formed by network modifiers 

interacting with the different sites, the number of interactions also increases, and 

consequently, calculating each interaction probability becomes more challenging, as 

explained later in Section 5-1. 

2.6. ALUMINOBORATE NETWORKS 

Aluminoborate glasses are interesting from a structure point for both the borate units 

exhibiting the boron anomaly described in Section 2.3 and the aluminum units. As 

described in Section 2.2, cations in oxide glasses form either covalent or ionic bonds 

to oxygen depending on the difference in electronegativity between oxygen and the 

cation. There is no exact division, so some cations termed network intermediates may 

form covalent or ionic bonds depending on the chemical environment in the glass-

forming melt. Aluminum is an example of a network intermediate and may form either 

4-fold coordinated Al4 units with 4 BOs or 5/6-fold coordinated Al5/Al6 units with 

three ionic bonds and an ionic charge of +3 illustrated in Figure 2-5. 
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Figure 2-5. Alumina Aln structural units in M2O-Al2O3-B2O3 glass, where M refers to an alkali 
metal. Negative charges on oxygen are partial charges, while the outer charge is the total 
charge of the unit. Total negative charges are charge-stabilized by M+ ions. Figure adapted 
from Paper I. 

 

2.7. PHOSPHOSILICATE NETWORKS 

Phosphosilicate is another exciting glass system studied in paper IV. The structures 

of the network formers mixed in phosphosilicate glasses, silica and phosphate, are 

presented for their binary glass systems in Figures 2-2 and 2-4.  In addition to the 

typical structure units found in the binary systems, 6-fold coordinated silicon (Si6) can 

also be found in phosphosilicate glasses.[46,47] Figure 2-6 illustrates a reaction 

between silicon and phosphorous structure units to form the Si6 unit proposed in 

literature.[48] Si6 influences the physical properties of the glasses, such as hardness, 

and understanding the formation of Si6 can help design new glass compositions in the 

future.[49,50] 

 

 

Figure 2-6. The reaction between silicon and phosphorous for the formation of sixfold-
coordinated silicon units in phosphosilicate glasses. Figure adapted from Paper IV. 
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CHAPTER 3. STATISTICAL 

MECHANICAL MODEL OF SRO 

STRUCTURE 

In this section, we will explore how statistical mechanics can be used to calculate the 

interaction probabilities for modifier-former interactions and consequently calculate 

the structure distribution in the glasses. The fraction of SRO structural species in oxide 

glasses will be calculated as a function of composition and thermal history. The model 

proposed by Mauro[51] will be reviewed, and some practical applications will be used 

as examples for the modeling procedure. 

As described in Chapter 2, the reaction between network modifiers and formers results 

in new structural units. These units are of lower potential energy than before the 

reaction. The lower potential energy after the reaction is a sum of the change of 

enthalpy and entropy.[52] A modifier ion can undertake multiple reactions in a glass 

consisting of multiple structural units, resulting in different structural outcomes. Here, 

one reaction will be enthalpically favorable over the other. However, entropically, it 

would be favorable for the reactions to occur entirely randomly, forming a broad 

distribution of structural units. 

Consequently, enthalpy and entropy compete to control the former-modifier 

interactions. As entropy scales with temperature, glass-forming liquids will consist of 

more randomly distributed structures at high temperatures than at low temperatures. 

When considering the structure distribution in oxide glasses at room temperature, the 

structure is assumed to be frozen at Tf. Enthalpy, entropy, and Tf must be accounted 

for when calculating the interaction probabilities resulting in the final structures at 

room temperature. 

3.1. CALCULATING INTERACTION PROBABILITIES 

The key feature of the above-mentioned statistical mechanics approach is that the 

distribution of structural units in simple oxide glasses can be described using a 

hypergeometric distribution. Hypergeometric distributions are used to describe the 

probabilities of a series of events, considering the previous event.[53] If the 

interaction between a modifier and a network-former species could be assumed to be 

entirely entropically controlled (e.g., no difference in the preference for a Na+ 

modifier ion to interact with Si or B network formers), the regular hypergeometric 

distribution would capture the distribution of structural units as a function of glass 

composition. However, in a real system, the modifier-former interactions are also 

affected by enthalpic contributions, with the system approaching the lowest possible 
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potential energy, and the regular hypergeometric distribution is thus insufficient. The 

enthalpic driving force for a modifier-former interaction is captured by using a type 

of non-central hypergeometric distribution, where each possible event is corrected by 

a weighting factor specific to that event. Such distribution is described mathematically 

by the Wallenius type non-central hypergeometric distribution: 

 𝑝𝑖,𝜔 =
(𝑔𝑖−𝑛𝑖,𝜔−1)𝑤𝑖

∑ ∑ (𝑔𝑗−𝑛𝑗,𝜔−1)𝜔−1
𝜔=0

𝑀
𝑗=1 𝑤𝑖

, (3-1) 

where pi,ω is the probability of drawing species i after ω draws, gi is the initial 

population of specie i, ni,ω-1 is the number of species i already drawn before draw ω, 

and wi is the weighting factor for specie i. The numerator in Eq. 3-1 is the number of 

species i before the given draw multiplied by the weighting factor of species i, and the 

denominator in Eq. 3-1 is the total number of species before the draw multiplied by 

each of their respective weighting factors. 

We recall that the non-central hypergeometric distribution is derived from the 

Boltzmann distribution function to allocate a physical meaning to the weighting 

factors.[54] In statistical mechanics, this central function describes the probability for 

a system to be found in a given state as a function of the system's temperature and the 

energy of that state, 

 
𝑝𝑖 =

𝑒𝑥𝑝 (−
𝜀𝑖
𝑘𝑇

) 

∑ 𝑒𝑥𝑝 (−
𝜀𝑗

𝑘𝑇
)𝑀

𝑗=1  
, 

(3-2) 

where pi is the probability of state i, k is the Boltzmann constant, T is the system's 

temperature, εi is the total energy of state i, and M is the total number of states. 

Recently, Mauro proposed to use the Boltzmann distribution to describe the modifier-

former interactions in mixed former oxide glasses.[51,55] With Mauro's model, the 

probability states (pi) are defined as interactions between modifier ions and network 

former species i. Consequently, εi becomes the free energy of this interaction. The 

latter may be described by entropic (S) and enthalpic (H) contributions, 

 
𝑝𝑖 =

𝑒𝑥𝑝 (−
𝐻𝑖−𝑆𝑖𝑇

𝑘𝑇
) 

∑ 𝑒𝑥𝑝 (−
𝐻𝑗−𝑆𝑗𝑇

𝑘𝑇
)𝑀

𝑗=1  
. 

(3-3) 

Next, we define the statistical entropy of the system as, 

 𝑆𝑖 = 𝑘 𝑙𝑛 𝛺𝑖  , (3-4) 

where Ωi refers to the number of microstates consistent with a given macrostate for 

species i, 
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𝑝𝑖 =

𝑒𝑥𝑝(−
𝐻𝑖−𝑘𝑙𝑛𝛺𝑖𝑇

𝑘𝑇
) 

∑ 𝑒𝑥𝑝(−
𝐻𝑗−𝑘𝑙𝑛𝛺𝑗𝑇

𝑘𝑇
)𝑀

𝑗=1  
. 

(3-5) 

We then obtain, 

 
𝑝𝑖 =

𝑒𝑥𝑝(−
𝐻𝑖
𝑘𝑇

+𝑙𝑛𝛺 𝑖) 

∑ 𝑒𝑥𝑝(−
𝐻𝑗

𝑘𝑇
+𝑙𝑛𝛺 𝑗)𝑀

𝑗=1  
, 

(3-6) 

which can be rewritten as,   

 
𝑝𝑖 =

𝛺𝑖𝑒𝑥𝑝(−
𝐻𝑖
𝑘𝑇

) 

∑ 𝛺𝑗𝑒𝑥𝑝(−
𝐻𝑗

𝑘𝑇
)𝑀

𝑗=1  
. 

(3-7) 

The number of microstates consistent with the macrostate of units i divided by the 

total number of microstates consistent with the macrostate of the glass system is the 

same as the relative fraction of structure unit i divided by the total number of units. 

Since the amount of a given structural species i in the glass system alters with 

composition, we get 

 𝛺𝑖,𝜔 = (𝑔𝑖 − 𝑛𝑖,𝜔), (3-8) 

where ω represents a given modifier fraction, gi is the degeneracy of units i and ni,ω is 

the total amount of species i that has already reacted at glass composition ω. When 

calculating the interaction probability of a unit i at concentration ω, we must use the 

amount of species i at the previous glass composition (ω-1), 

 
𝑝𝑖,𝜔 =

(𝑔𝑖−𝑛𝑖,𝜔−1)𝑒𝑥𝑝(−
𝐻𝑖
𝑘𝑇

) 

∑ ∑ (𝑔𝑗−𝑛𝑗,𝜔−1)𝑒𝑥𝑝(−
𝐻𝑗

𝑘𝑇
)𝜔−1

𝜔=0
𝑀
𝑗=1  

. 
(3-9) 

The double summation in the denominator is over all species M and each modifier 

concentration ω up to, but not including, the current concentration ω. The probability 

distribution function shown in Eq. 3-9 is a  type of non-central hypergeometric 

distribution function, where enthalpy values (Hi) are the free parameters obtained by 

fitting to experimental data. Next, we define 𝑒𝑥𝑝 (−
𝐻𝑖

𝑘𝑇
)  as the weighting factor wi 

for the probability of a modifier to react with structural unit i, where T is assumed to 

be Tf for T < Tf, since the structure is assumed to freeze in at the fictive temperature: 

 𝑝𝑖,𝜔 =
(𝑔𝑖−𝑛𝑖,𝜔−1)𝑤𝑖

 

∑ ∑ (𝑔𝑗−𝑛𝑗,𝜔−1)𝑤𝑗
𝜔−1
𝜔=0

𝑀
𝑗=1

, (3-10) 
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where, 𝑤𝑖 =𝑒𝑥𝑝 (−
𝐻𝑖

𝑘𝑇𝑓
) . (3-11) 

In this thesis, this approach has been utilized to calculate the average concentration of 

structural units as a function of the glass composition. It was discovered that the model 

of Eqs. 3-10 and 3-11 can be fitted to experimentally obtained mechanical data of 

simple, binary oxide glass systems to obtain Hi values specific to each modifier-

structural unit pair. Besides the average structure, recent studies have found that the 

approach is also well suited to calculate and exploring structural fluctuations in glass-

forming liquids by computing the probability distribution function of modifier-former 

interactions. By iterating over Eq. 3-10, a standard deviation to the mean probability 

can be obtained to measure the degree of structural fluctuations.[56-58] 

 

3.2. INTERACTION PROBABILITIES TO ABSOLUTE FRACTIONS 

In this section, the connection between the interaction probabilities calculated in 

Section 3.1 and the final structure of the glass is described. The fraction of structural 

units i at ω is calculated from the fraction of those species at ω-1 and pi,ω values that 

depend on fraction at ω-1. Then, the latest structural fraction at ω is used to calculated 

probabilities pi,ω+1. It is possible to iteratively calculate the fraction of all structural 

units at all modifier concentrations ω by knowing a starting fraction of structural units 

at ω=0 if wi for all i are known. Otherwise, the model is fitted to experimentally 

obtained data to obtain wi. The Qn distribution in Na2O-SiO2 is shown in Figure 3-1 

after the first draw, where the colored spheres illustrate each Qn unit. After the first 

draw, the probability of drawing another Q4 unit remains 1 when rounded to 3 

decimals. This is caused by the weighting factors in the bottom right corner of the 

Figure.  
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Figure 3-1. The probabilities of drawing a network-former unit at 0 % modifier in a Na2O-SiO2 
glass system. The colored spheres illustrate the fraction of structural units in the glass at the 
first draw. The top right graph has experimental data of composition-structure relation as 
symbols and model prediction as lines (up until the current concentration). The lower right 
graph illustrates Tg at the composition as a line and the weighting factors for the given 
composition calculated with the Tg value. As the concentration of Na2O in this example is 1 
mol%, the lines in the graphs are just starting to form. 

In Figure 3-2, the drawing probabilities for each structural unit are calculated for a 

50Na2O-50SiO2 glass. Note how the probability of drawing a Q3 unit is higher than 

drawing a Q2 unit despite the more significant fraction of Q2 units. Figures 3-1 and 3-

2 should illustrate the numerical solution to calculating the interaction probabilities. 

Knowing the starting fraction and the starting weighting factors allows for calculating 

the initial probabilities. From the initial probabilities, the concentration of each unit 

randomly picked for interaction is known, and the new fractions may be calculated, 

as these units are returned to the population as different units. In the bottom right 

corner of Figure 3-2, the Tg of the glass composition is shown and used to calculate 

new weighting factors iteratively. Note the change in the weighting factors between 

Figures 3-1 and 3-2 due to the difference in Tg. 



COMPOSITION TO STRUCTURE: STATISTICAL MECHANICS FOR GLASS MODELING 

28 

 

Figure 3-2. The probabilities of drawing a network-former unit at 50 % modifier in a Na2O-
SiO2 glass system. The colored spheres illustrate the fraction of structural units in the glass at 
the first draw. The top right graph has experimental data of composition-structure relation as 
symbols and model prediction as lines (up until the current concentration). The lower right 
graph illustrates Tg at the composition as a line and the weighting factors for the given 
composition calculated with the Tg value. 

If the Tg values of the glass are known, the model can be used to obtain the Hi of 

modifier former interactions. Assuming that the Hi values are constant for the 

modifier-former interaction, they can be used in all glasses where that interaction 

occurs. The model can then be fitted to structure data of simple glass systems to obtain 

Hi values from, which can be used to predict structural evolutions in multi-component 

glasses without additional fitting.  
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CHAPTER 4. COMPOSITION-

STRUCTURE MODELING IN BINARY 

OXIDE GLASSES 

4.1. EXTRACTING REACTION ENTHALPIES FROM STRUCTURE 
DATA 

Figure 4-1 illustrates each unit's compositional structure evolution in binary alkali 

phosphates (Paper A) as predicted by the chemical order model.[59] As seen in Figure 

4-1, this model assumption expects a stepwise conversion of the Qn units in 

phosphates with increasing modifier concentration. This assumption is backed by the 

oxygen double bond delocalizing to any NBO. The Q2 structure is more energetically 

favorable than the Q3 structure. The energy difference between a Q3 and Q2 is more 

significant than between Q2 and Q1, making the Q2 less likely to react with a modifier. 

By fitting the statistical mechanics-based model shown in Section 3.1 to 

experimentally obtained structure data, the enthalpies of these interactions are 

obtained, allowing for composition-structure prediction specific to each glass system. 

Obtaining good-quality structure data can be challenging, and nuclear magnetic 

resonance spectroscopy is the only widely acknowledged method of quantifying SRO 

structures in oxide glasses.[60] The chemical composition can also change slightly 

during glass melting because of vaporization, so measuring the chemical composition 

is crucial for good-quality structure data. Finally, Tg or Tf must be known, or the glass 

must be annealed at a known temperature to predict the structures with statistical 

mechanics.  
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Figure 4-1. The fraction of Qn structural units as a function of composition for alkali phosphate 
glasses as predicted by the chemical order model. Reprinted with permission from Paper A[26]. 
Copyright 2021 American Chemical Society 

To implement the phosphate structures in the statistical mechanical model, let us 

define the probability for a sodium modifier to interact with a Q3 unit at a glass 

composition ω, with the interaction enthalpies as free parameters: 

 
𝑝𝑄3,𝜔 =

𝑄𝜔−1
3 𝑤𝑄3,𝜔

𝑄𝜔−1
3 𝑤𝑄3,𝜔 + 𝑄𝜔−1

2 𝑤𝑄2,𝜔 + 𝑄𝜔−1
1 𝑤𝑄1,𝜔

, 
(4-1) 

where, 

 

𝑤𝑄3,𝜔 = 𝑒
−

𝐻
𝑁𝑎+,𝑄3

𝑘𝑇𝑓𝜔 , 
(4-2) 

where 𝐻𝑁𝑎+,𝑄3is the enthalpy value for sodium to react with a Q3 structural unit, 𝑇𝑓𝜔
 

is the fictive temperature at glass composition ω, and k refers to the Boltzmann 

constant (in kJ mol-1 K-1). The same method calculates the probabilities modifier 

interactions for Q2 and Q1 at glass composition ω. 

Then, the fractions of Q3, Q2, Q1, and Q0 at composition ω are calculated: 

 𝑄𝜔
3 = 𝑄𝜔−1

3 − 𝑝𝑄3,𝜔, (4-3) 

 𝑄𝜔
2 = 𝑄𝜔−1

2 + 𝑝𝑄3,𝜔 − 𝑝𝑄2,𝜔, (4-4) 
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 𝑄𝜔
1 = 𝑄𝜔−1

1 + 𝑝𝑄2,𝜔 − 𝑝𝑄1,𝜔, (4-5) 

 𝑄𝜔
0 = 𝑄𝜔−1

0 + 𝑝𝑄1,𝜔. (4-6) 

Here, the concentration of Q3, Q2, and Q1 units will decrease for each draw ω relative 

to the probabilities for drawing those species, and the fractions of Q2, Q1, and Q0 will 

increase with the probability of drawing Q3, Q2, and Q1 units, respectively. Since Q3 

transitions to Q2, a modifier's probability of interacting the 𝑄𝜔
𝑛  fractions are then used 

to calculate probabilities at glass concentration ω+1 etc.   

Figure 4-2 shows prediction by the statistical mechanics-based model (Paper A) and 
31P NMR data from Li2O-P2O5 glasses.[61,62] The model was fitted on structural data 

of only one glass (50Li2O-50P2O5) yet fitted very well with all the data. The enthalpies 

of all the interactions obtained by fitting the model are reported in Table 4-1.  
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Figure 4-2. The concentration of Qn structural units in lithium phosphate glasses as a function 
of composition. Experimental data from literature is represented as closed and open symbols, 
respectively. Solid lines represent prediction using the statistical mechanics-based model, 
established only based on data of the glass indicated by an arrow. Reprinted with permission 
from Paper A[26]. Copyright 2021 American Chemical Society 
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Glass modifier Li2O Na2O Cs2O MgO ZnO 

H3 (kJ/mol) 0 0 0 0 0 

H2-H3 (kJ/mol) 33.5 42.8 56.8 31.6 27.0 

H1-H3 (kJ/mol) 70.4 74.9 85.1 55.0 40.0 

R2 0.992 0.998 0.996 0.942 0.988 

 

Table 4-1. Hi parameters and R2 values were obtained by fitting the present model to 
experimental data in five phosphate glass systems. Hi values scale according to the Q3 to Q2 
conversion (H3), defined as 0. Reprinted with permission from Paper A[26]. Copyright 2021 
American Chemical Society 

The next part focuses on predicting the structure of silicate glasses (Paper C). 

Structural Qn units observed in silicate glasses are shown in Figure 2-2. The SRO units 

interact with modifier ions similarly to phosphate glasses: 

 𝑄𝜔
𝑛 = 𝑄𝜔−1

𝑛 + 𝑝𝑄𝑛+1,𝜔 − 𝑝𝑄𝑛,𝜔, (4-7) 

where 𝑄𝜔
𝑛  is the amount of Qn at draw ω, and the probabilities 𝑝𝑄𝑛,𝜔 are calculated 

as: 

 
𝑝𝑄𝑛,𝜔 =

𝑄𝜔−1
𝑛 𝑤𝑄𝑛,𝜔

∑ 𝑄𝜔−1
𝑛 𝑤𝑄𝑛,𝜔

𝑁
𝑛=1

, 
(4-8) 

where N is the total number of structural units. 𝑤𝑄𝑛,𝜔is defined as: 

 

𝑤𝑄𝑛,𝜔 = 𝑒
−

𝐻
𝑀+,𝑄𝑛

𝑘𝑇𝑓𝜔 . 
(4-9) 

Like in the phosphate glasses, the enthalpy values for modifier-structure interaction is 

obtained by fitting the model to structural data. 

Figure 4-3 shows the compositional evolution of Qn units in Na2O-SiO2 glasses as 

obtained by 29Si MAS-NMR experiments.[63] Model predictions show an excellent 

agreement to structure data.  
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Figure 4-3. The concentration of Qn structural units in sodium silicate glasses as a function of 
composition. Experimental data from literature are represented as symbols, and solid lines 
represent model prediction using the statistical mechanics. Reprinted from Paper C[28] under 
the Creative Commons Attribution License. 

 

Glass modifier Li2O Na2O K2O 

H4 (kJ/mol) 0 0 0 

H3-H4 (kJ/mol) 8.4 14.1 18.8 

H2-H4 (kJ/mol) 16.4 22.9 35.5 

H1-H4 (kJ/mol) 22.1 27.1 45.8 

 

Table 4-2. Hi parameters were obtained by fitting the present model to experimental data in 
three different silicate glass systems. Hi values scale according to the Q4 to Q3 conversion (H4), 
defined as 0. Reprinted from Paper C[28] under the Creative Commons Attribution License. 

As was the case for phosphate glass, the higher the field strength of the modifier, the 

more significant the enthalpy difference between the interactions (Table 4-2). This is 

explained by a higher degree of disproportionation of structural units in the Li2O-SiO2 

glasses than Na2O-SiO2 or K2O-SiO2.[63] 

4.2. FICTIVE TEMPERATURE 

Molecular dynamics (MD) simulation is another method to investigate the SRO scale 

structure of glasses.[64,65] A significant drawback of MD is very short simulation 

timescales (nanoseconds to a few microseconds).[31] Because of the short simulation 

timescales, glasses made with MD will attain unrealistically high Tf values, and the 

distributions of SRO structures differ significantly from glasses investigated by NMR 
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experiments. Since the statistical mechanics-based model uses Tf as an input 

parameter, it can be a tool to compare MD simulated glass structures with melt-

quenched glass structures as will be examined in the next section.  

In Figure 4-4, the distribution of predicted SRO structures in a 35Na2O-65SiO2 glass 

is plotted against temperature. The distribution of Qn units in the same glass as 

obtained by MD simulations fits precisely with the prediction made by statistical 

mechanics.[64,66] This is a strong indication that the model results of the statistical 

mechanics-based model may be used to describe both MD simulated- and melt-

quenched glasses.  
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Figure 4-4. SRO structures in 35Na2O-65SiO2 were plotted as a function of Tf. Open symbols 
represent MD simulated data. Closed symbols represent experimental data obtained by 29Si 
MAS-NMR. Solid lines represent model predictions. Reprinted from Paper C[28] under the 
Creative Commons Attribution License. 

Figure 4-5 shows structure prediction of MD simulated glass data with statistical 

mechanics, using the enthalpy values obtained in experimentally obtained Na2O-SiO2 

glass (Paper C). The model fits the structural evolution of MD simulated Na2O-SiO2 

glasses very well while only scaling the Tf as a free parameter (MD Tf = 3.6xTg). 
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Figure 4-5. The concentration of Qn structural units plotted against composition in sodium 
silicate glasses. Closed and open symbols represent data from MD simulations. Solid lines 
represent model predictions, using the enthalpy parameter shown in Table 4-2 but a different 
fictive temperature than Figure 10. Reprinted from Paper C[28] under the Creative Commons 
Attribution License. 

The statistical mechanics-based model was fitted successfully to experimentally 

obtained structure data in the binary silicate glass system. The temperature 

dependence of the statistical mechanics-based model was used to calculate 

composition-structure relations for MD simulated glasses without changing enthalpy 

parameters from those obtained by fitting to MAS-NMR spectroscopy of melt-

quenched glasses. 

4.3. MIXED MODIFIER EFFECT IN SILICATE GLASSES 

The mixed modifier effect refers to the non-linear relation of any glass property with 

the ratio between two modifiers while keeping the remaining composition 

constant.[2,67,68] In Paper II, a series of Na2O-K2O-SiO2 glasses were made with 

varying modifier ratios at three different SiO2 concentrations. All glasses had their 

chemical composition measured by inductively coupled plasma spectroscopy and Tg 

by differential scanning calorimetry. Then, the structures were measured by solid-

state nuclear magnetic resonance spectroscopy. With the compositions and Tg values, 

the statistical mechanical model was used to calculate the structural units of the mixed 

modifier glasses by using enthalpies obtained in binary Na2O-SiO2 and K2O-SiO2 

glasses, respectively. The model showed excellent agreement with the experimental 

structure data, and with the parameters and Tg values, the mixed modifier effect on 

structures was investigated, as shown in Figure 4-6. We found that the mixed alkali 

effect on structural units contributes to the Tg variation, which exhibits a non-linear 

variation when one alkali is substituted for another one while keeping the total 

modifier concentration constant. As the Tg decreases from the linear correlation when 
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mixing modifiers in the silicate glass system, the entropic effect on the structural 

distribution decreases, resulting in a less disordered distribution as captured by the 

statistical mechanical model. 
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Figure 4-6. Fraction of Q2 species as a function of the sodium oxide to total modifier oxide 
content for the 50M2O-50SiO2 glasses. The solid symbols represent fractions of Q2 species 
predicted by the statistical mechanics-based model with constant Tg (circles) or the actual 
measured Tg (triangles). The dashed line represents a linear fit between to the data for Q2 
fractions of 50Na2O-50SiO2 and 50K2O-50SiO2 glasses. Reprinted with permission from Paper 
II. Copyright 2021 American Chemical Society. 
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CHAPTER 5. COMPOSITION-

STRUCTURE MODELING IN MULTI-

COMPONENT OXIDE GLASSES 

With the application of the statistical mechanical method described in Chapter 4, the 

modifier-former interaction enthalpies are established by fitting the model to 

structural data in binary glasses. This section will explore how the parameters 

obtained in binary glass systems can be used directly to calculate the structure 

distribution of multi-component glasses without fitting to the structure of multi-

component glasses. For example, the enthalpy parameters obtained in the Na2O-SiO2 

and Na2O-P2O5 glasses in Section 4 are used to describe the reaction probabilities 

between sodium and both Si and P structural units. Assuming the same reactions in a 

Na2O-SiO2-P2O5 glass system, those parameters can be applied in calculating the 

structural distributions in the ternary glass system without any fitting. As the 

following Sections will explore, former-former interactions often occur in the mixed 

former glass systems, complicating the model slightly. These additional interactions 

can be captured either by introducing additional parameters for each former-former 

pair or all at once using a neural network machine learning approach. Both of these 

options are investigated in this section.  

5.1. STRUCTURE PREDICTION IN BOROSILICATE GLASSES 

The SRO structures observed in borosilicate glasses are summarized when combining 

Figures 2-2 and 2-3.[69-71] When modeling the SRO structures in ternary borosilicate 

glasses (Paper C), the modifier interaction with a structural unit is assumed to be 

identical to the modifier-former interactions in binary glasses. The difference is in the 

competitional factor since more different units compete in interaction with the 

modifier. The denominator of Eq. 3-9 becomes different, but the numerator is the same 

as for binary glasses. The denominator captures all structure units at once, while the 

numerator accounts for only one structure unit at once.  

The enthalpy values for binary borates (Paper B) and silicates (Paper C) are reported 

in Table 5-1. Na2O-SiO2 and Na2O-B2O3 enthalpies were used to predict the SRO 

structures in Na2O-B2O3-SiO2 glasses. All parameters are relative to binary systems, 

as seen in Table 5-1, where H4 values are set to 0 and must be corrected for the Si/B 

preference of the modifier. The Si/B weighting factor is obtained by fitting the model 

with only this one free parameter.  
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Glass system Na2O-SiO2 K2O-SiO2 Na2O-B2O3 K2O-B2O3 

H4 (kJ/mol) 0 0 0 0 

H3-H4 (kJ/mol) 14.1 18.8 8.4 6.0 

H2-H4 (kJ/mol) 22.9 35.2 7.4 21.4 

H1-H4 (kJ/mol) 27.1 32.8 28.5 28.3 

𝛼𝐵4 𝐵2⁄  - - 35.5 35.4 

 

Table 5-1. Relative enthalpies (Hi), where i refers to a given structural unit. The following 
structural units are considered: Q4, Q3, Q2, and Q1 for i = 1, 2, 3, and 4, in the silicate glasses 
and B3, B4, B2 and B1 for i = 1, 2, 3, and 4, in the borate glasses. Reprinted from Paper C[28] 
under the Creative Commons Attribution License. 

To establish the borate enthalpies, the following interactions were considered: 

 2𝐵3 + 𝑀2𝑂 → 2𝐵4, (5-1) 

 2𝐵3 + 𝑀2𝑂 → 2𝐵2. (5-2) 

Eqs. 5-1 and 5-2 account for the boron anomaly. The 𝛼𝐵4 𝐵2⁄  parameter accounts for 

a critical modifier concentration. At this concentration, Eq. 5-1 stops occurring in 

place of Eq. 5-2. In reality, these reactions occur more simultaneously, but this 

assumption allows for accurate prediction with only one additional parameter.  

 2𝐵4 + 𝑀2𝑂 → 2𝐵2 + 𝑀2𝑂. (5-3) 

B4 will start to become B2 units when interacting at high modifier concentrations. Eq. 

5-3 is assumed to be a reaction with a corresponding enthalpy parameter to account 

for this anomaly.  

 2𝐵2 + 𝑀2𝑂 → 2𝐵1, (5-4) 

 2𝐵1 + 𝑀2𝑂 → 2𝐵0. (5-5) 

With the interactions established and the parameters obtained from fitting the model 

to experimental data from literature[63,72-74], borosilicate structures were calculated 

using the statistical mechanics-based approach and compared to glass structures 

obtained experimentally.[75-77] 

As seen in Figure 5-1, the model does not capture the structural data in Na2O-B2O3-

SiO2 glasses obtained by NMR. Deconvoluting NMR results in this system is 

complex, and the uncertainty of experimental data is high. Another method of 

obtaining SRO structural data is by MD simulations. As shown in Section 4.2, the 

enthalpy values obtained by statistical mechanics applies to MD simulated glasses 
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when accounting for the different Tf value. As such, MD may serve as a more accurate 

reference with minimal uncertainty. 
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Figure 5-1. Structure data obtained by 29Si and 11B MAS NMR in literature for sodium 
borosilicate glasses, compared to model predictions. The dashed line represents a one-to-one 
correlation. Reprinted from Paper C[28] under the Creative Commons Attribution License. 

When fitting the model to MD simulated glass structures[78] (Paper C), the statistical 

mechanics-based model captures the structural evolution very well (Figure 5-2). The 

Si/B weighting (wSi,B=0.16) was the only free parameter. 
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Figure 5-2. Structure data obtained by MD simulations in literature for sodium borosilicate 
glasses, compared to model predictions. The dashed line represents a one-to-one correlation. 
Reprinted from Paper C[28] under the Creative Commons Attribution License. 
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With wSi,B established, the model may be used to calculate the structures of any 

borosilicate glass with no free parameters. Next, K2O-SiO2- and K2O-B2O3 parameters 

were established by fitting the model to structural data from literature[79-82] as 

explained in this section. With the new parameters, the structure of K2O-B2O3-SiO2 

glasses was predicted without any fitting. To investigate the predictions without any 

fitting, MD simulations of K2O-B2O3-SiO2 glasses were made (Paper C) by already 

established pair distribution potentials. 

The statistical mechanical model predictions replicate the MD simulations very well 

without any fitting parameters as shown in Figure 5-3. This example illustrates how 

difficult obtaining structural data from melt-quenched glasses can be. Additionally, it 

shows how the statistical mechanical model calculates structures in multi-component 

glasses by transferring interaction enthalpies from binary glasses. While the model 

prediction was convincing for MD simulated glasses, the uncertainty in the 

experimentally obtained data was too high to draw conclusions (Figure 5-1). 
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Figure 5-3. Structure data obtained by MD simulations in literature for potassium borosilicate 
glasses, compared to model predictions with 0 free parameters. The dashed line represents a 
one-to-one correlation. Reprinted from Paper C[28] under the Creative Commons Attribution 
License. 
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5.2. STRUCTURE PREDICTION IN ALUMINOBORATE GLASSES 

Aluminoborate glass is an intriguing glass family with a complex structure.[83,84] 

Aluminum is most commonly found in a 4-fold coordinated state with a negative 

charge stabilized by a modifier cation but may become 5-and 6-fold coordinated under 

certain conditions such as low alkali-containing glasses.[85] 5-and 6-fold coordinated 

aluminum (Al5/6) acts as network modifiers to stabilize negatively charged former 

units or NBOs. Consequently, enthalpy values exist for each former-Al5/6 interaction 

which must be established by fitting. Additionally, aluminum becomes 4-fold 

coordinated when interacting with another modifier ion: 

 𝐴𝑙5/6 + 2𝑀2𝑂 → 𝐴𝑙4. (5-6) 

In Figure 5-4, the Al-B interaction enthalpies have been obtained by fitting the model 

to experimentally obtained structural data (Paper I). All parameters used to obtain the 

fit presented in Figure 5-4 are reported in Table 5-2. As predicted in literature[39], 

sodium ions are (~11 times) more likely to interact with an Al5/6 unit than a B3 unit, 

which may lead to some interesting structural and physical responses as you increase 

the modifier content in an aluminoborate glass. Assuming the glass contains more 

aluminum than sodium, additional sodium ions will increase the network's 

connectivity by changing Al5/6 to Al4, but at the same time, reducing Al5/6 will decrease 

the connectivity since B4 units will return to B3 units as the Al5/6 species no longer 

stabilize them. With this model, the connectivity of the network may be predicted as 

a function of the composition 

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(d)

 

 

 B
3

 B
4

 B
2

 Al
5/6

 Al
4

M
o
d
e

l 
V

a
lu

e
s

Experimental Values  

Figure 5-4. Na2O-Al2O3-B2O3 structural data obtained by 27Al and 11B MAS NMR[refs] 
compared to model predictions. Al-B interactions fitted assuming Al5/6 as modifying species, 
able to stabilize any negatively charged unit. Reprinted with permission from Paper I. 
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The parameters for Li+ ions to interact with B4 and B2 units were determined using 

structural data from binary Li2O-B2O3.[86] With these parameters established (Table 

5-2), the model was fitted to experimentally obtained data for Li2O-Al2O3-B2O3 

glasses[84] (Figure 5-5) with only 𝑤𝐴𝑙5/6  for Li+ the free parameter. That the glass 

series fit very well with only one parameter supports the hypothesis of transferable 

parameters. 
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Figure 5-5. Li2O-Al2O3-B2O3  structural data obtained by 27Al and 11B MAS NMR[Ref] 
compared to model predictions with only one free parameter. Reprinted with permission from 
Paper I. 

The parameters in row 1 of Table 5-2 represent the weighting each possible Al5/6 

interaction has. These parameters provide insight into the structure in a theoretical 

binary Al2O3-B2O3 glass. An Al5/6 unit is ~100 times more likely to interact with a B3 

to form and stabilize either a B4 or a B2 than to stabilize an Al4 unit. With these 

parameters established, the structural units in a theoretical binary Al2O3-B2O3 glass 

may be described (Paper 1) as a function of [Al2O3] (Figure 5-6). Since binary Al2O3-

B2O3 glasses are complicated to manufacture because they readily crystalize[87], this 

model provides valuable insight into the interactions between aluminum and boron 

species by extracting available experimental data from modified aluminoborate 

glasses. 
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Glass system 𝒘𝑩𝟑  𝒘𝑩𝟒  𝒘𝑩𝟐 𝒘𝑩𝟏 𝒘𝑨𝒍𝟓/𝟔 

Al3+ 1 0.071 0.065 0.031 0.011 

Na+ 1 0.65 1.4·10-4 - 11.61 

Li+ 1 0.19 0.58 - 4.14 

Cs+ 1 1.37 7.9·10-10 - 30.69 

 

Table 5-2. Relative Weighting factors (wi), where i corresponds to a given structural 
configuration (B3, B4, B2, B1 and Al5/6), for the fitting of the current statistical mechanical model 
to experimental structure data. The uncertainty of the weighting factor parameters is on the 
order of ±5%. Reprinted with permission from Paper I. 
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Figure 5-6. Model prediction of composition-structure relation in a binary Al2O3-B2O3 glass. 
Both Aln and Bn fractions are relative to the total amount of Al2O3 and B2O3, respectively. 
Reprinted with permission from Paper I. 

 

5.3. STRUCTURE PREDICTION IN PHOSPHOSILICATE 
GLASSES 

The final mixed former system we will examine is the phosphosilicate system (Paper 

IV). Network modifiers typically break the glassy backbone by forming NBOs, 

however, Si6 units formed in phosphosilicate glasses require network modifying 

cations to be charge-balanced (Figure 2-6).[46] Hence, the addition of network 

modifiers may either decrease the network connectivity by forming NBOs or increase 

the network connectivity by inducing the formation of Si6 units. In Figure 5-7 (a), the 

modeling procedure explained for borosilicate glasses was used for Na2O-SiO2-P2O5 

glasses. The enthalpy parameters used to obtain the model values in Figure 5-7 (a) 
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were obtained by fitting the statistical mechanics-based model to experimentally 

obtained structure data in the Na2O-SiO2 and Na2O-P2O5 glass systems.[63,88,89] 

Figure 5-7 (a) shows that the model cannot capture the Si6 units as these do not exist 

in the binary silicate glasses. An additional parameter (KSi6) was included to account 

for Si6 units in the phosphosilicate glasses in calculating the model results shown in 

Figure 5-7 (b). This parameter was included to account for the reaction between Si 

and P structure units to form Si6 (Figure 2-6) and was derived from literature.[48] 

 [𝑃3]

[𝑆𝑖𝑂2]
∙ 𝐾𝑆𝑖6 =

[𝑆𝑖6]

[𝑆𝑖𝑂2]
, (5-7) 

where [SiO2] is the total concentration of silica in the glass, and P3 and Si6 can be 

calculated iteratively, given that KSi6 is known. 
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Figure 5-7. Comparison of model predictions and experimental data for the structural units in 
Na2O-SiO2-P2O5 (a) before and (b) after introducing Si6 modeling for the structural units. The 
experimental data are from 29Si and 31P MAS NMR spectroscopy.[48,49,90] Reprinted with 
permission from Paper IV. 

This example illustrates a case where the direct transfer of enthalpy values from binary 

to mixed-former glasses is insufficient for calculating the SRO structures. In this case, 

an additional parameter accounted for the additional complexity in the mixed-former 

glass. It is inefficient to account for the mixed-former effect on a per-system basis. 
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5.4. STATMECHGLASS: PYTHON-BASED MODELING 
SOFTWARE 

A Python-based package was developed for easy use of the extensive statistical 

mechanical model StatMechGlass (Paper III). The package comes with already 

defined modifier-former interaction enthalpies and former-former interaction 

parameters and may be used to predict glass structures from compositions without any 

input files. In case the glass system of interest requires different interaction 

parameters, additional parameters can easily be input. The software has a feature for 

building the modifier-former interaction enthalpies from glass structure data input. 

Finally, the software can output composition-structure plots. 

The software is implemented in the Python Packaging Index (PyPI), which is 

commonly recognized as the easiest way to install python packages directly to a script.  

5.5. ACCOUNTING FOR MIXED-FORMER EFFECTS USING 
MACHINE LEARNING 

As shown in the previous section, the statistical mechanical model does have a 

significant drawback of oversimplifying the mechanics governing the structure 

distribution in mixed-former glasses. While these errors could be corrected on a per-

system basis, machine learning should quickly learn and correct for these systematic 

errors. It is the hypothesis that combining statistical mechanical modeling with 

machine learning could provide the extrapolative power of statistical mechanics and 

the precision of machine learning. Machine learning could indeed be used without 

statistical mechanics but requires a much larger dataset.[16,91] In Paper V, the idea is 

to teach the machine learning model the composition-structure relation captured by 

statistical mechanics to reduce the input-output complexity and hopefully getting a 

good fit with limited data. Optimally, the combined model can be used to predict 

structures of glass compositions in large composition-property databases even when 

trained on a relatively small dataset, hence allowing for large-scale composition-

structure-property glass modeling. Machine learning models, and neural networks, in 

particular, have been successfully applied to glass systems to capture composition-

property relations on a large scale for properties such as lattice thermal conductivity 

and glass-forming ability.[92,93] The composition-property relation in oxide glasses 

is often highly non-linear and complex, while the structure-property relation is much 

more linear. Combining statistical mechanics with machine learning could provide a 

suitable model for calculating structures of the property models' compositions, 

allowing for training on composition and structure. The composition-structure relation 

in glasses is also highly non-linear and complex, but most of the complexity is 

captured by statistical mechanics, which only leaves a small systematic error, which 

should be simple for machine learning to capture.  
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Multilayer perception neural network (MLP-NN) is a powerful machine learning 

model widely used for glass property prediction.[94-96] MLP-NN is made up of 

multiple layers of artificial neurons connected through artificial synapses. The input 

data is transformed by a given weight when transported through the synapse and 

transformed in the neuron by a non-linear activation function. When training, the 

model will optimize the weightings and the activation functions to best capture the 

output for the model. Other than the parameters optimized during training, the 

architecture of the neural network affects the predictive power. Here, both the number 

of neurons per layer and the number of layers affect the outcome and are traditionally 

referred to as hyperparameters. If the network is too simple for the dataset, the model 

will underfit, while a too complicated network architecture will overfit. The network 

architecture is adapted to give the best prediction of the current dataset (Paper V). To 

investigate the quality of prediction, a subset of the data is removed from the training 

data and used to validate the model.  

Figures 5-8 (a), (b), and (c) show the prediction results from statistical mechanics, 

MLP-NN, and the combined model, respectively (Paper V). Statistical mechanics do 

slightly better when examining the root-mean-square errors (RMSE) than the 

composition-structure MLP-NN model. Additionally, the statistical mechanical 

model is trained on a smaller dataset relative to the validation set. The training sets 

are in specific glass systems, while the validation sets are entirely different, unlike the 

machine learning models, where the validation set is a random subset of the total data. 

 

 



COMPOSITION TO STRUCTURE: STATISTICAL MECHANICS FOR GLASS MODELING 
 

47 

0 20 40 60 80 100
0

20

40

60

80

100(a)

 

 

 Train

 Validation

M
o
d
e

l 
V

a
lu

e
s

Experimental Values

RMSE = 6.6

0 20 40 60 80 100
0

20

40

60

80

100(b)

 

 

 Train

 Validation

M
o
d
e

l 
V

a
lu

e
s

Experimental Values

RMSE = 6.8

 

0 20 40 60 80 100
0

20

40

60

80

100(c)
 

 

 Train

 Validation

M
o

d
e

l 
V

a
lu

e
s

Experimental Values

RMSE = 4.2

 

Figure 5-8. Experimentally obtained structural values plotted against the model predictions for 
training and validation sets. Black symbols refer to training data, while red symbols represent 
validation data. Model predictions are obtained using (a) statistical mechanics, (B) MLP-NN, 
and (c) a combination of statistical mechanics and MLP-NN. All experimentally obtained data 
from the literature. Reprinted from Paper V. 

In summary, the statistical mechanical model better predicts a more extensive 

validation set with a smaller training set and with higher extrapolation than the MLP-

NN model. When combining statistical mechanics with MLP-NN, the RMSE drops 

significantly. From this, it would seem that the MLP-NN model learns from the 

thermodynamic information indirectly supplied by the statistical mechanical approach 

without needing more raw data.  
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While it could be argued that the machine learning models learn the composition-

structure relations themselves, this study has shown that the composition-structure 

relation is too non-linear for pure MLP-NN to learn with a limited dataset. Allowing 

the neural network to learn the thermodynamic contribution to the structure formation 

by supplying statistical mechanical structure results as an additional layer of input 

data allowed the model to predict the non-linear nature of composition-structure 

relations. This modeling approach could improve composition-property models' 

predictive and extrapolative power by offering the structural component and allowing 

for composition-structure-property modeling. 
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CHAPTER 6. CONCLUSIONS AND 

PERSPECTIVES 

This thesis has highlighted examples of the application of statistical mechanics as a 

tool to predict the composition-property relation in oxide glasses by accounting for 

enthalpic and entropic contributions to SRO structure formation. In this chapter, the 

main findings are summarized, followed by a short discussion on the future 

implications of the work.  

This study has focused on the statistical mechanical approach originally proposed by 

Mauro[51]. Throughout the project, the theoretical approach has been implemented, 

expanded, and verified in real glass systems. The adapted models were used to predict 

the distribution of structures in binary phosphate, silicate, and borate glasses with 

input from as little as two glasses. The model obtained relative enthalpies of structure 

formation from literature data of binary oxide glass structures. Additionally, it 

accounted for the thermal history of the glass by assuming a glassy structure similar 

to that of the glass-forming melt at the fictive temperature. The model can be used to 

capture the temperature dependence of structures in the glass-forming melt. The 

enthalpies combined with the thermal histories have shed light on the 

thermodynamical differences between different interactions occurring in the glass-

forming melt. The statistical mechanical model also captured the mixed modifier 

anomaly, where structure correlates non-monotonically when mixing two or more 

modifiers. The combination of modifiers-former interaction competition and the 

effect of the thermal history explained this anomaly. These new understandings of 

glass structure may be helpful for future studies involved in those areas. 

We have shown that the interaction enthalpies in binary silicate and borate glasses 

could be used directly to calculate the structures of borosilicate and aluminoborate 

glass systems with only one additional parameter for each former-former pair. By 

extending the model from binary glasses to multi-component glasses without 

additional parameters, the potential output of the model scales exponentially as the 

input scales linearly. This is especially useful as experimentally obtaining good-

quality structure data becomes increasingly difficult the more components are 

introduced in the glasses. The statistical mechanical model can be applied in the future 

to predict structures of glasses with too many components to obtain reliable structure 

data. However, for phosphosilicate glasses, this approach was insufficient as former-

former interactions occurred between Si and P, requiring one more parameter to 

capture the structures. The open-source StatMechGlass software was built to easily 

apply the statistical mechanical model in both binary and multi-component glasses. 

This software offers precise structure prediction in the glass systems presented in this 

thesis and can easily be extended beyond those systems but should be verified against 

experimental structure data. The software allows for easy use of the pretty complex 
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models described in this thesis. As the model has been tailored to each glass system, 

it would be difficult to replicate the results without a tool like StatMechGlass. This 

allows for this work to be expanded upon without too much difficulty. 

Finally, the statistical mechanical model trained on binary data was used in 

combination with machine learning to very precisely predict the structures of multi-

component glasses. By combining statistical mechanics with machine learning, the 

model captures the thermodynamics of structure formation while also capturing errors 

such as the Si-P interaction mentioned above. The combination of the two powerful 

modeling techniques outperformed either technique when used alone. The combined 

model also showed excellent extrapolation and precisely predicted the structure of 

glasses outside the composition of the training data.  

The novel machine learning model was also translated to python code available for 

all researchers to make their structure predictions. With this code, structures can be 

predicted for an extensive range of glass compositions. It could be beneficial for 

property predicting models based on large datasets with glass compositions and their 

resulting properties to implement this new model. The new model could provide 

structure data for a significant fraction of the compositions of the original dataset. 

Thus, both composition and structure could be input parameters for the property 

model. Since structure has been shown to correlate better with properties than 

composition, the knowledge of the glassy structures may offer better property 

prediction.  
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