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a b s t r a c t

Knowledge of the distribution of short range-order structural units in oxide glasses is important for
deciphering their composition–property relations. However, measurements of the fractions of such
units are often difficult and time consuming, especially for multicomponent glasses. Here, we introduce
StatMechGlass, a Python-based software for calculating the short range-order structure distribution in
oxide glasses based on statistical mechanics. By accounting for the enthalpic and entropic contributions
to the network interactions in glass-forming melts, the atomic-scale structures of the resulting glasses
can be calculated. As input, the software requires accurate interaction enthalpy values that can
be supplied by the user or obtained directly by the software from experimental structure data.
StatMechGlass thus enables the prediction of composition–structure relations for any oxide glass
composition. When coupled with existing composition–property databases of experimental data, it
enables the construction of composition–structure–property databases and models. StatMechGlass is
open source and designed in a modular fashion for easy tailoring for specific needs.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Oxide glasses are non-crystalline materials with a range of
pplications ranging from buildings to medicine and electron-
cs [1–4]. They are made from network-forming elements such
s silicon, phosphorous and boron that are connected through
ovalently bonded oxygen atoms to form a three-dimensional
etwork [5–7]. Electropositive network-modifying elements such
s sodium, potassium and calcium alter the network by form-
ng ionic bonds to oxygen, thus weakening the rigidity of the
tructure and altering the properties of the resulting glass [8].
n commercial glasses, these network-modifying cations are usu-
lly added to lower the melting temperature during the glass
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formation process, hence reducing the manufacturing cost. The
type and fraction of both network-modifying and forming units
can be tailored to produce an oxide glass with certain desirable
macroscopic properties [9,10]. The process of optimizing the glass
composition for a specific application has historically been carried
out through tedious trial-and-error experimentation [11].

There is thus a need to predict the composition–property
relations. Machine learning based models have recently been
used for this purpose and show some promise [12,13]. However,
these models are typically limited to interpolation considering
the complex and non-linear composition–property relations in
oxide glasses. On the other hand, structure–property models have
shown some ability to extrapolate predictions, as the embedded
short-range order structures have a more direct connection with
properties than the chemical composition [14–16]. Quantification
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f the fraction of structural units is the main limitation for apply-
ng structure–property models [17]. The disordered nature of ox-
de glasses complicates the structural analysis to obtain accurate
ata, with solid state nuclear magnetic resonance (ssNMR) spec-
roscopy being the most frequently used technique [18]. Though
ossible, obtaining high-quality structure data from ssNMR mea-
urements can take hours to days of measuring time and the
ata processing is often non-trivial. Additionally, the element of
nterest must contain naturally abundant NMR-active isotopes.

Computational methods can be used to overcome the limita-
ions of ssNMR measurements to determine the glass structure.
olecular dynamics (MD) simulation is the most frequently used
ethod for obtaining oxide glass structures by computation [19].
owever, as the structural distribution in oxide glasses is highly
ependent on the potential energies associated with the break-
ng and formation of covalent and ionic bonds in the glass-
orming melt, classical MD simulations are not always capable
f replicating structures as this method is based only on empir-
cal interatomic potentials [20,21]. To overcome this limitation,
b initio MD simulation applies quantum mechanical parame-
ers, but the high degree of complexity limits the computation
o a few hundreds to thousands of atoms and extremely short
imescale [22,23]. Alternatively, the use of a reactive force field
ffers an intermediate MD approach to simplify the computation
o a few reaction energy parameters [24]. While this method
as been valuable in studying, e.g., glass surface reactions, it
till suffers from relatively high cooling rates and low structural
ccuracy of bulk glasses.
Statistical mechanics has been used for some glass systems to

vercome the experimental challenges and obtain more accurate
tructure predictions than MD simulations in general [25–29].
n this work, we introduce StatMechGlass, which is a Python
ased software for predicting short-range order structures in
xide glasses from their compositions. The software utilizes an
stablished statistical mechanics-based model for obtaining reac-
ion enthalpies between network formers and modifiers by fitting
o experimental structural data for simple reference composi-
ions. The enthalpies obtained from the simple glass structures
an be used to predict the structural distribution of increasingly
omplex glass compositions. As such, the software is a tool for
uilding a large database of structural data. On the GitHub page,
he enthalpy database will continuously be updated and external
sers are encouraged to contribute to the database using the
itHub pull request functionality.
In the statistical mechanics-based composition–structure

odel, the distribution of short-range order structures in the
lass is described statistically, following a hypergeometric dis-
ribution [27]. A glass of a given composition consists of a dis-
ribution of network forming sites, and the probability for a
odifier cation to interact with each network-forming site can be
alculated based on the relative enthalpic (heat of formation) and
ntropic (temperature and population size) contributions that
re specific for each network modifier–former pair. Specifically,
he probability (p) of each modifier–former interaction can be
alculated as a function of composition using a Wallenius type
on-central hypergeometric distribution [27]:

i,ω =
(gi − ni,ω−1)wi∑Ω

i=1
∑ω−1

j=0 (gi − ni,j)wi
, (1)

where Ω is the total number of species, ω is an increasing abso-
lute fraction of network modifier, gi is the degeneracy of network
forming species i, ni,j is the fraction of network forming species
i already reacted after j attempts, and wi is the weighting factor
pecific for network forming species i. The numerator in Eq. (1)
s the fraction of species i before the current modifier fraction,
multiplied by the ith specific weighting factor. The denominator of

Eq. (1) is the sum of network forming fractions before the current
modifier fraction, multiplied by their respective specific weight-
ing factors. The Boltzmann weighting factor is given as [30]:

wi = e
−

Hi
kTf , (2)

where Hi is the enthalpy of the interaction between the modifier
ion and network forming species i, k is Boltzmann’s constant, and
Tf is the fictive temperature of the glass. Here, the fictive temper-
ature is assumed to be the temperature at which the structure
of the glass-forming liquid becomes frozen into the glassy state.
In glasses annealed at their glass transition temperature (Tg), we
have Tf = Tg. This model may be extended for any number of
network formers, but the Hi parameters are specific for the given
modifier–former pair. As such, assuming a known value of Tf for
a given composition, the only free parameters in the statistical
mechanics-based model are the Hi values.

Next, the model is extended to glass systems with multiple
modifiers, with each modifier having a specific enthalpic bonding
preference for each network former. A multicomponent glass
therefore offers a rich bonding environment and each enthalpic
and entropic contribution must be considered to calculate the
bonding probabilities. To account for the modifier specific en-
thalpy of interaction, the parameter Hαn

i is introduced, where
αn refers to n specific modifiers α, with a total N number of
modifiers,

pi,ω =

N∑
n=1

[αn]
(gi − ni,ω−1)e

−
Hαn
i
kTf∑Ω

i=1
∑ω−1

j=0 (gi − ni,j)e
−

Hαn
i
kTf

, (3)

where [αn] is the relative concentration of modifier αn and∑N
n=1 [αn] equals unity.
As shown recently [30], the model of Eq. (3) can be fitted to

experimental structural ssNMR data to obtain relative Hi values
for simple binary glasses, which in turn can be used to predict
interaction probabilities in mixed network former glasses con-
taining the same components. As no absolute enthalpy values
are known a priori, all Hi values are relative to their parent
network former i. As such, the weighting factor for a former–
former interaction must be known when applying Eq. (3) on oxide
glasses with multiple network formers. This single parameter
can be obtained by fitting to structural data from a single glass
system containing the two formers, with only the former–former
interaction parameter as the fitting parameter [30]. For this pur-
pose, the basin-hopping parameter optimization is chosen as the
fitting procedure. This method utilizes an algorithm to change the
initial parameter guesses before performing the optimization to
overcome the local minimum issue [31]. Upon determining the
Hαn

i values, the composition dependent distribution of structural
units in any glass can be predicted using Eq. (3). We note that
the interaction probabilities pi must be calculated numerically
and the distribution of structural units must be known. Exact
knowledge of both thermal history (Tf) and chemical composition
are essential when applying the statistical mechanics model as
even small variations in these values can lead to large deviations
in the predicted structural speciation.

2. Software description

The model of Eq. (3) is incorporated in StatMechGlass, which is
a Python package developed using Numpy, Scipy and Sklearn [31–
33]. The package contains a main module and several submod-

ules. The main module is to be installed to the user’s own script

2
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sing the Python import command. The package comes with
redefined modifier–former interaction enthalpies and former–
ormer interaction parameters and may be used to predict glass
tructure from composition without any input files. In case the
lass system of interest requires other interaction parameters,
dditional parameters can easily be input in comma-separated
alues (CSV) file format. Additionally, the software has a fea-
ure for building the modifier–former interaction enthalpies from
lass structure data input, also supplied in CSV file format for easy
se in other software.

.1. Software architecture

The software consists of a main module, a data directory,
parameters directory and a submodules directory. Below is a

hort description of each vital part of the package:

• stat_mech_glass.py:
This is the main module of the software and brings the es-
sential functions. Once imported, the functions are callable
from a Python interpreter and will communicate with the
data, parameters, and module directories and scripts/files
within them.

• /Data:
This is the directory for user inputted composition–structure
data. The package can use two types of data, either binary
oxide glass data or ternary oxide glass data. When fitting the
model on composition–structure data for binary and ternary
oxide glasses, all parameters necessary for calculating the
structure of glasses with any number of components are
obtainable. The model could be fitted on multicomponent
glasses but by keeping the input data relatively simple, the
uncertainties of the obtained parameters are reduced. The
subdirectories in the /Data directories are named according
to the network formers of the data. For the binary oxide
glasses, their names are completely written out (i.e., ‘‘SiO2’’,
‘‘B2O3’’ etc.). For the ternary oxide glass data, the subdi-
rectories are named according to the main atoms of the
forming species (i.e., ‘‘SiB’’, ‘‘AlSi’’ etc.). Within the binary
oxide glass directories, structural data files are given accord-
ing to the network modifier. For example, ‘‘Na.csv’’ within
the /Data/SiO2 directory contains structural data for a Na2O-
SiO2 glass system. An additional ‘‘M_Tg.csv’’ file to provide
the thermal history is required when fitting binary oxide
glass data, where ‘‘M’’ corresponds to the network modifier.
For example, both ‘‘Na.csv’’ that contains structural data and
‘‘Na_Tg.csv’’ that contains Tg data are required within the
/Data/SiO2 directory to obtain interaction enthalpies for a
Na2O-SiO2 glass system. The binary oxide glass structure
data files must contain the following columns: Modifier mol
%, former structure 1, former structure 2,. . . former structure
N (where N is the total number of possible atomic struc-
tures). For example, the ‘‘Na.csv’’ file within the /Data/SiO2
directory must contain the following columns: Na2O %, Si4

%, Si3 %, Si2 %, Si1 %, Si0 %, where the superscript refers to the
number of bridging oxygens bonded to the central atom. The
‘‘Na_Tg.csv’’ file must contain modifier mol % and Tg values
(in K): Na2O %, Tg. Similarly, structural data for the ternary
oxide glasses are given according to the network modifier.
For example, ‘‘Na.csv’’ within the /Data/BSi directory con-
tains structural data for a Na2O-B2O3-SiO2 glass system. In
the ternary oxide glass case, Tg values must be included for
each glass composition in the ‘‘M.csv’’ data file. The ternary
oxide glass structure data files must contain the following
columns: Modifier mol %, former 1 mol %, former 2 mol %,
T , former 1 structures, former 2 structures. For example,

the ‘‘Na.csv’’ file within the /Data/BSi directory must contain
following columns: Na2O %, B2O3 %, SiO2 %, Tg, B4, Si4 %, Si3

%, Si2 %, Si1 %, Si0 %.
• /Parameters:

In this directory, interaction enthalpies are stored. The sub-
directories are named according to network forming species
in the case of binary oxide glass parameters. /Parameters/
SiO2/Na.csv contains the interaction enthalpies in the Na2O-
SiO2 glass system, etc. Additionally, mixed former interac-
tion parameters are located in the /Parameters/MF directory
and are named according to the former–former interaction.
That is, ‘‘SiB.csv’’ is the B2O3 correction in relation to the
SiO2 parameters, while ‘‘BSi.csv’’ is the SiO2 correction in
relation to the B2O3 parameters. The ‘‘BSi.csv’’ and ‘‘SiB.csv’’
parameters are inversely related.

• /stat_mech_module:
The modules for calculating the evolution of short-range
order (SRO) structural units are located in this directory. The
main module will call these scripts using the appropriate en-
thalpy parameters and step sizes. These scripts are located in
separate modules to simplify the main module and for easy
expansion of the package with additional oxide components.

2.2. Software functionality

The software has four main functions to be called by the user:

• smg_binary_par:
This function is used to establish interaction enthalpies by
fitting to binary oxide glass structural data. First, place the
structure data and the Tg data in the correct /Data subdirec-
tory as described in the Software Architecture section. Then,
execute the function with the appropriate input:

smg_binary_par(former,modifier, it = 10)

Example for the Na2O-SiO2 glass system:

smg_binary_par(‘‘Si’’, ‘‘Na’’, it = 500)

Here, ‘‘it’’ is the number of iterations used by the Basinhop-
ping [31] parameter optimization algorithm. Based on our
studies, 500 iterations are recommended to reach the global
minimum for the parameter error space, but fewer will often
suffice. The appropriate number of iterations can be ob-
tained by tracking the lowest error found by the algorithm
as a function of the iteration number.

• smg_ternary_par:
This function is used when establishing the former–former
interaction parameter in ternary modifier–former–former
oxide glass systems. The script can be used to predict struc-
tures of oxide glasses containing more than two network
formers, but when establishing the former–former relation
parameters, only ternary glasses are required. That is, the
SRO structure of a glass containing SiO2, B2O3 and P2O5 can
be predicted by combining SiO2-B2O3 and SiO2-P2O5 param-
eters. First, place the structure and Tg data in the correct
/Data subdirectory as described in the Software Architecture
section. Then, execute the function with the appropriate
input:

smg_ternary_par(formers,modifiers, it = 10)

Example for the Na2O-B2O3-SiO2 glass system:

smg_ternary_par([‘‘B’’, ‘‘Si’’], ‘‘Na’’, it = 100)

Please address the smg_binary_par section for a description
of the ‘‘it’’ variable.
g

3
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• smg_structure:
This function is used when predicting the SRO structural
distribution in any oxide glass system with known enthalpy
parameters:

smg_structure(composition, Tg)

Example for a 50Na2O-25B2O3-25SiO2 glass:

smg_structure({‘‘Na’’ : 50, ‘‘B’’ : 25, ‘‘Si’’ : 25}, 700)

Here, the composition is given using a Python dictionary and
Tg is the unit of Kelvin. The total composition does not have
to equal 100.

• smg_plot:
This function is used for simple 2D plotting of the SRO
structural distribution of any glass system with one free
variable:

smg_plot(composition, free component, Tg, save_plt = False)

For example, plotting the fraction of structural units as
a function of a composition variable for a (2x)Na2O-(50-
x)B2O3-(50-x)SiO2 glass system and saving the plot as .png:

Smg_plot({‘‘B’’ : 50, ‘‘Si’’ : 50}, ‘‘Na’’, 700, save_plt = True)

This will plot the fraction of borate and silicate structural
units as a function of the sodium content. Note that the
Tg for this function is set to be constant. If more specific
plotting is required with composition dependent Tg values,
the smg_structure function should be used to obtain the
structures for manual plotting.

.3. Common errors

Common errors when using the software are related to either
he user input files or the usage of the functions. When inputting
he files, all input must be numbers only and be corrected for unit
onversions. Here, units are in mol% for glass components and
tructural units, where the sum of all structural units should be
00, while Tg should be given in the unit of Kelvin. When calling
he functions, units should not be changed. Additional common
rrors when calling functions could include using incorrect terms
s described in Section 2.2. For example, 50 mol% Na2O should be
efined as ‘‘Na’’:50 and not ‘‘Na2O’’:50.

. Examples

example.py script is provided with one example for each of the
our main functions. ‘‘Na.csv’’ and ‘‘Na_Tg.csv’’ Na2O-SiO2 silicate
ata files are provided in the Data/SiO2 directory containing SRO
tructural and Tg data, respectively. In the example script, the
tatistical mechanics-based model is fitted to the provided data to
btain the corresponding interaction enthalpies, which are auto-
atically saved in the Parameters/SiO2 directory. When using the
mg_binary_par function, the sum of squared errors is reported
nd an illustration of the fitting result is shown (see Fig. 1). Next
n the ‘‘example.py’’ script, the Si-B interaction parameter can be
stablished using the smg_ternary_par function. Then, the struc-
ure distribution in the 25Na2O-25B2O3-25SiO2 glass composition
an be calculated using the smg_structure function. Finally, the
mg_plot function is used to plot the SRO structural distribution
n the xNa2O-25B2O3-25SiO2 glass system as a function of x (see

Fig. 1. Sin distribution in binary Na2O-SiO2 glasses as a function of sodium
modifier content as determined by using the smg_binary_par function in the
software.

4. Impact

The StatMechGlass open source software provides the abil-
ity to predict and calculate the SRO structural distribution in
multicomponent oxide glass systems by accounting for the en-
thalpic and entropic contributions to interspecies interactions
using statistical mechanics. Prediction of SRO units enables a
more efficient design of glasses with tailored properties, while
simultaneously improving our understanding of composition–
structure relations. The model has already been established and
applied successfully to predict SRO glass structure distribution in
various systems [28,29,34] and this software acts as a starting
point for other researchers to apply the statistical mechanics-
based model. The software can easily be scaled to other glass
systems and pairs very well with other models, as it can produce
structural data for desired glass compositions. Machine learning
models have been able to predict some macroscopic properties
of glasses based on composition–property training data. How-
ever, studies have found that the incorporating the missing link
(i.e., structure) in the models improves the accuracy of the pre-
dictions [35,36]. No large database of SRO structures exists for
oxide glasses, and as such, the present software can be used
to convert a composition–property dataset to a composition–
structure–property dataset. The modular design of the software
allows for easy extension with additional oxide components or
even to other material families exhibiting similar structural fea-
tures as oxide glasses. Building upon the software by including
new glass families requires that a new module for that family
should be made. In this case, the same procedure as in the
other modules can be used, but the family specific structure
units and interactions need to be adjusted. Next, the new module
in the ‘‘form_lookup’’ function should be included within the
‘‘stat_mech_glass’’ script. Moreover, the name of the family, the
paths to the data specific to the family, and the functions loaded
by the new module should be included in the same way as for
the other families already present in the ‘‘form_lookup’’ function.

5. Conclusions

We report an open source software (StatMechGlass) for calcu-
lating the fraction of short-range order structural units in oxide
glasses from composition and fictive temperature. StatMechGlass
can build network modifier–former interaction enthalpies by fit-
ting the underlying statistical mechanics model to available ex-
perimental composition–structure data for simple glass systems
ig. 2).

4
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Fig. 2. Structure species distribution in the ternary xNa2O-25B2O3-25SiO2 glass system as a function of x as determined using the smg_plot function in the software.

with few components. The parameters established in the simple
systems can then be used to calculate the structural distributions
in multicomponent glasses by accounting for the enthalpic and
entropic contributions to interspecies interactions. The modular
design allows for an easy extension to other glass systems and
we believe the results of the software have high potential for
being coupled with machine learning models to offer an improved
prediction of glass properties based on their composition and
thermal history.
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