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Figure 1: Interactive surface prototypes.

ABSTRACT
While interactive surface prototypes may be highly application-
specific, existing prototypes hint at common, recurring design con-
siderations. Given the rapid accumulation of near-identical proto-
types, there is a need to promote design reuse. In this context, ex-
isting research prototypes motivate abstracting generic structures,
architectural views, and descriptions to inform future designs. This
paper proposes Artefact: a UML-based framework for model-driven
development of interactive surface prototypes. We define flexible
base models using existing research prototypes: initial hardware
and middleware abstractions to support developers in the early
design stages. For validation, we use the proposed framework to
capture existing research prototypes. We then conduct an inter-
view study to learn expert perceptions towards the captured model
representations. Our initial findings highlight three significant ben-
efits: (1) an accessible graphical syntax with unambiguous model
representation, (2) a system for capturing arbitrary technical spec-
ifications, and (3) flexible model representation with consistent
notation. While we can not draw any absolute conclusions, initial
results suggest benefits in the model-driven approach.
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1 INTRODUCTION
In the research space of interactive surface environments, proto-
types are a fundamental contribution. They enable exploring new
technologies and are quintessential representations of emerging de-
signs. While interactive surface prototypes are application-specific,
there is evidence of recurring design considerations [12, 32, 33, 35].
Given the near-identical implementations and their rapid accumu-
lation, there is a need to promote design reuse. In this context,
existing research prototypes enable abstracting generic structures,
architectural views, and descriptions to inform future artifact de-
signs. Da Silva and Oliveira suggested adopting UML stereotype-
based approaches to promote the reuse of artifact designs. The
authors focused on formulating generic abstractions from existing
implementations [3]. In [10], Genero et al. emphasized the role of
conceptual models in improving domain-specific applications. The
authors put forward a literature review (1999—2009), highlighting a
need to “get the model right” towards improving artifact designs. To
learn the general perception of developers toward using UML, Torre
et al. conducted a case study. Their findings highlighted widespread
adoption of UML-based object-oriented models [28], pointing to
rapidly expanding open-source repositories of UML models [7, 14].
Ho-Quang et al. suggested that the rapid adoption of UML-based
model-driven approaches to be driven by a need to promote com-
municating implementations unambiguously. In the same context,
Becker and Schäfer underlined lack of modeling support [2].
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In this paper, we propose Artefact: a UML-based framework for
model-driven development of interactive surface prototypes. We
define flexible models based on existing research prototypes: initial
hardware and middleware abstractions to support developers in
the early design stages. For validation, we express existing research
prototypes using the proposed framework. We then conduct an
interview study to learn expert perceptions towards the captured
model representations proposed model-driven approach.

2 THE ARTEFACT FRAMEWORK
The proposed framework employs UML to establish a flexible,
reusable, and expressive syntax formodeling interactive surface pro-
totypes. For flexibility, UML notation enables technology-agnostic
representation of abstract components regardless of domain. UML
also defines a formal notation for modeling constructs, promoting
consistent logical analysis as well as unambiguous model repre-
sentation. For expressiveness, UML builds on generalization hier-
archies [24], and is inherently expressive. A significant benefit to
adopting UML is its extensive documentation.

Artefact leverages metaclasses, stereotypes, profiles, and tag val-
ues; extension mechanisms that enable extending the normative
UML to describe a specific domain [24]. In a broad sense, a Model
is an abstract description of a system’s environment, i.e., the or-
ganization of its members and member associations. As such, for
a multi-layered interactive surface prototype, the hardware and
middleware systems can be described as complementary models.
Metaclasses are abstract Class representations that extend the no-
tion of a conventional UML Class. Profiles are necessary to realize
concrete instances of metaclasses using stereotypes. Profiles can
also be described as package modules containing stereotypes (i.e.,
concrete Metaclass extensions). Profiles are reusable, can extend
to other profiles, and can be factored for reuse. Within a profile, a
Stereotype can extend one or multiple metaclasses, enabling nota-
tion in place of and in addition to an extended Metaclass. Note that
stereotypes can only be used by extending a pre-defined Metaclass,
where extensions indicate that properties of a Metaclass extend
to a Stereotype. Akin to a conventional Class, a Stereotype has
structural compartments for describing attributes, members, and
tag values [24].

3 EMPIRICAL VALIDATION
Given that there is no standard method for determining the absolute
correctness of a model [24], for validation, we adopted a two-fold
approach. First, the hardware and middleware models were used
to capture prototypes presented in [8, 9, 11, 16] and [36]. The cri-
teria for the selected prototypes considered peer-reviewed studies
published from 2019 onwards, focusing on current prototypes. Ser-
vices, formats, transmission rate, vendors, models, modes, quanti-
ties, process speeds, sampling rares, and communication interfaces
we captured and expressed using tag values, directed relations, car-
dinalities, stereotype compartments. Once captured, we used the
resulting model descriptions for validation. In [27], Sargent sug-
gested evaluating the correctness of a model using “face validation”,
i.e., subjecting a model to scrutiny of experts. Following this guide-
line, we conducted an interview study to determine whether experts

considered the proposed modeling framework reasonable and ac-
ceptable. The study was also used to gain insights about perceptions
towards adopting a model-driven approach to support developing
interactive surface research prototypes. A call for participation was
sent out to research centers at KTH Royal Institute of Technology,
the University of Regensburg, and Bauhaus-Universität Weimar.
We also invited industry experts from Extend3D GmbH, Munich.
Of twelve experts, five met the requirement of at least two years
working with interactive surface environments or components asso-
ciated with interactive surface environments (e.g., projector-camera
systems). The interviews were conducted over Skype, and an on-
line form was used to collect expert perceptions. Each interview
was structured as follows: First, the research aim was discussed.
Then, we asked the experts to confirm the suitability of their expe-
rience given the context of the research. Afterward, experts were
introduced to the proposed modeling framework. Thereafter, we
introduced the formulated hardware and middleware models. After
discussing the rationale and objectives of each model, we presented
captured model representations of prototypes from [8, 9, 11, 16]
and [36]. We asked the experts to scrutinize and remark on the
efficacy of using the framework to model prototypes. Lastly, we
discussed whether a model-driven approach would benefit the re-
search community for developing prototypes in the early design
stages. Discussion with all experts was structured using question-
naires. All questions were open-ended towards deeper discussions,
as led by the experts. This approach promoted collecting experts’
perceptions and learning their opinions on setbacks, benefits, and
implications of a model-driven approach using the proposed frame-
work.

Expert #1 remarked on the rationality of the models, “The mod-
els are rational and clear.”. Expert #2 gave merit to unambiguous
technical outlines, “. . . specifications simplify prototyping.”. Ex-
pert #3 pointed to capitalizing existing prototypes, “. . . developers
can obtain structured information about existing prototypes. . . ”.
Expert #4 remarked on learnability, “. . . it took me ~5 minutes to
grasp the framework.”. Expert #5 underlined inherent fostering
of artifact replication, “. . . full specifications simplify replicating
prototypes.”.

Data collected during the interviews was coded and analyzed
by the first author. Our findings suggest that experts found the
proposed framework to be beneficial with perceptions converg-
ing toward three main benefits: (1) a generic and simple syntax
for prototyping, (2) an approach to systematically compare differ-
ent prototypes, and (3) a convenient starting point for developing
interactive surface prototypes.

4 DISCUSSION
Our validation approach suffers from the absence of a standard
methodology for evaluating the “absolute” validity of models [24,
27]. Although an argument can be made for the simple represen-
tation of structurally complex systems, the modeling framework
we propose is not comprehensive by design. Absent an extensive
set of all possible abstractions, the minimal set presented in this
paper is insufficient for non-experts who may also seek to employ
the modeling framework as a knowledge base. Face validation has
demonstrated the role of experts in the iterative development of
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Figure 2: Flexible base models for the hardware andmiddleware layers (abstracted in Tab. 1). Profiles andmetaclasses are used
to describe a domain’s environment. Properties and tagged values are utilized to convey arbitrary technical specifications.
Last, directed relationships and cardinality are used to capture dependencies. Each model is suggestible and can be modified
for variable application scenarios.

the modeling infrastructure. There is much promise in conducting
face validation on a larger scale and learning expert perceptions
towards “models as end products” [1], i.e., in the space of interactive
surface environments. Suggestions from experts point to benefit
in open discourse about design considerations for the modeling
framework. Conducting workshops with experts and developers
would be one possible approach to promote such a discussion.

5 CONCLUSION
This paper identifies the accelerated accumulation of comparable
prototypes and proposes a model-driven approach to promote de-
sign reuse. Existing prototypes have been leveraged to define a
generic UML-based framework for modeling hardware and mid-
dleware layers of interactive surface prototypes. The proposed
framework has been applied to capture existing prototypes, and
a face validation study has been conducted to learn experts’ per-
ceptions towards the captured model representations. Our initial
findings highlight three significant benefits: (1) an accessible graphi-
cal syntax with unambiguous model representation, (2) a system for
capturing arbitrary technical specifications, and (3) flexible model

representation with consistent notation. While no absolute conclu-
sions can be drawn, initial results suggest benefits in the proposed
framework.
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