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Figure 1: Segmenting candidate interaction regions on tabletop environments.

ABSTRACT
Easily accessible depth sensors have enabled using point-cloud
data to augment tabletop surfaces in everyday environments. How-
ever, point-cloud operations are computationally expensive and
challenging to perform in real-time, particularly when targeting em-
bedded systems without a dedicated GPU. In this paper, we propose
mitigating the high computational costs by segmenting candidate
interaction regions near real-time. We contribute an open-source
solution for variable depth cameras using CPU-based architectures.
For validation, we employ Microsoft’s Azure Kinect and report
achieved performance. Our initial findings show that our approach
takes under 35ms to segment candidate interaction regions on a
tabletop surface and reduces the data volume by up to 70%. We
conclude by contrasting the performance of our solution against a
model-fitting approach implemented by the SurfaceStreams toolkit.
Our approach outperforms the RANSAC-based strategy within the
context of our test scenario, segmenting a tabletop’s interaction
region up to 94% faster. Our results show promise for point-cloud-
based approaches, even when targeting embedded solutions with
limited resources.

CCS CONCEPTS
• Human-centered computing→ Interactive systems and tools.
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1 INTRODUCTION
Commodity depth cameras have promoted using projector-camera
systems to augment un-instrumented surfaces such as tabletops [5],
floors [18], and walls [8]. One prominent strategy is combining im-
age processing and depth perception-based techniques [9, 15, 17, 19].
While 2D techniques enable detecting interactions [2–4, 10, 16],
solely relying on 2D methods limits the solution space of inter-
active surface applications. One such limitation is the inability to
determine interactions on coplanar surfaces, e.g., object-to-object
interactions. A promising alternative to address this shortcoming is
employing 3D point-cloud representations of scenes and augment-
ing 2D techniques with 3D information. However, processing 3D
point clouds is non-trivial and computationally expensive, particu-
larly with limited hardware resources. Wilson and Benko suggested
constraining computations to an interaction volume, i.e., a 3D region
10 cm above a target tabletop surface [17]. Similarly, Kaltenbrunner
and Echtler suggested defining a fish tank; a rectangular 3D volume
extending above the table surface. [11].

Given a 3D point-cloud representation of a tabletop’s environ-
ment, segmenting the interaction volume can also be framed as a
necessary preprocessing step that mitigates high computational
costs in subsequent steps.
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Existing model fitting techniques for segmenting the interac-
tion volume favor primitive shapes, such as planes, cylinders, and
spheres. However, the shape of the target surface is unknown ahead
of time. Therefore, there is no guarantee that a model-fitting ap-
proach would generalize well for fitting arbitrary volumes. Despite
a wealth of well-understood algorithms, prevailing segmentation
techniques do not target interactive surface implementations. To
our knowledge, no study has explored an open solution for segment-
ing candidate interaction regions as a preprocessing solution, which
we consider essential to allow for near real-time applications using
limited hardware resources (e.g. embedded or small-form-factor
solutions without dedicated GPU).

In this paper, we propose mitigating high computational costs
on CPU architectures by segmenting candidate interaction regions
near real-time. We contribute an open solution for preprocessing
3D point clouds using variable depth cameras. For validation, we
employ Microsoft’s Azure Kinect and report achieved performance.
Additionally, we provide an open-source project to promote explor-
ing the proposed approach and enable community-based revision
to enable a broader range of depth cameras.

2 OUR APPROACH
We propose a pipeline with four filters: an outlier removal filter, a
coarse segmentation filter, a final segmentation filter, and a cluster-
ing filter. Assumptions that need to be considered for these pipeline
operations to be valid are as follows: (a) the depth sensor is mounted
directly above a target tabletop surface; (b) the sensing direction is
approximately perpendicular to the target tabletop; (c) the line-of-
sight to the target tabletop is unoccluded; and (d) the sensing range,
i.e., the distance between the depth sensor and the target tabletop
surface, is within the operational limits specified by the vendor.

2.1 Outlier removal
We denote an unorganized 3D point cloud using p =

{p1,p2, . . . ,pm }, pi = (xi ,yi , zi ) ∈ R
3 and the corresponding cen-

troid using p = (x ,y, z) ∈ R3. We denote the set of Euclidean
distance measures from the centroid p to all points {p1,p2, . . . ,pm }

using d = {d1,d2, . . . ,dm }, di = di (pi ,p) ∈ R
1. Linear discrimi-

nant analysis [20] and statistical analysis are used for removing
outliers. Given a raw 3D point cloud, within-point variance is eval-
uated, and “distance-outliers” [12] are identified and filtered out
using the interquartile range test for normality of distribution:
{di : di < d + 1.5σ } with mean d and the standard deviation σ .

2.2 Coarse segmentation
Given a set of denoised points p′, p′ is used to denote the cen-
troid. The set of points p′ are translated into distance vectors
r such that r = {r1, r2, . . . , rm }, ri 7→ p′i − p′ ∈ R3. Points
that exist on a tabletop’s surface are denoted using t such that
t = {t1, t2, . . . , tm }, ti = (xi ,yi , zi ) ∈ R3. The set of points
q = {q1,q2, . . . ,qm }, qi = (xi ,yi , zi ) ∈ R3 is used to denote a
coarse segment such that t ⊆ q and q ⊆ p′. Given assumptions
1 and 2, we exploit the depth sensor’s view perspective: knowl-
edge that the centroid p′ exists in the subset of points q. Coarse
segmentation, therefore, considers determining the face normal of
the tabletop and growing a region of interest that corresponds to

the interaction volume. In order to determine the face normal of
the tabletop, we frame the task as a least squares problem and em-
ploy the Eckart-Young-Mirsky matrix approximation theorem [7],
computing the singular value decomposition over p′ as A = U ΣVT

where U = (u1, . . . ,um ),V = (v1, . . . ,v3), Σ = diaд(σ1, . . . ,σ3),
m denoting the number 3D points. Given the standard form of
the equation of a plane and the normal vector of each point p′i
(i.e., ®Ni = ⟨A,B,C⟩), the left singular vectors (U ) corresponds to
the x ,y, z column vectors. The minimized error in determining
norm (i.e., the Frobenius norm n) of the tabletop’s surface is given
by σ3, which is associated with v3. Finally, the coarse segment is
determined using constraint E = arдmin

∑m
i=1 n · ri .

2.3 Final segmentation
Coarse segmentation yields the desired segment height above the
tabletop surface. However, the segment is overfitted laterally. Final
segmentation considers confining the area of the coarse segment to
that of the tabletop’s area to correctly define the desired interaction
volume. Our approach to detecting the tabletop’s boundary is two-
fold: First, we employ Silhouette edge detection. Then we assess
the discontinuity in depth measures. The normal-vector compo-
nents utilized for Silhouette edge detection (i.e., A,B,C), are those
computed during coarse segmentation. We exploit the knowledge
that face normals of the tabletop’s edge are perpendicular to the
sensor’s viewing direction. Therefore, face normals that correspond
to the tabletop boundary are characterized by a vanishing depth
component (i.e., a vanishing z normal value). Given Assumptions 1
and 2, points in proximity to the centroid are a known subset of t.
We re-frame the analysis of discontinuity in depth measures as a
rate-of-change problem. As such, we heap and sort the set of points
q in descending order of depth measures. We then compute the
maximum second derivative, which coincides with the tabletop’s
edge.

2.4 Clustering candidate interaction regions
Given the set of points corresponding to interaction volume,
the segment is clustered into candidate interaction regions us-
ing DBSCAN [6]. We optimize the original algorithm [6], using
nanoflann [1], achieving a worst-case computational complexity of
O(n2). For a single camera, a more straightforward approach purely
based on pixel neighborhood would suffice. However, we target
a more general approach to account for cases with two or more
depth cameras for larger surfaces regardless of camera-to-camera
calibration. DBSCAN requires the approximation of two hyperpa-
rameters: k and ε . We set k = 4 as suggested by Ester et al.[6], and
estimate the ε neighborhood size in an iterative pre-processing step,
which only is required once as part of the initial setup for the depth
sensor. However, if the sensor is changed or displaced significantly,
ε hyperparameter recalculation is required for optimal clustering.

3 INITIAL PERFORMANCE REPORT
A tabletop with walls and protruding structures in its vicinity was
employed for validation. The Kinect was mounted directly above
the tabletop surface, 1.42m above the tabletop, with a view direc-
tion approximately perpendicular to the target surface. The Kinect
itself was configured with a color resolution of 720p and a 2x2
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(a) Illustrative scene. (b) Segmented interaction volume. (c) Candidate interaction regions.

Figure 2: Segmenting candidate interaction regions using 3DINTACT.

binned depth resolution. A desktop computer with 16G RAM and
an AMD Ryzen 7 3700X 4GHz CPU was also employed. On aver-
age, segmenting the interaction volume took under 16 ms , with
an average data reduction of 76.67%. Clustering candidate interac-
tion regions within the segmented interaction volume took under
~19.5ms . Accordingly, graphed performance measures indicate that
the runtime for both processes increases steadily with an increase
in point cloud size (Fig. 3—a). As expected, contrasting runtimes of
clustering entire unsegmented point clouds representations against
clustering segmented interaction volumes (Fig. 3—b) indicates a
44.28% reduction in runtime penalty in favor of the segmented
point cloud. It is also necessary to note that resulting spatial den-
sity clusters from the unsegmented point cloud would still require
additional computational strategies to determine the clusters that
correspond to the actual interaction volume.

4 APPLICATION AND BENEFITS
To streamline exploring our approach, we also put forward 3DIN-
TACT: an open-source project for segmenting interaction regions
on tabletop surfaces near real-time [13]. The toolkit abstracts the
proposed pipeline operations into small modular libraries that de-
velopers can modify, adapt, and extend flexibly. The open-source
project elaborates using ready-made solutions for applications, in-
cluding finding vacant surface space for interactive projection, real-
time rendering, and object detection. To show how our approach
can be leveraged to benefit existing applications, we form a concrete
case using the SurfaceStreams toolkit [4].

SurfaceStreams is a toolkit that enables multiple display-camera
systems to record and share digital interactive media. A critical
step that the toolkit considers is segmenting the interaction volume.
For this task, it employs a RANSAC-based model-fitting strategy.
The resulting computational cost and high runtime (~295ms) ob-
ligate SurfaceStreams to run the algorithm only once at startup.
This approach leaves the problem of incidental target surface dis-
placement unaddressed. In place of the model-fitting strategy, the
toolkit could employ 3DINTACT to continuously segment the in-
teraction volume correctly. For the given tabletop environment
(Fig. 4), benchmarking our approach against the RANSAC-based
strategy yielded results that indicate our approach to be faster by
up to 94.89%; a promising initial result. The significance of seg-
menting the interaction volume near real-time is addressing the

previously mentioned problem while also mitigating subsequent
processing costs currently necessary to determine the interaction
area [4]. 3DINTACT also simplifies real-time rendering processed
3D point clouds which could be useful for applications such as
telepresence and spatial augmented reality.

5 DISCUSSION
While the contribution we put forward targets a general solution for
variable depth cameras, initial validation has been limited to using
the Kinect over a unique tabletop environment. A well-rounded
generalization of runtime and data reduction requires extending
validation to variable depth sensors and tabletop environments. Al-
though the computational complexity for each pipeline operation
is outlined, the measured runtimes are subject to the capabilities of
the specific computer in use. Future validation considers employing
variable depth sensors, tabletop environments, and computers to
realize a well-rounded generalization on performance. Given that
our approach trades off robustness offered by exhaustive redundant
operations [14] for minimal runtime penalty, future work must
aim to optimize the robustness of the proposed approach without
compromising generality or incurring additional runtime penalty.
The work presented in this paper is a building block for interpreting
how persons and objects interact within a tabletop’s environment
in real-time. Our next research step aims to employ the segmented
interaction regions for spatial awareness and enabling interaction
between mobile devices and tabletop surfaces using dynamic sur-
face projection.

6 CONCLUSION
Given an unorganized 3D point-cloud representation of a tabletop’s
environment, we have presented one possible approach to reduc-
ing high computational costs for downstream operations on CPU
architectures. The preprocessing strategy we propose considers
segmenting the interaction volume of a tabletop surface and clus-
tering the segment into candidate interaction regions. Our initial
experiments have indicated that the proposed approach requires
under ~16ms to segment the interaction volume and ~19.5ms to
cluster candidate interaction regions. These initial runtimes can
serve to benchmark comparable approaches in the future. In addi-
tion to presenting an initial performance report, we have shown
tacit benefits for an existing toolkit. Equally exciting is the prospect
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Figure 3: Initial performance report: Runtime performance over 1000 run instances. In (a), outlier removal took under 6 ms,
coarse segmentation took under 8 ms, and final segmentation took under 4 ms. In (b), clustering interaction regions without
segmenting the interaction volume first took between 34 ms and 35 ms. Clustering interaction regions after segmenting the
interaction volume took between 15.7 ms and 19.5 ms.

Figure 4: Addressing challenges using our approach. In addition to RANSAC’s high runtime penalty, fitting the dominant
plane can yield undesired results in cases where the dominant surface does not correspond to the target tabletop surface as
illustrated in (a), where the detected plane is the wall next to the tabletop. In (b), our approach correctly segments the desired
interactive region on the tabletop.

of leveraging 3D point-cloud representations for interactive surface
applications, which we look to explore in future work.
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