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1. Foreword 

The aim of this technical report is to present and give an overview of a dataset collecting the main thermo-
physical properties of various common construction and building materials used in the built environment and 
composing elements of buildings and infrastructures. In addition, suggestions and recommendations are 
made for the thermo-physical properties of the materials composing the indoor content and furniture 
elements present in the built environment [1][2]. This dataset and technical report are extensions of previous 
data collection presented in [3]. 

This dataset contains around 2100 different material lines. Some materials may have multiple entries with 
variations in the estimates of the thermo-physical properties. These variations between the different sources 
emphasize the difficulty to accurately determine the thermo-physical properties of building materials. In 
addition, these thermo-physical properties can vary significantly with temperature and humidity. For some 
material entries, only a part of the thermo-physical properties are indicated in the source and therefore 
compiled in this database. 

The data has been aggregated from more than 100 different sources (scientific reports, scientific 
publications, technical documentation, online databases). It also includes measurement results from 
experimental investigations carried out at the Laboratory of Building Material Characterization 
(https://buildingmaterials.civil.aau.dk/) of Aalborg University (Denmark), Department of the Built 
Environment (https://www.en.build.aau.dk/). 

Although it is relatively simple to find information about the density and thermal conductivity of many 
materials, the specific heat capacity, volumetric heat capacity, thermal diffusivity, relative gas diffusivity and 
effective gas permeability are much harder to find out. In addition, many materials in a given category are 
stated with generic round numbers for the specific heat capacity. This indicates that these data points are 
not accurately measured for a specific material but rather estimated for a whole category of materials (e.g., 
most of the woods are stated to have a specific heat capacity of exactly 1200 or 1600 J/kg.K). 

The dataset can be found as an Excel sheet in the appendix of this report on https://vbn.aau.dk/. 

One can also visualize the data with interactive figures on this website: https://therm-properties-build-
mat.herokuapp.com/ 

  

https://buildingmaterials.civil.aau.dk/
https://www.en.build.aau.dk/
https://vbn.aau.dk/
https://therm-properties-build-mat.herokuapp.com/
https://therm-properties-build-mat.herokuapp.com/


2. Introduction 

In thermodynamics and building physics, a good knowledge of the main material properties that play a major 
role in the heat, air and mass (HAM) transports is crucial to conduct proper design, sizing and simulations, 
and verify experimental measurements. 

In this dataset, 7 material properties are collected: 

• Density [kg/m3] 
• Thermal conductivity [W/m.K] 
• Specific heat capacity [J/kg.K] 
• Volumetric heat capacity [kJ/m3.K] 
• Thermal diffusivity [mm2/s] 
• Relative gas diffusivity [-] 
• Effective gas permeability [m2] 

The dataset focuses on building materials used in the built environment and composing construction 
elements of buildings and infrastructures. The data entries are grouped into 17 distinct material categories: 

• Insulating vacuum panel (although not being a material category per se) 
• Aerogel 
• Bio-based insulation 
• Mineral insulation 
• Polymer insulation 
• Cellular glass/mineral 
• Textile 
• Paper / cardboard 
• Wood 
• Plastic/polymer 
• Plaster 
• Ceramic 
• Structural material 
• Natural stone 
• Soil 
• Metal 
• Carbon structure 
• Fiber/particle composite 

Except if stated otherwise in the name of the material, the reported properties of the materials are assumed 
to be for ambient (room) temperature (10 °C  ̶  40 °C), with normal conditions of pressure (atmospheric 
pressure) and relative humidity of around 50%. One should keep in mind that the thermo-physical properties 
of materials (especially porous materials) can be highly dependent on temperature and humidity. 

  



3. Density Dependency of Many Building Material Properties 

Many building materials are porous to some extent, meaning that they contain a certain fraction of pores 
that can be filled with dry or humid air (or other gases) or liquid water. The fraction of pores relative to the 
solid phase of the material and whether these pores are filled with dry air, humid air or liquid water can thus 
largely influence the density of the material but also its thermal conductivity, volumetric heat capacity, 
thermal diffusivity, relative gas diffusivity and effective gas permeability. 

There is a strong correlation between the density and thermal properties of porous materials such as thermal 
conductivity (bulk metals and ceramics are not porous and thus do not present such a trend). The thermal 
conductivity of porous building materials is mainly determined by the solid phase fraction/porosity (and thus 
density), and the air and water content of these pores. Higher porosity materials (lower density) with air-
filled cavities have fewer and smaller solid-phase bridges that conduct heat better than air/gas, and many 
air/gas-filled cavities with low thermal conductivity. This drives the overall effective thermal conductivity of 
the porous material down. If the conductive solid-phase fraction is larger, the density and the thermal 
conductivity tend to increase. If the cavities of the materials are filled with liquid water, the overall humidity 
content of the material increases together with its density (because liquid water is much denser than air/gas) 
and its thermal conductivity (because liquid water is much more conductive than air/gas and forms highly 
conductive bonds/bridges within the solid-phase matrix of the porous material). One can thus observe that, 
in general, building materials with a high density have larger thermal conductivity than building materials 
with a lower density (some exceptions are discussed in this report). 

Because of this general correlation between density and other material properties, the data is presented in 
this report as a series of figures showing a given material property as a function of the density. However, one 
can note that the correlations between the density and the other material properties are not always positive, 
linear and/or monotonic. Although much weaker, these correlations can hold when looking at the overall 
dataset, but can change significantly or disappear when looking at the data points within a specific material 
category: e.g., the correlation between density and thermal conductivity is negative for ceramics and very 
weak but negative for metals. 

  



4. Overview of Building Material Properties 

4.1. Density 

One can see in Figure 1 that the density of building materials spans over a very wide range of several orders 
of magnitude. However, the figure provides information about the range of possible density for each material 
category. 

 

Figure 1: Density of building materials (log scale). 

  



4.2. Thermal Conductivity 

One can see in Figure 2 that the thermal conductivity of building materials spans over a very wide range of 
several orders of magnitude. However, the figure provides information about the range of possible thermal 
conductivity for each material category. 

 

Figure 2: Thermal conductivity of building materials (log scale). 

  



As illustrated in Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7, there is a clear positive correlation between 
material density and thermal conductivity, especially for building materials with a density below 3000 kg/m3. 
However, this correlation is negative for the ceramics and glass materials, and very weak for metals. This can 
be explained by the fact that these material categories are not porous materials and their thermal properties 
are driven by different phenomena than that of porous material categories. 

 

Figure 3: Thermal conductivity as a function of density for building materials (log-log scale). 



 

Figure 4: Thermal conductivity as a function of density for building materials (log-log scale). 

 

Figure 5: Thermal conductivity as a function of density for building materials with a density below 
3000 kg/m3. 



 

Figure 6: Thermal conductivity as a function of density for low-density building materials. 

 

Figure 7: Thermal conductivity as a function of density for low-density building materials (excluding 
aerogels and insulating vacuum panels). 



One can see in Figure 6 and Figure 7 that for insulation porous materials (excluding aerogels and vacuum 
panels) there is an optimum density (around 30 - 50 kg/m3) for which the thermal conductivity tends to be 
minimum. For a density lower than 30 - 50 kg/m3, the thermal conductivity tends to increase slightly with 
decreasing density. 

This negative correlation between density and thermal conductivity below a critical point can be explained 
as follows: 

• Above the critical point (higher density) the overall heat transfer driving the effective thermal 
conductivity of the porous material is conduction through the solid phase. Therefore, the lower is the 
density, the more air-filled cavities are present in the material and thus the fewer solid-solid conductive 
bridges exist (Figure 8 right side). 

• Below the critical point (lower density) although decreasing density reduces the number and size of the 
solid-solid conductive bridges, the air-filled cavities are getting larger. Above a certain size, convection 
becomes significant in those air-filled cavities, which drives the effective thermal conductivity of the 
porous material up (Figure 8 left side). 

 

 
Figure 8: Different heat transfer modes driving the effective thermal conductivity of porous insulation 

materials around the critical compactness density point [38]. 

The trend described above is, however, not applicable to aerogels. Aerogels have extremely high porosity 
and thus low density but also present ultra-low thermal conductivity (down to 0.01 W/m.K). Nevertheless, 
aerogels alone are fairly brittle and expensive and require to be incorporated into other tougher materials 
to ensure certain durability for building applications. 

  



4.3. Specific Heat Capacity 

One can see in Figure 9 that the specific heat capacity of building materials is often within the 300 – 
2500 J/kg.K range. The figure provides information about the range of possible specific heat capacity for each 
material category. 

 

Figure 9: Specific heat capacity of building materials. 

  



One can see in Figure 10 that there is no strong correlation between the density and the specific heat capacity 
of common building materials. 

 

Figure 10: Specific heat capacity as a function of density for building materials. 

  



4.4. Volumetric Heat Capacity 

Similarly to the density, one can see in Figure 11 that the volumetric heat capacity of building materials spans 
over a very wide range of several orders of magnitude. However, the figure provides information about the 
range of possible volumetric heat capacity for each material category. 

 

Figure 11: Volumetric heat capacity of building materials (log scale). 

  



One can see in Figure 12 that there is a strong correlation between the density and the volumetric heat 
capacity of common building materials, which can easily be explained because volumetric heat capacity is 
directly proportional to density (and specific heat capacity). 

 

Figure 12: Volumetric heat capacity as a function of density for building materials. 

  



4.5. Thermal Diffusivity 

One can see in Figure 13 that the thermal diffusivity of building materials spans over a very wide range of 
several orders of magnitude. However, the figure provides information about the range of possible thermal 
diffusivity for each material category. 

 

Figure 13: Thermal diffusivity of building materials (log scale). 

  



One can see in Figure 14 that there is a non-monotonic correlation between the density and the thermal 
diffusivity of common building materials, which is logical since thermal diffusivity is correlated to the thermal 
conductivity, density and specific heat capacity which, themselves, are correlated to density. 

 

Figure 14: Thermal diffusivity as a function of density for building materials (log-log scale). 

  



4.6. Effective Gas Permeability 

One can see in Figure 15 that the effective gas permeability of insulation materials spans over a very wide 
range of several orders of magnitude: from 10-10 to 10-6 m2. In addition, one can observe a negative 
correlation between material density and effective gas permeability, which can be explained by the fact that 
insulation materials with higher density have higher compactness and thus offer fewer and narrower free 
paths (open channels or cavities) for the gas to flow through. 

 

Figure 15: Effective gas permeability as a function of density for building materials (log scale). 

  



5. Thermo-Physical Material Properties of the Indoor Content and 
Furniture Elements 

The indoor content and furnishing elements present inside the built environment often have complex 
geometries with various types of material. One can find in Table 1 recommendations for the thermo-physical 
properties of these indoor content elements. It is considered that the materials composing the indoor 
content elements can be classified into 4 main categories: light material, wood/plastic material, 
concrete/glass material, metal material. In addition, the properties of an equivalent indoor content material 
(which would therefore account for the equivalent thermo-physical properties of the overall indoor content 
elements) is given. For all categories, indications on the dimensions, effective thermal inertia and amount in 
buildings (mass relative to floor surface area) are given. These recommendations are valid for both residential 
and office buildings [1][2]. 

Table 1: Thermo-physical properties of the representative indoor content material categories [2]. 
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