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ABSTRACT An accurate estimation of the service quality that the user will experience along a route can be
extremely useful for mission-critical services. Based on availability and reliability estimations, it can provide
the network with in-advance information on the potential critical areas along the route. If such estimation
is based on empirical/statistical or site-specific estimations, both of which are typically used for cellular
network planning, it will lead to significant uncertainty in the estimation, as we demonstrate in this paper.
Instead, if estimations are based on previously collected measurements, the uncertainty can be significantly
reduced. In this paper, we analyze the achievable accuracy of such a data-driven estimation which aggregates
measurements from multiple user equipment (UEs) moving along the same route by averaging the measured
signal levels over a route segment. We evaluate the estimation error for both empirical/statistical, site-
specific and data-driven estimations for measurements collected in urban areas. Based on the demonstrated
advantage of data-driven estimation, and the relevance of including context information that we proved in a
previous paper, we discuss and analyze how the estimation error can be reduced even further by predicting
the Mean Individual Offset (MIO) that each specific UE will observe with respect to the average. To this
end, we propose and evaluate a technique for MIO correction that relies on observing a time series of signal
level samples when the UE starts a mission-critical service. By observing 100-300 m of real-time samples
along the route results show that the overall estimation error can be reduced from 5-6 dB to 4 dB using MIO
correction. Finally, using the obtained results, we illustrate how the signal level estimations can be used to
estimate the outage probability along the planned route.

INDEX TERMS RSRP estimation, data-driven estimation, LTE measurements, mission-critical communi-
cations, service availability, service reliability.

I. INTRODUCTION
5G New Radio (NR) technology is expected to provide con-
nectivity to a wide variety of services with different Quality
of Service (QoS) requirements. For some applications, Key
Performance Indicators (KPIs) such as reliability, latency,
or data rate may have stringent targets which will be chal-
lenging to meet with the existing Radio Resource Manage-
ment (RRM), QoS, and mobility management procedures in
Long Term Evolution (LTE) [1]. These procedures are mostly
reactive, i.e. actions against a drop in the signal level or the
QoS are taken after the drop has already occurred. Having
prior knowledge of the network conditions that the User
Equipment (UE) will experience can help to avoid a situation
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that can be critical for the service requirements to be met.
Therefore, recently proposed solutions have adopted predic-
tive algorithms and aim for more proactive management of
the network resources [2], [3].

The service could strongly benefit from proactive QoS
management in the so-called mission-critical communica-
tions, such as Unmanned Aerial Vehicles (UAV) or Vehicle-
To-Everything (V2X) over cellular networks. The need for
this approach is stated by the 5G Automotive Association
(5GAA) in [4] where they present the concept of predictive
QoS, which consists of in-advance notifications from the net-
work to the UE about predicted changes in the QoS. Further-
more, the Aerial Connectivity Joint Activity (ACJA) presents
a two-phase operational context for UAVs in [5]. They pro-
pose a planning phase where there is the need to determine
RF conditions for the planned path and a flight phase where
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constant monitoring of the requirements is performed and
used for predictive mechanisms based on real-time radio
KPIs. A similar framework could be expected for autonomous
driving in the V2X context.

A relevant parameter for RRM decisions, as well as for
QoS prediction, is the signal level experienced by a UE,
typically expressed using the Reference Signal Received
Power (RSRP) [6]. RSRP is a key measure used for several
procedures such as cell selection and re-selection, handover,
and power control. Therefore, the estimation of the signal
level perceived by a UE in a certain area is essential in the
process of designing a reliable system. Accurate estimations
of RSRP levels that the UE will experience along the path
could provide in-advance information on the expected service
availability and reliability conditions.

There are well-known techniques for planning and estimat-
ing the signal level using empirical or deterministic propa-
gation models. However, as it will be shown in this article,
despite the ability of these traditional techniques to character-
ize the signal level in a particular environment, their accuracy
along specific paths is too low for predictive QoS purposes.

A. CONTRIBUTIONS
In [7] a data-driven approach for serving cell signal level
estimation was presented. The approach aggregates mea-
surements from UEs in the same location and uses their
average as an estimation for that location. The technique
is shown to achieve an overall estimation error of 5-6 dB,
which can be further reduced to 4 dB if the Mean Individual
Offset (MIO) of a specific user with respect to the estimation
is corrected. The novel contributions included in this article
are the following:

• Quantify the advantage of data-driven estimations over
statistical and deterministic techniques. We use two
empirical models as well as the estimations provided by
a ray-tracing tool to show the improved performance of
our approach.

• Propose and evaluate an MIO estimation and correction
technique that shows an advantage over the use of con-
text information, using real-time measurements of the
UE moving along the path.

• Present a framework that estimates areas with a high
probability of signal and service degradation that the UE
will experience along a route.

B. RELATED WORK
Different KPIs can be used to estimate the QoS and outage
probability depending on the service requirements. However,
RSRP is one of the most critical parameters when designing
a cellular network. Furthermore, the authors in [8] show
that, unlike other KPIs such as Reference Signal Received
Quality (RSRQ) or throughput, RSRP remains stable for long
periods and can be modeled as time-invariant. This stability
motivates the choice of RSRP, as it ensures that the estimation
is valid for any time of the day.

Estimating the propagation conditions is a widely stud-
ied topic in the literature. Empirical models are a practical
approach where measurements are used to develop statistical
models of the channel and estimate path loss for a particular
type of environment. Although there are different models
for the different propagation scenarios, their accuracy in a
specific location is compromised by the generalization of
the model. For the urban environment, there are well-known
empirical path loss models such as COST-231 Walfisch-
Ikegami [9], and Okumura-Hata [10]. On the other hand,
geometric models rely on physics to compute the dominant
and secondary paths of the radio waves propagating through
a specific propagation environment. This approach is gener-
ally more accurate than the empirical techniques but more
computationally complex. A common implementation of this
estimation technique is ray-tracing [11].

The computational cost of ray-tracing, and the lack of accu-
racy of stochastic models, led to the study of new approaches.
In recent literature, there has been extensive work on sig-
nal level estimation. The authors in [12] characterize the
fluctuations of signal strength using a large measurement
dataset in roads and cities. They conclude that, for static peri-
ods, the RSRP shows fluctuations between 1.8 and 2.2 dB,
increasing up to 6 dB when considering mobility. In [13],
the authors propose a two-step algorithm (clustering and
k-nearest neighbor) to predict an RSRP map using UE mea-
surement reports and show a Mean Absolute Error (MAE)
of 3.5 dB.

More complex approaches based on Machine Learn-
ing (ML) techniques can also be found in the literature. The
work in [14] fuses crow-sourced measurements from LTE
users with other context information to build a predictive
model that provides a Root Mean Squared Error (RMSE) of
7.4 dB. In [15] the authors present a deep learning approach
where they use satellite images to extract the features of the
receiver’s surrounding environment, obtaining a prediction
RMSE of approximately 6 dB. The authors in [16] use a
feed-forward Neural Network (NN) for path loss estimation
showing an RMSE of 6.3 dB when testing the algorithm over
measurements from different scenarios. The work in [17]
uses a NN for path loss estimation at different frequencies,
resulting in a minimum observed RMSE value of 6 dB. The
authors of [18] present path loss prediction using artificial
NNs, achieving an RMSE of 7 dB.

The proposed technique in [7] is simple. It exploits UE
measurement reports for signal level estimation, providing
reasonably improved accuracy compared to the existing tra-
ditional and non-traditional techniques, especially after using
the techniques presented in this article to correct the MIO of
the UE. Unlike the literature mentioned above, the technique
in [7] is location-specific, i.e., it provides an estimation of
the signal level that the UE will experience in a particular
location, regardless of which base station (BS) the UE will
connect to along the route. The RSRP estimations are used in
this article to estimate the outage probability that a particular
mission-critical UE will experience along a specific route.
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This type of estimation is not available in the current literature
to the best of the authors’ knowledge.

The rest of the article is organized as follows. Section II
presents our vision on service availability and reliability pro-
visioning for mission-critical communications. In Section III
we explain how we have obtained the measurements for
the analysis in this article, while Section IV shows a sum-
mary of the data-driven estimation approach and results pre-
sented in [7] as well as a comparison with the traditional
signal level estimation techniques. Section V shows results
for MIO correction in the pre-service and on-service stages.
In Section VI we exemplify how these estimations can be
used to provide information on the outage probability along
the route and compare the estimation results with recorded
values. Section VII concludes the paper with a summary of
the findings.

II. SERVICE RELIABILITY PROVISIONING
The mission-critical communication services will most likely
require reliability assurance mechanisms within the cellular
network. In this context, we build upon the same architecture
as specified for QoS sustainability analytics [19], where the
Network Data Analytics Function (NWDAF) can notify an
external (third-party) application server when QoS degrades
over a path of interest.

The Radio Access Network (RAN) is composed of radio
cells in the network and handles all radio interface protocols
ensuring a minimum QoS can be delivered to the UEs. The
core network configures the RAN cells, the analytics func-
tion (e.g., NWDAF), and establishes signaling links to the
application server for the specific mission-critical service.
The application server is assumed to be able to communicate
directly with the application layer in the UE.

In our case, following the structure presented in [5],
we further consider a two-stage framework for the addressed
mission-critical communication services: a ‘‘pre-service’’
and an ‘‘on-service’’ stage, as it is shown in Fig. 1. The
following explanations can be linked to Fig. 1 through nota-
tion (#).
In the pre-service stage, the application server deter-

mines that a UE intends to move along a certain route
(e.g., UAV flight or V2X drive)(1) and provides information
about the planned movement path to the analytics function(2),
which then performs route quality estimations(3). For the
route quality estimations, the analytics function can use the
measurement-based RSRP estimations, e.g., from all other
UEs moving along the same path combined potentially with
historical measurement data. The service availability estima-
tion is obtained by considering serving cell RSRP estimations
and a certain connectivity threshold. For service reliabil-
ity, Signal-to-Interference-Ratio (SIR) estimations (assuming
interference-limited scenarios) can be obtained based on the
RSRP reports for the serving and the strongest neighboring
cells and compared with the minimum service requirements.
RSRP and SIR are used to estimate QoS metrics such as
service availability and service reliability, which help to

identify the potential critical communication areas along the
planned route of the UE. Next, the analytics function replies
to the application server with the corresponding route quality
estimations(4), and the application server communicates the
decision to the UE application e.g., permission to start the
mission along the route. Assuming the answer is positive,
the application server informs the analytics function(5) and
the UE application(6). The analytics function can optionally
trigger the procedure to perform more proactive management
of the radio resources along the planned movement path of
the UE (e.g., prepare potential serving cells)(7).

The ‘‘on-service’’ stage is triggered when the UE starts
moving along the planned path(8). Once the UE service is
started, the UE reports the measured RSRP values to the
RAN(9), which forwards them to the analytics function(10).
The analytics function uses these measurement reports to
predict the RSRP MIOs for a certain time horizon(11). This
allows a more accurate estimation of the service availability
and reliability along the route. This information would allow
the RAN to take action with regard to critical areas, e.g.,
activate multi-connectivity or apply interference mitigation
techniques before SIR becomes too low, etc. Furthermore,
the information could be forwarded to the application server,
which could potentially revisit its decision.

III. MEASUREMENT CAMPAIGN
A. MEASUREMENT SETUP
An extensive LTE measurement campaign was carried out in
order to evaluate the data-driven approach. This campaign
aimed to collect RSRP measurements recorded by multiple
UEs in a specific route.

Four commercial phones with a test firmware (QualiPoc c©)
and a professional radio network scanner (R&S TSME) [21]
were used during this measurement campaign. Using a spe-
cific firmware to measure the radio KPIs ensured that the
recorded data was consistent, calibrated, and reliable. How-
ever, it also limited the number of mobile devices and the
available vendors that could be used for the campaign. Two
Samsung Galaxy S5 (S51, S52) and two Samsung Galaxy S9
(S91, S92) measured several times the same route in multiple
positions and orientations. In this article, we used three
different setups (referred to as A, B, and C) to obtain as
much UE heterogeneity as possible in terms of experienced
signal levels along the route, i.e., to increase variation in
the aggregated measurements. Further information on the
position and orientation of each of the phones in the different
setups can be found in Table 1. The scanner antenna remained
in a car-top carrier during the whole measurement campaign,
and so did the phones for setups A and B, as shown in Fig. 2.
During the recording with setup C, the phones were located
inside the car. As it will be further explained in Section IV,
the recorded data by each of the UEs is averaged to obtain an
estimation.

The antenna patterns of the phones were measured using a
multi-probe antenna measurement system [22]. Fig. 3 shows
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FIGURE 1. Service availability/reliability provisioning scheme.

TABLE 1. Measurement setups information. The IDs can be used as a
reference to identify the phones placement in Fig. 2.

the measured antenna patterns for each of the four phones.
As it can be observed, the patterns are similar between the
same phone model but significantly different when compar-
ing the S5 and S9 models. As expected, none of them is
omnidirectional. The different shapes and orientations of the
multiple phones will introduce variation within the traces
used to build the serving cell RSRP estimation.

A reference paddle antenna was connected to the radio
network scanner andmounted in a fixed positionwith its main
lobe extending towards both sides of the car. This reference
was used to exclude the effects of the directional patterns of
the phones, allowing us to observe the influence of factors that
are inherent to the measurement process, such as changes in
the network and/or environment conditions.

In our experimental investigations the UE heterogeneity is
achieved through:

• Use of two device models with different chipsets and
device antenna implementation (type, placement on the

FIGURE 2. Phones placement and orientation in setups A&B in the car
top carrier. The numbers in this figure can be mapped to descriptions in
Table 1. The radio network scanner is also shown in the center of the car
top carrier. For setup C, the phones were located inside the car.

frame, coupling to the frame, etc.), which impact the
signal levels observed when the devices are moving.

• Position of the mobile devices with their corresponding
directional antenna patterns in different orientations out-
side the car.

• Location of the mobile devices inside the car in one of
the setups, such that the effect of the car body blocking
the received signal is also included in the aggregated
measurements.

As it is shown in [7], to evaluate the accuracy of the estima-
tion in different environments, data was collected in two sce-
narios distinguished by completely different characteristics:
rural and urban. For the rural case, the car drove 2 round-
trips along a 14.8 km stretch with each of the 3 setups,
recording RSRP measurements for the two different driving
directions. In the urban environment, the route was a 3.3 km
loop through which the car drove 3 times with each of the
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FIGURE 3. Total radiated power (TRP) in dBr (relative) of the measured
antenna patterns from the different test phones. The position of the
phones in the multi-probe antenna measurement system was along the
z-axis with their front (screen) facing against y-axis.

TABLE 2. Relevant measurement campaign information.

setups in one direction only due to traffic restrictions. Other
relevant information regarding the measurement campaign
for the corresponding scenarios can be found in Table 2. For
further details, the reader is referred to [7].

B. RSRP RECORDING
The LTE RAN typically configures the UE to report these
measurements periodic or event-triggered. The Minimization
of Drive Tests (MDT) feature first introduced in Rel-10 [20],
allows operators to configure their UEs to report measure-
ments with a specific periodicity to evaluate or improve net-
work performance. This feature could be particularly useful
for data gathering in the data-driven estimation approach.

This experiment uses the measurements recorded by the
different devices, which go through the L1 and L3 filtering
mentioned above. The measurements are obtained with a
sampling rate of 500 ms, as shown in Table 2. To evaluate the
variability of the measured RSRP, we performed a static over-
the-air test of 6 minutes duration, where all phones were con-
nected to the same serving cell and pointed towards the same
orientation. The observed signal levels for the four phones
are shown in Fig. 4. The mean µ and standard deviation σ
of the measurements collected during the static test are also
included in the figure. Different mean values are observed
between the different phones, which further confirms the
UE heterogeneity mentioned in Section III-A. It can also be
seen that all mobile devices show a standard deviation of

FIGURE 4. Static test of measurement acquisition evaluation. The phones
were in the same position and orientation, all connected to the same
serving cell.

approximately 1 dB, generally lower than the results observed
in [12] due to a stable environment during the test (no cars
or moving objects surrounding). The static test affirms that
RSRP recordings are stable and not significantly impacted
by noise in the measurement acquisition. In practice, devices
will show an offset between them due to implementation
differences. In our analysis, this is degenerate to the offsets
caused by the position and orientation of the phones/devices,
i.e., a static mean offset.

IV. DATA-DRIVEN ESTIMATION TECHNIQUE
Considering the previous work in [7], this section summarizes
how the recorded data is used to obtain the estimations. Using
Fig. 5 as a reference, we explain how the estimation is built
based on the values recorded by different UEs moving along
the same route.

The routes of the two environments are split in a distance
grid of J segments of 10m length. Thismeans that e.g., for the
urban environment, the 3.3 km are split in J = 330 segments
of 10 m. The serving cell traces recorded by each of the UEs
in every run or loop are located in the corresponding distance
grid. IfUE1 is taken as an example, it may correspond to e.g.,
the trace recorded in the urban environment by mobile device
S51 in SetupA and Loop1. Then UE2 would correspond to the
trace recorded by the same device, same setup, but Loop2.
The process would continue until the N traces are located in
the distance grid, where N results from the following:

• Urban: 4 available phone devices in 3 different setups,
where 3 loops of the route were driven. This results in
a total of N = 36 recorded serving cell traces used to
estimate the average signal level experienced by a UE
driving along that urban route.

• Rural: 4 available phone devices in 3 different con-
figurations or setups, where 4 runs (2 in each direc-
tion) of the route were driven. This results in a total of
N = 48 recorded serving cell traces used to estimate the
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FIGURE 5. Data processing scheme. The different UE traces are located in
a distance grid and averaged to obtain the estimation.

average signal level experienced by a UE driving along
that same rural route.

When a serving cell trace is located in the distance grid,
multiple recorded samples are observed within a 10 m seg-
ment. The average number of samples recorded per segment
depends on the driving speed and can be found in Table 2.
As it is shown in Fig. 5, all the samples within the same
grid segment are spatially averaged. This further averages
fast fading effects previously mentioned in Section III-B:
the selected 10 m segments fulfill the Lee criteria
(40λ = 6.6 m) [24].

Once the N traces are organized in the distance grid, they
are averaged to obtain an estimation. This is done on a
segment basis, i.e. for each segment j = 1, . . . , J the values
from all UEs i = 1, . . . ,N are averaged, providing as a
result an estimated value for each corresponding segment.
The estimated RSRP value at a segment j is defined as the
geometric average:

̂RSRPsegj =
1
N

N∑
i=1

RSRPi,segj [dBm] (1)

where N takes the values defined above and RSRPi,segj is the
RSRP value recorded by UEi in segment j.
The RSRP measurements recorded by the UEs in a certain

segment will be aggregated regardless of the cell that they
are connected to. The main motivation behind this is that we
aim to estimate the average signal level that any UE in that
location would experience.

When aggregating measurements from different serving
cells, it could be expected that UE-BS distance impacts the
estimation error. The estimation error, shown in Fig. 6 and
defined in Eq. (2), does not seem to be impacted by the
UE-BS distance. This can be partially due to the cell selec-
tion and re-selection processes, which tend to minimize this

FIGURE 6. Estimation error versus UE-BS distance for the different
scenarios: (a) rural and (b) urban.

effect. There is a high spread of the estimation error values
regardless of the distance in both rural and urban scenarios.

In practice, the proposed data-driven approach requires
measurement gathering from different users, which could
be achieved through MDT. The accuracy of the estimations
would be subject to factors such as Global Positioning Sys-
tem (GPS) inaccuracy, environment changes, or measurement
system differences. While GPS inaccuracies are reduced
by averaging every 10 m, but not otherwise considered in
our analysis, measurement system differences are consid-
ered by including UE heterogeneity. Similarly, we include
the unpredictable environment changes in the estimations
by performing several different measurement rounds during
the campaign. Additionally, keeping updated estimations and
error distributions will require large database storage.

A. ESTIMATION ACCURACY AND PERFORMANCE
COMPARISON
To evaluate the performance of the RSRP estimation algo-
rithm, we compare the estimations to those obtained using
empirical models and ray-tracing. Only urban environment
data is used for the comparison due to the unavailability of
3D models and terrain elevation maps in the ray-tracing tool
for the rural area.

As the performance metric, we use the estimation error
calculated for each of the UEs and segments independently.
For each UEi (i = 1, . . . ,N ) the estimation error 1UEi,segj

is
calculated segment by segment as the difference between the
recordedRSRPUEi,segj value and the estimated ̂RSRPsegj value:

1UEi,segj
= RSRPUEi,segj −

̂RSRPsegj [dB] (2)

As was shown in [7], the distribution of the estimation
error is uni-modal and can be well approximated with a
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TABLE 3. Data-driven estimation errors based on UEs (before and after
MIO correction) and scanner data.

Gaussian N (0, σ ). This suggests that the results obtained
would remain unchanged regardless of the metric used for
aggregation (mean, mode or median). Each UE presents an
MIO with respect to the overall estimation, which, if cor-
rected, can reduce the estimation error. Table 3 shows the
overall estimation error with and without MIO correction for
both urban and rural environments. Later in Section V-B we
will introduce a technique for MIO correction to actually
achieve the approximately 4 dB estimation error shown for
MIO correction in Table 3.

For the comparison with empirical models and ray-tracing,
Fig. 7 shows the recorded RSRP values versus distance to
the serving BS together with the estimations based on these
traditional approaches. The model parameters have been
calibrated using measurement data or environment-specific
parameters in each case. The data-driven estimations are not
shown since they are cell agnostic and cannot be referenced
to a specific site.

Table 4 shows the estimation error, as per Eq. (2), for all
the studied techniques. In the case of the empirical and ray-
tracing estimations, the estimated value is obtained for the
corresponding Physical Cell ID (PCI) recorded by the UE
during the measurement campaign, sample by sample. These
estimations are then averaged on a segment basis to obtain a
serving RSRP estimation at each segment. Further details on
the respective approaches are:

1) EMPIRICAL MODELS
Two empirical models have been used for comparison:
Okumura-Hata and 3GPPTR 38.901 for UrbanMacro (UMa)
environments. The operator provided network information
(BS location, BS height, and BS radiated power), which was
used to calculate the corresponding UE-BS distance for the
specific serving cell and other relevant parameters for these
empirical models. The UE assumed height is 1.5 m, and the
center frequency is 1.8 GHz.

The Okumura-Hata Model [10] was developed using the
results of very extensive measurements performed in dif-
ferent environments (urban and suburban). It is typically
used by operators, which apply the necessary corrections
to fine-tune the model to the specific physical environment
under evaluation.

The 3GPP TR 38.901 standardized path loss model for
the 3D Urban Macro (UMa) Line-Of-Sight (LOS) and Non-
Line-of-Sight (NLOS) scenarios [25] is also used for compar-
ison. The visibility conditions (LOS/NLOS) between the UE
and the BS have been determined using the ray-tracing tool,
and the corresponding equation from [25] is applied for each
case.

FIGURE 7. Comparison of measurement data with traditional estimation
approaches in the urban scenario. LOS/NLOS conditions are considered.

TABLE 4. Comparison of data-driven approach estimation error with
traditional techniques using urban scenario data.

By observing Fig. 7 it can be seen that for a particular
UE-BS distance the spread of the recorded measurements is
high. The value estimated by the empirical models, which
depends on the distance to the BS and visibility conditions,
may not represent the signal level expected in a particular
location. This is consistent with what is observed in Table 4,
where the highest estimation errors are observed for the two
empirical models. Both show estimation errors 4-6 dB higher
than the observed when using the data-driven approach.

2) RAY-TRACING
A ray-tracing tool is used to obtain predictions for compari-
son with the data-driven approach [26]. The Dominant Path
Model (DPM) is selected to compute the estimations, which
calculates the dominant path between the transmitter and the
receiver [27]. The 3D maps used in the tool have a 2.5 m
spatial resolution. The predictions are further averaged on
a 10 m radius in order to compare them with the other two
approaches properly. The same is applied for the LOS/NLOS
predictions, which are estimated every 2.5 m, and settled
using a majority vote of LOS/NLOS conditions within a 10 m
radius.

As observed in Fig. 7, ray-tracing shows more accurate
estimations than the empirical models since it accounts for
the specific physical environment surrounding the UE and not
only the average area characteristics. This is also reflected in
Table 4, where an 7.6 dB estimation error is observed. While
this value is 2-4 dB lower than the one observed with the
empirical techniques, it is still high.
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The studied traditional techniques show worse perfor-
mance than the data-driven approach. The data-driven esti-
mation is based on real location-specific data and, therefore,
provides a more accurate estimation than the traditional tech-
niques of the signal level that the UE will perceive when
driving along a route. However, a single estimated value is
not representative enough, and each UEwill observe a certain
MIO with respect to the overall mean estimation. In the
following sections, we study how the MIO can be predicted,
corrected, and used to improve the accuracy of the estimation.

V. MEAN INDIVIDUAL OFFSET CORRECTION
A. PRE-SERVICE
Correcting the MIO in the pre-service stage would allow
the network to perform more accurate estimations on the
potential critical areas before the UE starts moving along
the route. For that, the network should be able to predict the
UE’s MIO using relevant context information such as UE’s
placement (inside/outside the car), UE’s orientation, or UE’s
pattern type, assuming these can be available.

1) UE ANTENNA ORIENTATION
TheMIO for each UE in the rural (a) and urban environments
(b) is shown in Fig. 8. As it can be observed, the offset
remains constant between different runs or loops for the
same phone-setup combination where the device is oriented
towards the same direction. However, different offsets are
observed between devices that are pointing in different direc-
tions. This illustrates the relevance of UE orientation to deter-
mine the MIO. A clear distinction can also be made between
setups A-B and setup C. The phones were located inside the
car in the latter, and the penetration loss due to the vehicle’s
structure caused the signal level to be much lower (7 dB
on average) than the one experienced by the phones located
in the car top carrier. This resulted in negative MIOs with
respect to the overall estimation for all phones located inside
the car. Therefore, it is reasonable to assume that another
relevant factor impacting the MIO of a UE is its placement
(inside/outside) in the car. However, that information would
only allow identifying the sign of the MIO, but not the value
of it, which seems to depend mainly on the UE orientation
and driving direction (as previously shown in [7]).

2) UE ANTENNA PATTERN EFFECTS COMPENSATION
The consistency of the offset values observed among loops of
each UE Fig. 8, as well as the different offsets for the multiple
UEs, suggest that the orientation of the UE is potentially the
main factor impacting the MIO. The signal level reaching
the receiver will also be subjected to the device’s effec-
tive antenna pattern, which is directional for all test phones
(see Fig. 3).
Therefore, compensation for the antenna pattern effect

could reduce the estimation error. The approach has been
tested for the rural scenario data: the reduced interactions
of the received signal with surrounding objects and the

FIGURE 8. MIO with respect to the route estimation. (a) Results for each
of the 48 UE traces in the rural environment and (b) for the 36 UE traces
in the urban environment.

TABLE 5. Effective antenna pattern compensation effects on overall
estimation error in the rural scenario.

dominance of LOS conditions simplifies the antenna pattern
compensation in that environment. The angle of incidence α
of the transmitted signal (from the BS) in the UE antenna
pattern is calculated using the bearing angle of the serving
BS (as recorded by the UE) with respect to the car direction.
To account for possible inaccuracies in the calculation of α,
the compensation is based on the average relative power
shown in Fig. 3 within a ±15◦ range in both azimuth and
elevation directions.

Results in Table 5 show the overall estimation error 1
for the rural scenario when using setups A and B, before
and after pattern compensation. As it can be observed, the
antenna pattern compensation has a low impact, resulting in
a reduction of 0.4 dB. Setup C is omitted due to the challenge
of accounting for the vehicle blockage.

The antenna patterns were measured in an anechoic cham-
ber, where the effects of the car structure or the car top
carrier are not considered. Furthermore, the UE-BS distance
is considerably high for the rural case, and possible signal
interactions with the buildings in the path or ground reflec-
tions cannot be accounted for. Although deterministic com-
pensation seems intractable, the stability of the estimation
error between UEs oriented towards the same direction sug-
gests that the antenna pattern effect is statistically included
in the estimation error distribution. In the following section,
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FIGURE 9. MIO correction procedure in the on-service stage. The moving
UE estimation error samples are compared to the error distributions
stored in the database and provide an estimation of the MIO.

we study an approach that exploits the stability of the esti-
mation error of the UE traces recorded by devices oriented
towards the same direction.

B. ON-SERVICE
The results in the previous section show that fully correcting
the MIO in the pre-service stage is complex. In the following,
we present how we use the estimation error characteristics
and the observed error based on recorded RSRP during the
on-service stage to correct the MIO. The main idea of this
approach is to use the most recent information recorded by
the UE that is moving along a particular route to predict the
MIO that it will observe for the rest of the route.

We use the so-called z-test [28], which is a parametric
hypothesis test that can be used to determine whether a set of
samples belongs to a certain distribution. The test calculates
the probability of observing as extreme a test result as the
one observed (p-value), assuming that the null hypothesis is
correct.

As shown in Fig. 9 (using notation (#)) this approach
requires to maintain a database where estimation error dis-
tributions from previous UEs are stored (1). The distributions
from eachUE could be approximated by a normal distribution
with the corresponding mean and standard deviation. Once
the UE starts to move along the route, after a certain number
of observed error samples (2), these are checked against the
available distributions in the database. The z-test will provide
the mean of the best-fit distribution (4) by accepting the
distribution with the highest p-value.

To investigate this approach, we store N − 0.25 ∗ N dis-
tributions in the estimation error database and use the 25 %
of the UE traces (i.e., 9 UE traces in the urban environment)
for testing the algorithm. A set of 9 random traces is left out
in every iteration until all the UEs have been tested. Fig. 10

FIGURE 10. Necessary MIO corrections to improve estimation accuracy
(light blue) and estimated on-service MIO corrections for all test UE
traces in urban scenario (dark blue).

TABLE 6. Z-test results comparison with best performance observed
in [7].

shows the results obtained for urban scenario. The MIOs of
the N = 36 UEs recorded in the urban environment are
shown, as well as the predicted values using the z-test when
observing 30 samples (equivalent to an observation distance
of dobs= 300m). TheMIO values can generally be accurately
predicted. Table 6 shows a summary of the results obtained
for both rural and urban scenarios. The table shows the over-
all results obtained when the MIO is known and corrected
(Target 1 [dB]) and the results obtained when predicting
and correcting the MIO using the z-test. The overall results
when using the z-test for MIO estimation are reasonably
close (maximum 0.2 dB difference) to the values using known
offsets. Therefore, the MIO can be corrected using this tech-
nique as long as UEs with similar conditions/orientation have
previously passed through the same route.

Table 6 also includes the required observation distance
dobs. In the urban environment a dobs of 300 m is required,
whereas for the rural scenario a dobs of 100 m is sufficient.
In the urban environment, an observation distance of 100 m
reduces the overall estimation error from 4.9 dB to 4.1 dB,
but a longer observation distance further decreases that value
down to 3.7 dB. In the rural case, the error does not decrease
regardless of the observation distance. This is most likely due
to the stronger signal variations and higher dynamics that
were observed in the rural scenario compared to the urban
case.

VI. OUTAGE PROBABILITY ESTIMATION
As mentioned in Section II, signal level estimations can be
used by the network to obtain information on the potential
critical areas along the route, which are defined in terms
of expected service availability and reliability. We further
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FIGURE 11. Service availability estimation example with rural
environment data. (a) Actual RSRP values recorded by all 48 UEs used to
build the estimation and (b) P(RSRP > −115 dBm) along the route,
calculated based on the serving cell RSRP estimation.

define these QoS metrics and exemplify their use in the
following. For a real reference, we focus on the specifications
of the V2X services. Although the open literature claims
that a requirement of 95 % reliability is enough for a safe
communication [29], most of the use cases considered in the
V2X 3GPP specifications [30] require a 99.99 % reliability,
and that is the requirement we use for evaluation.

A. SERVICE AVAILABILITY
Service availability estimations are obtained by calculating
the probability Pout,SA that RSRP will drop below a certain
threshold γRSRP along the route. For each segment, we pro-
vide an estimate of the average RSRP, R̂SRP. We know from
Eq. (2) that the difference to the actual RSRP value, RSRP−

R̂SRP, is Gaussian distributed with standard deviation sigma.
Hence assuming, or conditioned on, R̂SRP being the average
RSRP, we calculate the outage probability as the one-sided
p-value of the Gaussian distribution at the threshold value,
i.e.:

Pout,SA = P(RSRP < γRSRP| SRSRP = R̂SRP)

= 8(
γRSRP − R̂SRP

σ
) (3)

where 8 is the cumulative distribution function of the stan-
dard normal distribution.

In Fig. 11 we show the availability estimation results along
the rural route for a γRSRP = −115 dBm. This threshold
is selected based on the observed intra-frequency mobility
thresholds configured by the operator (which range between
−115 dBm and −100 dBm in the 1800 MHz band). Fig. 11a

shows the 48 recorded serving RSRP traces, while Fig. 11b
presents the estimated availability for that route, where
P(RSRP > −115 dBm), i.e. 1 − P(RSRP < −115 dBm)
is shown such that a 99.99 % threshold is used as a reference
to declare a critical area for the selected use case. As it can be
seen, the estimated potential critical areas visuallymatchwith
the ones actually experienced by the UEs. Table 7 shows a
summary of the service availability estimations performance.
Service availability is evaluated for each segment in the dis-
tance grid. For the RSRP traces recorded by the different
UEs, outage is declared in a grid segment if the recorded
RSRP value in that segment is below γRSRP. For the estimated
service availability, outage is declared in a grid segment if
P(RSRP > γRSRP) < 99.99 % in that segment. Performance
of service availability estimations is evaluated using the aver-
age over all UE traces of the following metrics [31]:
• True Positive Rate (TPR) or Hit Rate: Percentage of
correctly estimated service availability outage segments
in the grid. It is calculated as the number of correctly
estimated outage segments - True Positives (TP) - over
the number of actual outage segments (P).

TPR =
TP
P

[%] (4)

• True Negative Rate (TNR) or Specificity: Percentage
of correctly estimated service availability ‘‘safe’’ (non-
outage) segments in the grid. It is calculated as the num-
ber of correctly estimated non-outage segments - True
Negatives (TN) - over the number of actual non-outage
segments (N).

TNR =
TN
N

[%] (5)

• False Negative Rate (FNR) or Miss Rate: Complemen-
tary metric for TPR. Represents the number of missed
outage areas.

FNR = 1− TPR [%] (6)

• False Positive Rate (FPR) or Fall-out: The complemen-
tary metric for TNR. Represents the number of ‘‘false
alarms,’’ i.e., the percentage of cases where a grid seg-
ment was incorrectly estimated as outage area. False
positives would lead to a situation where countermea-
sures are initiated to solve a critical situation that does
not exist.

FPR = 1− TNR [%] (7)

Other metrics that are typically used to evaluate classifi-
cation techniques were not included as they were considered
to be misleading in the purpose of this context. Accuracy is
typically used to summarize the performance of the estima-
tions, as it represents the rate of correct estimations (positive
and negative). However, for the case under evaluation, where
the number of actual positives is much lower than the number
of actual negatives (unbalanced dataset), accuracy presented
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TABLE 7. Average performance metrics for RSRP-based service availability estimations.

very high values (above 90 % for the data-driven approach)
and was considered to be non-representative of the estimation
performance. F1-Score, on the other hand, is typically used
for unbalanced datasets and is calculated such that the cost
of false positives and false negatives is equally significant
for performance evaluation [32]. This metric presented low
values (below 65 %) due to the low number of critical areas
for some of the UEs.

Results in Table 7 show the mean value of the metrics
in Eqs. (4-7) over all UEs. For rural environments, the
pre-service stage estimations present high TPR and TNR,
indicating that most outage and non-outage areas are cor-
rectly estimated. A trade-off is observed in the on-service
stage, where theMIO corrections cause a decrease in the TPR
and an increase in the TNR.

Another example of service availability estimation is
shown in Fig. 12, where urban data is used to compare
the estimation of critical areas when using the data-driven
approach in comparison to the traditional estimation tech-
niques. To show the accuracy of the estimations, the avail-
ability threshold is raised in this scenario to −100 dBm as
higher reliability should be considered in higher population
density areas. As shown in Fig. 12b and in Table 7, the higher
the signal level estimation error, the lower is the accuracy of
the estimated critical areas. Using the Okumura-Hata model
RSRP estimations results in a very inaccurate estimation of
the potential critical areas. Since the full route is declared crit-
ical the TPR is 100 %. However, it also presents a very high
FPR of 96 %. The 3GPP model estimations show lower FPR
than the Okumura-Hata, but still considerably high (38 %).
Similar results are observed for the ray-tracing estimations
that show a TPR of 63% and an FPR of 31%. The data-driven
approach provides an average TPR of 94 % in the pre-service
stage while maintaining a relatively low FPR (16 %). This
shows how the data-driven signal level estimation technique
provides better results than traditional techniques when the
network aims to obtain in-advance information about the
expected service availability along the path.

To further show the benefits of using the data-driven esti-
mations against other traditional techniques, we show in

FIGURE 12. Service availability estimation example with urban
environment data. (a) Actual RSRP values recorded by all 36 UE traces
used to build the estimation and (b) P(RSRP > −100 dBm) obtained
when using the estimations provided by the different studied RSRP
estimation approaches.

Table 8 the reliability margin (RM) that needs to be con-
sidered to guarantee a certain reliability requirement when
using the different estimation techniques. The values in the
table show that the reliability margin highly decreases when
using the data-driven approach. For a 99.99 % reliability
requirement, the Okumura-Hata estimations show an RM of
almost 28 dB, whereas the data-driven approach reduces the
margin to 8 dB in the on-service stage. Higher reliability
requirements are not considered in the table as the RM values
would be on the limit of what could be practically useful for
the purpose of the estimations considered in this article.

In Fig. 13we show the effect thatMIO correction has on the
estimation of critical areas in the on-service stage. Three UEs
were used as an example, one from each of the setups. For
each UE, the z-test was used to obtain the correspondingMIO
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TABLE 8. Reliability margin (RM) for different reliability requirements
(with γRSRP = −100 dBm).

FIGURE 13. Service availability estimation example with urban
environment data. (a) Actual RSRP values recorded by 3 example UEs
(from setups A, B, C) and (b) P(RSRP > −100 dBm) along the route, for
the pre-service estimation of all UEs in that path and the on-service
estimations for the individual example UEs.

estimation. After an observation distance of dobs = 300 m,
the serving RSRP estimation was corrected according to the
estimated MIO, and the probability of RSRP being below
−100 dBm was recalculated. In Fig. 13a the actual serving
RSRP traces recorded by each of the three UEs are shown.
Fig. 13b shows P(RSRP > −100 dBm) in the pre-service
stage (valid for any UE planning to move through the same
path) and the corrected on-service probability for each of
the 3 example UEs (UE-specific estimation). The setup A
UE, with positive MIO with respect to the overall estimation,
has lower probabilities of dropping below the threshold than
initially estimated. There are no critical areas estimated after
MIO correction, which matches with the recorded values for
that UE (never below −100 dBm). For Setup C UE, with
generally lower signal levels due to vehicle blockage, the esti-
mated probabilities of the serving signal level dropping below
the threshold are higher than estimated in the pre-service
stage, representing well the actual signal levels experienced
by that user. The results for on-service stage performance
in the urban environment in Table 7 show that on average,
TPR increases to 99 % with respect to 94 % obtained in the

pre-service stage, and TNR increases up to 89 % compared
to the previous 84 %.

B. SERVICE RELIABILITY
To estimate service reliability we first estimate SIR:

ŜIR =
Ŝ

Î
=

R̂SRPSC∑NC
j=1 R̂SRPj · δ

[dB] (8)

R̂SRPSC is the RSRP estimation of the serving cell, R̂SRPj
is the estimation of the j = 1, . . . ,NC neighboring cells and
δ is a model for the impact of the traffic load. A maximum
of NC = 3 strongest neighbors, when available, are used to
calculate SIR.

As in Eq. (2), since RSRP − R̂SRP is Gaussian with zero
mean we can view the linear value of the estimator R̂SRP as
a log-normal random variable whose logarithmic mean and
standard deviation is respectively the prediction R̂SRP and σ .
This is true for both serving and interfering signals. The
interference sum will be approximately log-normal, statistics
of which can be calculated numerically by the Schwarz&Yeh
algorithm [33]. The same algorithm, with some extensions for
correlated signals, can be used to calculate the logarithmic
mean and standard of the SIR [34] which is also approx-
imately log-normal. Assuming a correlation coefficient of
0.5 [35] between signals of the serving and the interfer-
ing cells we use this framework to evaluate the probability
P(SIR < γSIR).

Fig. 14b shows the reliability estimation results when con-
sidering low, medium and high load (10 %, 30 % and 60 %,
respectively) for γSIR=−3 dB. In Fig. 14c a colormap is used
to plot the results for medium load with that same threshold in
the urban scenario. The corresponding performance metrics
in Table 9 show a TPR of 88 % and a FPR of 41 %, with a
mean F1-score of 16 %.With the on-service stage corrections
using MIO correction for the serving cell, results show the
same trade-off TPR/TNR above-mentioned. For the rural
environment, the values follow the same trend.

The presented results are sensitive to different network
traffic load, critical thresholds, and correlation coefficients
between the serving cell and the interfering neighbors. For
most cases, MIO correction reduces TPR and increases TNR,
indicating a trade-off between missing outage areas and ini-
tiating actions against non-existent ones. Failing to estimate
an outage area poses a risk to the service reliability, which
is crucial for mission-critical services. On the other hand,
estimating non-existent critical areas may lead to a misuse
of network resources. On that basis, MIO correction in the
on-service stage is beneficial for outage areas estimation.
However, initiating MIO correction in the on-service stage
may depend on the service priorities, i.e. prioritization of
outage area detection or more efficient resource utilization.
Furthermore, service reliability could also benefit from the
on-service MIO corrections due to the availability of actual
load values, which could be adjusted individually for each
corresponding neighbor.
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TABLE 9. Average performance metrics for SIR-based service reliability estimations (δ = 30 %).

FIGURE 14. Service reliability estimation example with urban
environment data. (a) SIR values calculated using recorded RSRP values
from serving and neighboring cells for all of the 24 UEs used and
assuming average medium load, (b) estimated probability P(SIR > −3 dB)
for low, medium and high load and (c) same results at medium load in a
color map.

VII. CONCLUSION
In this article, we use experimental data recorded during an
extensive LTE measurement campaign in rural and urban
environments to show that the signal level that a UE will
experience along a route can be estimated by aggregating
measurements recorded by UEs that have previously passed
through that same route.

First, we show how this approach provides an estimation
error of 5-6 dB, improving the estimation error obtained using
traditional estimation techniques such as empirical models or
ray-tracing by 3-6 dB. We show how identifying the MIO
of each UE with respect to the overall estimation, using a
technique that exploits the estimation error experienced by
previous UEs, further reduces the overall RSRP estimation
error to approximately 4 dB.

Lastly, we use the signal level estimations to calculate
service outage probability in terms of availability (RSRP-
based) and reliability (SIR-based). The data-driven approach
shows improved accuracy in outage areas estimation with
respect to traditional techniques, detecting a minimum of

70 % of the outage areas with less than 30 % of false alarms.
This approach allows providing the network with in-advance
information on the expected service conditions in a specific
routewhere theUE is planning tomove and can be used by the
network to make a decision of whether it is safe for the UE to
start the service or it should re-plan the route when possible.
Furthermore, we show how using context information during
the service can improve the overall accuracy of the service
availability and reliability estimations, which the network
may use to take in-advance countermeasures for upcoming
signal and QoS drops, respectively.
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