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Preventing Sensitive Information Leakage from
Mobile Sensor Signals via Integrative

Transformation
Dalin Zhang Member, IEEE, Lina Yao Member, IEEE, Kaixuan Chen Member, IEEE,

Zheng Yang Senior Member, IEEE, Xin Gao Member, IEEE and Yunhao Liu Fellow, IEEE

Abstract—Ubiquitous mobile sensors on human activity recognition pose the threat of leaking personal information that is implicitly
contained within the time-series sensor signals and can be extracted by attackers. Existing protective methods only support specific
sensitive attributes and require massive relevant sensitive ground truth for training, which is unfavourable to users. To fill this gap, we
propose a novel data transformation framework for prohibiting the leakage of sensitive information from sensor data. The proposed
framework transforms raw sensor data into a new format, where the sensitive information is hidden and the desired information (e.g.,
human activities) is retained. Training can be conducted without using any personal information as ground truth. Meanwhile, multiple
attributes of sensitive information (e.g., age, gender) can be collectively hidden through a one-time transformation. The experimental
results on two multimodal sensor-based human activity datasets manifest the feasibility of the presented framework in hiding users’
sensitive information (inference MAE increases ∼ 2 times and inference accuracy degrades ∼ 50%) without degrading the usability of
the data for activity recognition (only ∼2% accuracy degradation).

Index Terms—mobile sensors, human activity recognition, sensitive information protection, neural network
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1 INTRODUCTION

H UMAN activity recognition (HAR) plays an important role in
various attractive human-in-the-loop applications especially

in the smart living scenario [1], [2]. A typical case is the smart
healthcare, where wearable sensors are employed to capture the
motions of users and a healthcare provider can use the data to
support exercise and medical suggestions or emergency rescues.
Our lives become safer and more convenient with the assist
of these personalized and ubiquitous services. Nevertheless, the
concern of privacy leakage of this kind of personal data has
drawn an increasing attention in recent years [3]. Although the
sensors are originally used to capture the movement of users,
personal traits can also be held within the continuous signals
unintentionally.

Consider a scenario where an elderly person lives alone that
constant monitoring his/her health situation is required. Smart
wearable devices or smartphones with multiple built-in sensors
(e.g., accelerometer, gyroscope, and magnetometer) are usually
used for the monitoring purpose. The collected data is contin-
uously transmitted to the healthcare institute for analysis. An
essential task of such analysis is to recognize the activities of
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the user, such as walking, jogging, and running. However, people
perform activities in different ways because of the divergence
of personal facts like age, gender, and weight. For example, a
person with high body weight would walk more slowly than a
person with lower body weight. Therefore, the person’s weight
information could be inferred through interpreting the sensor
signals. Other personal information like age, gender, and height
can also be figured out in the similar way [3]–[5]. This kind of
information leakage is unacceptable so that the sensor data cannot
be directly sent out without any privacy destruction procedure. On
the contrary, the inference about human activities such as walking,
jogging, and running is the purpose of collecting the sensor data
and extremely critical for the downstream applications especially
when for the healthcare treatment. As a result, the sensor data
should not be modified to avoid degrading the activity recognition
performance. In this context, we draw a conundrum, where the
sensor data should not be released unchangeably to avoid privacy
leakage whereas modification should also be avoided for keeping
the recognition precision.

Regarding this contradiction, we report a data transformation
approach that manages to separate the two sorts of information
contained within the same sensor signals and then hide the user
sensitive information and maintain the activity information at
the same time. Figure 1 depicts the general data transformation
framework. Ideally, sensitive information is held while the desired
activity information can pass through during the transformation
process. However, as all information (i.e., sensitive and desired) is
enclosed in the same raw signals, it is impractical to hide sensitive
information yet to keep all the other information unchanged at the
same time. In light of this fact, we make an assumption that the
specific task, human activity recognition, is the only desired task
that needs to be kept unaffected in this study. Nevertheless, our
reported framework is adaptable to any desired tasks or a multi-
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Figure 1. Data transformation framework for preventing sensitive infor-
mation leakage. The transformation module modifies the raw sensor
data to hide user sensitive information but to keep the desired infor-
mation unaffected, and then sends the transformed data to a service
provider.

task scenario, where more than one desired information needs to
be untouched.

There are some factors that make the task of hiding sensitive
information challenging. First, as mentioned above, the sensitive
information and desired information are both from the same chunk
of data that it is painful to modify one in isolation from the
other [6]. Moreover, the desired information is the basis to the
subsequent downstream applications, such as users’ daily activities
(desired information from mobile sensor signals) are the basis to
their health monitoring (an application). Thus, the impact on the
desired information should be minimized. Second, the inherent
noises encompassed in the sensor signals deteriorate the data
quality severely [7]. In addition, different sensing modes embed
information in different ways that developing a unified sensitive
information protection approach for all modes is full of challenges,
especially for traditional feature engineering. Existing solutions
can be divided into two main streams: (1) ceasing sensors based
on pre-defined conditions or user specifications, and (2) modifying
raw data to hide sensitive information before being sent out to a
service provider. The first solution is non-intelligent that are not
only damaging to the downstream applications yet not able to
fully prevent information leakage at all time [8], [9]. In contrast,
the latter solution is a more practical and promising approach that
engages boosting attentions [3], [10], [11].

As illustrated in Figure 1, the main idea of the data trans-
formation solution is to seek a data conversion algorithm that
makes a better trade-off between hiding the sensitive information
and retaining the desired information. Previous works have two
principle drawbacks in this context. First, most current approaches
can hide only one specific sensitive information (e.g., such as
gender [11] or user ID [3]) at one transformation process. This
kind of methods would fail in most practical scenarios where it is
required to hide multiple sorts of sensitive information. Second,
user sensitive information is usually a necessity to train the data
transformation network [3], [10], [11]. This necessity would leak
the sensitive information to a second party directly, and thus
introduce a new leaking risk, which is more severe than only
revealing raw data.

Targeting the above defects, this paper presents a unified
data transformation framework that can hide multiple kinds of
sensitive information at a one-time transformation and does not
require users to provide any private information for building the
framework. The main idea is originated from the image style
transformation research [12] where an image contains two aspects
of information: style and content. The style of an image tells
how it is viewed and the content of an image represents what it

shows. Inspired by this observation, we argue that a human activity
also has such two kinds of abstract information: style (how) and
content (what). The “style” of an activity tells how the activity
is performed. For example, a walking activity can be in different
styles, like limping, wobbly walking, and slow stride. The “con-
tent”, on the other hand, tells what activity a person is performing.
In this context, a user’s private information, like gender or weight,
influences the activity style. As an illustration, a person with
higher body weight commonly moves more slowly than a person
with low body weight. Besides, the desired information typically
requires what a user is doing so can be accounted for “content”
information. In light of this intuition, we propose to transform
raw sensor data into a new representation that does not have a
specific “style” (sensitive information) like random noise and has a
“content” (desired information) as raw data. The transformed data
should satisfy such conditions: when an adversary tries to infer
user sensitive information from the transformed data, the results
should be as unreliable as drawn from random noise; whereas a
service provider can make inferences about desired information
from the transformed data with as high accuracy as from the
raw data. Concretely, we design a fully convolutional TransNet
that is responsible to carry out the data transformation process
and an auxiliary LossNet for defining the training targets of the
TransNet. The LossNet determines a style loss and a content
loss that try to minimize the differences between the transformed
data and random noise as well as raw data, respectively. During
the training process, none of user sensitive information is required
and only sensor data is presented. Experiments are conducted on
two multimodal activity recognition datasets to hide five types
of sensitive information (i.e., age, gender, height, weight, and
ID). The empirical validation results manifest that the reported
approach can successfully hide multiple sensitive information
simultaneously at a one-time transformation while supporting a
high preservation level of desired information with regard to
activity recognition accuracy. This paper extends the preliminary
report [13] from four aspects. First, we present new experiments
to further study the impact of each proposed loss function and to
visualize the transformation process; we also elaborate experimen-
tal results and more implementation details in the Experiment and
Results section; in addition, we use MAE instead of MSE to better
illustrate the worst-case scenario performance. Second, a new
Discussion section is added to explore more details on research
significance and limitations. Moreover, we extend the Introduction
section and add a new section Related Work to present more details
on research background and intuitions. Lastly, we elaborate the
Methodology section to give more details on the training process.
The implementation code is made publicly available online 1.

2 RELATED WORK

2.1 Activity Recognition from Mobile Sensor Signals

The mobile sensor-based HAR aims to recognize human activities
from multimodal time-series signals that are originated from
mobile sensors. In this context, machine learning technologies
have shown dominant performance since it is hard to uncover
the latent traits of sensor signals and their complex correlations
by computing methods. Popular methods like Support Vector
Machine (SVM) [14] have demonstrated effective in dealing with
subject-dependent scenarios. However, they get into trouble when

1. https://github.com/dalinzhang/SensePrivacy
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facing the subject-independent applications [15]. Recent years,
deep neural networks have been proven superior to traditional
machine learning approaches in various fields including the HAR.
They are first applied to mobile sensor-based human activity
recognition by [16]. Restricted Boltzmann Machines (RBM) is
leveraged for automatic feature extraction and demonstrated sig-
nificant performance improvement over classical feature engi-
neering. In addition to unsupervised feature learning with deep
neural networks, supervised learning with deep neural networks
were much more widely explored by researchers. Such as in [17],
[18], convolutional neural networks were adopted to fuse different
sensing modalities and thus enhanced activity recognition. The
advanced attention-based mechanisms were introduced by [19],
[20] to achieve remarkable recognition accuracy on different eval-
uation datasets. The attention-based methods could also provide
explicable features of neural networks for HAR [19]. Chen et al.
proposed a multi-agent attention model to extract attentive features
from different angles and achieved promising performance on
several public datasets [21].

2.2 Hide Sensitive Information from Mobile Sensor Sig-
nals

The main application of human activity recognition is to monitor
human behaviors in a smart environment [22], [23]. Thus, the
wearable sensors need to capture the physiological signals of users
continuously. Since the way an activity is taken varies among users
(due to age, gender, and weight) [24], an adversary could infer
user this sensitive information through the time series signals [3].
Although deep neural networks demonstrate powerful abilities in
mobile sensor data analysis, the privacy concern limits their further
applications.

One naive way of hiding user sensitive information is to
stop sensor working based on predefined settings or user spec-
ifications [8], [9], [25], [26]. For example, Olejnik et al. [26]
proposed an automatic runtime control based on a smartphone
usage context. However, this approach dramatically influences the
application usage, especially for health monitoring and elderly
care. Adding random noise to sensor data is an alternative way
to hiding sensitive information [27]–[29]. This kind of methods
works well for hiding sensitive information. However, it destroys
the usability of data severely because the noise usually applies
undifferentiated perturbations to all information, including both
desired and sensitive ones [27]. A more advanced approach is to
transform raw sensor signals into a new representation without
user sensitive information embedded, but with data usability kept.
For example, the authors of [3] proposed an adversarial training
strategy that transformed raw sensor data into neural network
features to hide user-discriminative information. The authors of
[11] reported transforming raw data into a new representation
with the same data size to hide the gender information. Our
work combines the merits of noise perturbation methods and data
transformation methods. It conditionally perturbs the raw sensor
signals with the desired information unaffected, but all sensitive
information is disturbed to be like random noise.

3 METHODOLOGY

3.1 Problem Statement and Definition

Since there are commonly more than one sensing modality de-
ployed for HAR, we first assume all sensor signals have been

processed to be synchronized and to have a same frequency.
At time point t, the vector X(t) = [x1(t), x2(t), ..., xm(t)]
represents the readings of m sensor components (each component
could be an axis of a mobile sensor). Complying with this
definition, for a time duration of d in length starting from time
point t, we conclude the time series sensor signals Sd(t) =
[X(t);X(t + 1); ...;X(t + d − 1)]. For simplicity, we use Sd
instead of Sd(t) in the rest of the paper.

The Sd is two-dimensional (2D) raw sensor data with one
dimension representing time and the other representing sensor
components. In traditional conditions, a service provider uses an
pre-defined recognition function Ia(.) to infer a user’s activities
Ya from Sd to provide dedicated services. Ideally, Ia(Sd) = Ya.
On the other hand, there also exists a certain sensitive inference
function Is(.) that can be used to infer the user’s sensitive
information Ys (such as gender and age) from Sd. Under an ideal
condition, Is(Sd) = Ys. Our goal is to find an optimal transforma-
tion function f∗(.) so that the sensitive information derived from
the optimal transformed data Ŝ∗d = f∗(Sd) is like drawn from a
chunk of random data: Is(Ŝ∗d) = Is(Zd|Zd = (zij)m×d; zij ∼
U), whereas the desired information about human activities can
be the same as drawn from raw data: Ia(Ŝ∗d) = Ia(Sd) = Ya.
Here, Zd is a 2D matrix with the same size of Sd, and its element
zij is a random variable drawn from a uniform distribution U ;
Ŝd is the transformed data achieved through the transformation
function f(.) with the raw data Sd as input and Ŝ∗d is the optimal
transformed data from where the sensitive information cannot be
inferred.

3.2 Overview
Figure 2 illustrates the overall architecture of our proposed frame-
work. In order to achieve the optimal transformation function
f∗(.), we design the framework to comprise a TransNet f(.)
that is in charge of the data transformation process, and an
auxiliary LossNet φ that defines the loss functions for preparing
the TransNet. Specifically, the LossNet defines: a “style” loss that
measures the “style” difference between the transformed data
f(Sd) and random noise N , a “content” loss that measures
the “content” difference between transformed data f(Sd) and
raw data Sd, and a usability loss that specifically helps to keep
the inference accuracy of the desired information.

Each loss function computes a scalar value `i(Ŝd, Oi) measur-
ing the difference between the transformed data Ŝd and a transfor-
mation target Oi (e.g., random noise or raw data). The TransNet
is trained with the stochastic gradient descent to minimize the
weighted combination of all loss functions:

argmin E
[∑
i=1

λi`i(f(Sd), Oi)
]
,
∑
i

λi = 1, (1)

where λi is the weight of each loss function, which we set
experimentally in this research. It mainly controls the tradeoff
between privacy and data usability (see section 4.3.2 for detailed
experimental results).

3.3 Network Structure
3.3.1 LossNet
The LossNet φ is a traditional 2D convolutional neural network
for human activity recognition. It is first trained from scratch on
raw training sensor data and then fixed for the subsequent training
process of the TransNet. The detailed configuration of the LossNet
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Figure 2. Framework overview. We first pretrain the LossNet on raw sensor data for inferring desired information. Then the LossNet is fixed and
used to define the loss functions that measure “style” difference between transformed data and random noise, and “content” difference between
transformed data and raw data. We also define a usability loss to keep the inference accuracy of the desired information explicitly. The TransNet
is trained through minimizing a weighted combination of the above loss functions to hide sensitive information while simultaneously preserving the
desired information.

is depicted in Table 1. The LossNet has two convolutional blocks,
each of which has two convolutional layers and a maxpooling
layer. The input into the LossNet has a size of m× d× 1, where
m is the number of sensor components, d is time period length,
and 1 is the number of feature maps. The period length of d is set
to 50 in this study. The convolutional kernel is always set to 1×3,
and the maxpooling is always applied along the time dimension to
reduce the feature map size by half. After flattening, the output of
the second pooling layer is fed into a dense layer of size 400. As
last, a dense layer with the softmax activation function defined as
softmax(xi)= 1

Z exp(xi) with Z=
∑
iexp(xi), is appended for the

final output. The loss function for training the LossNet is a cross-
entropy loss for human activity classification:

`φa = −
∑
e

Ya,elog(φ(Sd)e), (2)

where Ya,e and φ(Sd)e is the label and the predicted probability
of the activity category e, respectively. The predicted probability
φ(Sd)e is output from the LossNet with the raw data as input.

3.3.2 TransNet
The TransNet f(.) is a fully convolutional neural network with
downsampling first and upsampling to the original size afterward.
Specifically, thesampling frequency and the number of sensor
modalities should be the same as the raw data. The fully convolu-
tional TransNet can take any size of data as input, which is another
advantage of our framework. The reason we resize the transformed
data into the same size as the raw data lies in two folds. (1)
It would add extra uncertainty when an adversary was trying to
infer sensitive information from the revealed data. The adversary
cannot tell whether the revealed data is raw or transformed by
simply observation so an extra step would be required to make
a judgement before any manipulations to recover raw data. This
judgement step would accumulate extra uncertainty to the final
results of sensitive inference. (2) When the transformed data and
raw data had the same size, the detailed fluctuation of every sensor

Table 1
The configurations of the LossNet and TransNet. H, W, F, sH, and sW
refer to height, width, the number of feature maps, stride height, and

stride width respectively.

LossNet

Layer Input Size
(H×W×F)

Kernel/Stride
(H×W/sH×sW) Padding Activation

Conv1 1 m×50×1 1×3/1×1 Same Relu
Conv1 2 m×50×16 1×3/1×1 Same Relu

MaxPool1 m×50×16 1×2/1×2 Valid -
Conv2 1 m×25×32 1×3/1×1 Same Relu
Conv2 2 m×25×32 1×3/1×1 Same Relu

MaxPool2 m×25×32 1×2/1×2 Valid -
Dense flat(m×12×32) - - Relu
Dense 400 - - softmax

TransNet
Conv1 m×50×1 1×3/1×1 Same Relu

MaxPool1 m×50×16 1×2/1×2 Valid -
Conv2 m×25×16 1×3/1×1 Same Relu

MaxPool1 m×25×32 1×2/1×2 Same -
Conv3 m×13×32 1×3/1×1 Same Relu

DeConv1 m×13×32 1×3/1×2 Same Relu
Conv4 m×26×32 1×3/1×1 Same Relu

DeConv1 m×26×32 1×3/1×2 Same Relu
Conv4 m×52×32 1×3/1×1 Valid -

modality would be kept. This information is critical to specific data
analysis scenarios, such as false recognition analysis or abnormal
activity analysis. Thus, keeping consistent data sizes in both the
modality and time series dimension is an important manner to
keep as abundant desired information as possible.

The detailed configuration of the TransNet is also illustrated in
Table 1. We use two convolution/maxpooling pairs to downsample
the input data followed by two deconvolution/convolution blocks
to upsample to the original size. Rather than depending on an
interpolating upsampling, deconvolution allows the upsampling
process to be learned jointly with the rest of the network. Although
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the input and output have the same size, there are several benefits
to the networks that first downsample and then upsample. The first
benefit is the computational cost, which is positively correlated
with the size of feature maps [30]. The second benefit comes from
the receptive field sizes. With downsampling by a factor of D,
each additional convolutional layer increases the receptive field
size by 2D without extra computational cost. Otherwise, it only
increases the receptive field size by 2 [31]. The input and output
of the TransNet both have a size of m × 50 × 1. To achieve
the size unchanged, we tune the padding options of both the first
pooling layer and the last convolutional layer to “Valid”. The
kernel size setting is consistent with the LossNet. Considering
that the raw sensor data can be either positive or negative, we do
not apply any activation functions to the last convolutional layer
of the TransNet so that the transformed data is not restricted to an
activation function’s bound (e.g., relu has a lower bound of 0) and
can be any positive or negative values.

3.4 “Style” and “Content” Consistency

3.4.1 Content Consistency
We define a “content” loss function for measuring the “content”
consistency between the transformed data and raw data. The
“content” information describes what a user does during the data
recording period d, which is human activities in this study. As
deeper layers help extract better features, we encourage the raw
data Sd and the transformed data Ŝd to have similar feature
representations as computed by a deeper convolutional layer of the
LossNet φ. Formally, let φj(Ŝd) and φj(Sd) be the outputs of the
jth layer of the network φ when the input of φ is the transformed
data Ŝd and raw data Sd respectively. If j is a convolutional layer,
then φj(Ŝd) will be feature maps of shape Cj ×Hj ×Wj . The
“content” difference of layer j is defined as the Euclidean distance
between the feature representations of the transformed data Ŝd and
raw data Sd:

`φ,jc =
1

CjHjWj
||φj(Ŝd)− φj(Sd)||22. (3)

We use the “content” difference of the layer Conv2 2 of the
LossNet to produce the “content” loss:

`φc = `φ,Conv2 2
c . (4)

Using a “content” loss from the intermediate layer of the LossNet
to train the TransNet encourages the transformed data to keep the
“content” similar to the raw data but does not force them to match
exactly.

3.4.2 Style Consistency
Besides encouraging similar “content” to raw data, we also would
like the transformed data to have no specific “styles”. In practical,
we use random noise Ns as the style transformation target as
random noise can be regarded as a special “style” of “no style”.
The “style” represents the manner a user performs an activity,
which is impacted by personal information like age, gender, and
weight [32]. These kinds of personal information are sensitive to
users and should not be leaked. Previous research has reported
that a convolutional neural network that is originally trained for
human activity recognition has the possibility of learning features
that could be used for accurately estimating the user’s sensitive
information, without any intentional design [3]. Therefore, we

here use the LossNet to generate the “style” loss for training the
TransNet to prevent such leakage.

Inspired by the image style transformation process [12], we
utilize the Gram matrix to measure the “style” difference. Es-
sentially, matching the Gram matrices of shallow-layers is to
minimize the maximum mean discrepancy (MMD) between the
raw data and transformed data so the style transfer can be regarded
as a special domain adaptation problem [33]. The transformation
process aligns the source domain distribution (i.e., raw data) to
the target domain distribution (i.e., random noise). Therefore, we
assume that the Gram matrix of shallow-layers can capture all
domain information (i.e., sensitive information in this work). We
first give the definition of the Gram matrix. Let φj(x) be the
output of the jth convolutional layer of the LossNet φ when the
input of φ is x. The shape of φj(x) is Cj ×Hj ×Wj . Then the
Gram matrix Gφj is defined as a matrix of shape |Cj | × |Cj | with
its elements as:

Gφj (x)c,c′ =
1

CjHjWj

Hj∑
h=1

Wj∑
w=1

φj(x)h,w,cφj(x)h,w,c′ . (5)

It captures information about which feature maps tend to activate
together. In practice, the Gram matrix can be computed easily
via Gφj (x) = ΨΨT /CjHjWj , where Ψ can be obtained by
reshaping φj into a 2D matrix of shape Cj ×HjWj . The “style”
difference is the squared Frobenius norm of the difference between
the Gram matrices of the transformed data Ŝd and the random
noise Ns:

`φ,js (Ŝd, Ns) = ||Gφj (Ŝd)−Gφj (Ns)||2F . (6)

The layer Conv1 2 and Conv2 2 of the LossNet are used to
produce the “style” loss, which is the sum of the “style” difference
of each layer. Therefore, we have the final “style” loss:

`φs = `φ,Conv1 2
s (Ŝd, Ns) + `φ,Conv2 2

s (Ŝd, Ns). (7)

3.4.3 Usability Loss.

We also define a usability loss `φu to strengthen maintaining
specific desired information during the data transformation pro-
cess. The usability loss is a cross-entropy loss that measures the
difference between the prediction from the pretrained LossNet
with the transformed data as input and the ground truth of the
desired information:

`φu = −
∑
e

Ya,elog(φ(Ŝd)e), (8)

where Ya,e and φ(Ŝd)k are the label and the predicted probability
of the activity category k, respectively. The activity predicted
probability φ(Ŝd)e is output from the pretrained LossNet with
the transformed data as input.

The final loss function is the weighted summation of all
individual losses `c, `φs , and `φu.

`φ =E
[
λφc `c(Ŝd, Sd) + λs`

φ
s (Ŝd, Ns) + λu`

φ
u(Ŝd, Ya)

]
. (9)

The weight of each loss λi is set experimentally and kept adding
up to 1.
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3.5 Training Process

The LossNet φ is first trained from scratch on raw training data
for inferring desired information that is human activity in this
study and then fixed during the subsequent training process of the
TransNet. Note that when training the LossNet, only raw training
data and the corresponding labels of human activities are provided;
the labels of user sensitive information are not required. After
training the LossNet, we start to train the TransNet. The goal of
training the TransNet is to let the transformed data have no specific
“styles” like random noise and have a “content” of raw data. Thus
the transformed data Ŝd, raw data Sd and random noise Ns are
input into the pretrained LossNet, respectively. Then the final loss
calculated by Eq. (9) is obtained, which at last the TransNet is
trained to minimize.

Algorithm 1 describes the detailed training process of our pro-
posed data transformation mechanism. It only takes raw training
data Sd, and its paired human activity ground truth Ya as input.
The training process comprises training both the LossNet and the
TransNet separately. In contrast, only the TransNet is used to take
raw test data as input, and outputs transformed test data during the
test stage.

Algorithm 1 Training Process of the Data Transformation Frame-
work for Multiple Sensitive Information Protection
Input: raw training data Sd, human activity labels Ya
Pretrain LossNet φ

1: LossNet φ⇐ random initializing
2: Train LossNet φ⇐ `φa = −

∑
e Ya,elog(φ(Sd)e)

3: Fix weights and biases of LossNet φ
Train TransNet f(.)

1: TransNet f(.)⇐ random initializing
2: Generate transformed training data Ŝd = f(Sd)
3: Generate random noise Ns
4: Feed transformed training data Ŝd, random noiseNs, raw data
Sd into pretrained LossNet φ respectively

5: Calculate “content” loss `φc = ||φj(Ŝd) − φj(Sd)||22, “style”
loss `φs =

∑
j ||Gj(Ŝd)−Gj(Ns)||2F , and usability loss `φu =

−
∑
k Ya,klog(φ(Ŝd)k), where G(.) is the Gram matrix

6: Calculate the weighted summation of all loss functions `φ =
E
[
λc`

φ
c (Ŝd, Sd) + λs`

φ
s (Ŝd, Ns) + λu`

φ
u(Ŝd, Ya)

]
.

7: Train the TransNet f(.) w.r.t `φ in a stochastic gradient
descent manner

4 EXPERIMENT AND RESULTS

This section first describes the details of the two evaluation
datasets and experiment setup. Then we give the overall experi-
mental results to show the capability of the proposed framework
to collectively hide multiple kinds of sensitive information through
a unified transformation. At last, we further discuss the usability-
privacy tradeoff and loss function design concerns of the proposed
framework.

4.1 Datasets

To satisfy the evaluation scenario, we select datasets according to
the following criteria:
• The dataset should have at least two kinds of user sensitive

information available for validating whether the proposed

model is able to hide multiple kinds of sensitive information
by a unified transformation. This point is solely for the
evaluation purpose;

• The dataset should have at least one kind of desired infor-
mation (e.g., human activity) available for validating whether
the desired information is properly unaffected.

• The dataset should have multiple subjects for validating
the framework’s generalization over subjects. This point is
optional but highly preferred.

We select two public inertial sensor-based human activity recogni-
tion datasets: MotionSense [11] and MobiAct [34], which meet all
the above criteria. Both datasets have five kinds of user sensitive
information available: gender (M/F), identification (ID), height
(mm), weight (kg), and age (years old). The desired information
of both datasets is the activity that a user performs. Therefore,
the goal of the presented framework is to prevent the inference of
sensitive information, namely gender, ID, height, weight, and age,
while to keep the desired information, namely human activities,
still being inferred successfully after data transformation. For the
train-test split, we follow the convention in [11] to use the trial-
independent manner instead of the subject-independent manner.
This is the requirement of testing the ID information that repre-
sents a multi-user classification task; the main goal is to classify
different users [35].

4.1.1 MotionSense Dataset
The MotionSense dataset is collected from two inertial sensors,
accelerometer and gyroscope, which are integrated within an
iPhone 6s smartphone and kept in a user’s front pocket. Four
sorts of time-series signals are obtained from the inertial sensors,
namely attitude, rotation rate, user acceleration, and gravity. Each
sort of signal has three dimensions: roll, pitch, and yaw of the
attitude data and x, y, and z of the others. Thus there are 12
dimensions in the recording of each time point. A total of 24
users (10 females, 14 males) in a range of gender, age, weight,
and height participate in the experiments and collect data of four
daily activities: downstairs, upstairs, jogging, and walking. We
remove the recordings with incomplete data or labels through data
inspection and finally achieve 264 trials of 767,660 recordings.
Following the trial-independent manner [11], we select 168 long
trials of 2 to 3 minutes each for training and the remaining 96 short
trials of 0.5 to 1 minutes each for test. After trial segmentation by
a 50-length sliding window, we obtain the sample size (12× 50).
Finally, there are 61,728 samples (∼80%) for training and 14,098
samples (∼20%) for test.

4.1.2 MobiAct Dataset
The MobiAct dataset comprises data recorded from the accelerom-
eter, gyroscope, and orientation sensors of a Samsung Galaxy S3
smartphone for fifty-seven subjects performing nine different types
of Activities of Daily Living (ADLs). The main characteristic of
this dataset is that it attempts to simulate ADLs with the smart-
phone located with random orientation in a loose pocket chosen
by the participants. The orientation sensor is software-based and
derives its data from the accelerometer and the geomagnetic field
sensor. Different from the MotionSense dataset, there are three
kinds of time series signals obtained from the sensors, namely
orientation, rotation rate, and acceleration (including gravity).
Each sort of data has three axes: roll, pitch, and azimuth of the
orientation signals and x, y, and z of the others. Therefore, the
recording of each time point has nine dimensions. After data
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inspection, we select the data of 44 subjects (14 females, 30 males)
performing four ADLs, downstairs, upstairs, walking and jogging,
without data and labels of user information missing, in the form
of 704 trials of 1,121,296 recordings. As there is no duration
difference between the trials of the same activity, we randomly
select ∼66% trials for each activity for training and the remaining
∼33% trials for test. Similar to the trial segmentation process of
the MotionSense dataset, we cut each trial with a 50-length sliding
window and obtain the sample size of (9× 50). Finally, there are
88,412 samples (∼80%) for training and 22,212 samples (∼20%)
for tests.

4.2 Experimental Setup
4.2.1 Evaluation Setup
Following the conventions in previous researches [3], we use the
changes of inference performance before and after transformation
to validate the proposed framework. Concretely, if the accuracy of
inferring human activities decreases marginally (relative decrease
of less than 5%) after data transformation, the proposed framework
is regarded as successfully retaining desired information. Other-
wise, the proposed framework is regarded as failing to preserve
the desired information. On the other hand, if the accuracy of
inferring user ID decreases considerably (relative decrease of more
than 50%) after data transformation, the proposed framework is
regarded as successfully hiding gender information. Otherwise,
the proposed framework fails to hide user ID information. For
continuous information like height, a considerable increase of the
inference error is defined as a relative change of more than 100%.
Similar evaluation criteria apply to the other sensitive information.

To validate that the sensitive information is hidden and the
desired information is retained after data transformation, we build
six evaluation neural networks for each dataset for six kinds of
information, namely human activity, gender, ID, height, weight,
and age. Note that these six neural networks are built only for
the evaluation purpose. All evaluation neural networks used the
same raw bunch of data and their ground truth for training. For
example, the neural network for evaluating whether the human
activity information is unaffected after transformation is trained
with the raw training data and human activity labels. Similarly,
the evaluation network for gender is trained with raw training data
and gender labels.

During the test phase, the raw test data first goes through the
well-trained TransNet to achieve the transformed test data. Then
the output is fed into each evaluation network respectively to get
the evaluation results after the transformation. For comparison, the
raw test data is also fed into each evaluation network, respectively,
to get the evaluation results before the transformation. The evalu-
ation results of both before and after transformation are presented
in the following Evaluation Results section.

Except for the activity classifier connected to the dense layer,
the architecture of all evaluation networks is the same as that
of LossNet. The evaluation networks of activity, gender, and ID
use the softmax output layer for classification. For the numerical
information, height, weight, and age, the linear output layer for
regression analysis is used. All evaluation networks are trained
using the Adam updating rule [36] with a learning rate of 10−3.

4.2.2 Training Setup
The LossNet is first trained in the trial-independent manner [11]
using the raw training data and its paired human activity labels.

(a) MotionSense (b) MobiAct

(c) MotionSense (d) MobiAct

Figure 3. Overall evaluation results on both evaluation datasets. The
upper part of this figure displays the absolute results; the bottom part
presents the relative results. The activity, gender, and ID are evaluated
by accuracy; the height, weight, and age are evaluated by MAE.

Afterward, the parameters of the trained LossNet are fixed. Note
that the LossNet is only trained with human activity labels since
this information is non-sensitive and can be public. To achieve
the “style” loss `φs for training the TransNet, we generate the
random noise Ns by random sampling from a uniform distribution
between range [-20, 20] to have the same size of the raw data (i.e.,
12 × 50 of the MotionSense dataset and 9 × 50 of the MobiAct
dataset). The random range is set based on the reasonable scope
of sensor readings. The LossNet and TransNet are trained in order
using the Adam updating rule [36] with a 10−3 learning rate. The
weight of each loss function λi is experimentally set as λs = 0.55,
λc = 0.35, and λu = 0.1.

4.3 Evaluation Results
4.3.1 Overall Performance
Figure 3 plots the evaluation results of the proposed framework
on two evaluation datasets. The numerical details are summarised
in Table 2. The upper part of Figure 3 displays the absolute
results of inferring both desired and sensitive information. We use
the classification accuracy as the evaluation criteria for inferring
categorical information, namely activity, gender, and ID, and plot
the results with a normal scale to the left axis of Figure 3a and
3b. For continuous information (i.e., height, weight, and age),
we introduce the mean absolute error (MAE) as the evaluation
criterion. Compared with MSE, MAE is more robust to small
errors so it is more suitable to show the worst-case scenario
performance. We plot the results to the right axis of Figure 3a
and 3b. The bottom part of Figure 3 exhibits the relative results of
the transformed data compared to the raw data. The relative result
is defined as:

∆r =
R(After)−R(Before)

R(Before)
, (10)

where R(After) and R(Before) are the absolute results of
transformed data and raw data. As the sensitive information has
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Table 2
Evaluation results of the proposed framework with optimal model parameter settings on two evaluation datasets.

Measurement Criterion Desired Information Sensitive Information MotionSense MobiAct
Before After ∆r Before After ∆r

Accuracy (%)
Activity - 93.49 92.25 -0.0133 96.17 92.56 -0.0375

- Gender 95.05 56.79 -0.4025 89.20 69.26 -0.2235
- ID 72.64 7.512 -0.8966 81.30 19.70 -0.8480

Mean Absolute Error (MAE)
- Weight 7.133 59.48 +7.339 9.160 55.26 +5.033
- Height 5.823 27.37 +3.700 5.120 28.30 +4.527
- Age 2.699 9.060 +2.356 1.832 5.920 +2.231

real-world reasonable ranges, the absolute results give the intuitive
sense about the extent that the proposed framework perturbs the
sensitive information. On the contrary, the relative results depict
the change extent after data transformation compared to raw data.

Our framework obtains satisfactory performance of hiding
sensitive information on both datasets with a marginal decrease
of HAR accuracy, but significant error increases in inferring all
test sensitive information. Specifically, after data transformation,
the HAR accuracy can still maintain above 90% with only less
than a 4% drop. The HAR accuracy of the MobiAct dataset has
a relatively larger drop than the MotionSense dataset (∼ 4% vs.
∼ 1%). It is noticeable that this performance can be optimized by
tuning the loss weights λi (more in the Privacy-Usability Tradeoff
section), and the settings of the loss weights for evaluating both
datasets are identical so the reported results are not optimal
separately. This demonstrates that our framework is robust to the
settings of loss weights across different datasets. In contrast, when
inferring user gender, the accuracy declines dramatically nearly to
the random guess level. Note that due to the gender imbalance of
the evaluation datasets, the random guess level of gender inference
is 58% and 68% for the MotionSense and MobiAct dataset,
respectively. There is also a considerable drop of ID inference
accuracy after data transformation with the relative result decrease
of around 85% for both datasets. Thus the sensitive information
of user gender and ID has been changed to have a random
“style” and hard to be precisely inferred after data transformation.
The inference errors of numerical sensitive information, height,
weight, and age, also rise remarkably after data transformation. In
particular, the inference of weight experiences the most significant
performance degradation with relative MAE increases 7.339 times
and 5.033 times after transformation for the MotionSense and
MobiAct datasets respectively. Even the smallest performance
degradation of inferring user age still suffers MAE increase more
than two times. Considering the user age has a relatively small
reasonable range, the increase of the inference error is significant.
The overall results exhibit that our framework is able to transform
raw mobile sensor signals into a new representation that does not
have a specific “style” (sensitive information) like random noise,
yet the “content” (desired information) same with raw data.

4.3.2 Privacy-Usability Tradeoff
The loss weight λi controls the tradeoff between privacy pro-
tection and the usability of transformed data. In this section, we
perform experiments by varying the weight of the style loss λφs
from 0.05 to 0.95 to investigate the privacy-usability tradeoff
of the proposed framework. To make the summation of all loss
weights as a constant, the weights of content loss and usability
loss have to be changed as well. We equally change the weights
of content loss and usability loss. For example, if the weight of

style loss decreased 0.2, the weights of content loss and usability
loss would increase 0.1, respectively. Figure 4 shows the results of
both evaluation datasets. The upper part shows the absolute value
results, and the bottom part displays the relative results.

It is evident that with the weight of the style loss growing, the
inference error of all test sensitive information increases; thus,
the risk of sensitive leakage decreases. However, the accuracy
of human activity recognition does not change too much until
the weight of style loss higher than 0.85. Especially for the
MotionSense dataset, the activity recognition accuracy remains
about 90% at the style loss weight of 0.85. At the lower side,
the MAE and inference accuracy of the sensitive information
change obviously at 0.25 and fluctuate smoothly afterward. There
is a sharp change after the style loss larger than 0.85. Similarly,
the activity recognition accuracy drops clearly at the tail part,
which indicates that the usability of data decreases significantly
at a large style loss weight. The MobiAct dataset has a similar
privacy-usability tradeoff trend as the MotionSense dataset with
the efficiency of hiding sensitive information goes up apparently
after the style weight of 0.45. However, the activity recognition
accuracy drops a noticeable amount of about 15% with the style
weight from 0.65 to 0.85. Finally, the activity inference accuracy
sharply downs to only 20% at the end, where the transformed data
is useless. Thus, it is crucial to carefully select the weight of the
style loss to keep a satisfactory privacy-usability tradeoff.

(a) MotionSense (b) MobiAct

(c) MotionSense (d) MobiAct

Figure 4. Privacy-usability tradeoff with different weights of the style loss
on both evaluation datasets. The upper part of this figure presents the
results of absolute values; the bottom part displays the details of relative
results.
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4.3.3 Visualization
To gain an intuitional sense of the transformation process, we
compare the spectrograms of acceleration signals before and
after transformation. Figure 5 shows the visualization results.
We can observe that the transformation process introduces new
periodic components that cover the original ones and differ across
activities. Since the periodic information of the motion sensor
data encodes abundant signatures of users, the perturbation on
such components reduces the possibility of sensitive information
leakage. The downstairs and upstairs visualization shows similar
perturbation patterns because people act slightly differently when
going upstairs and downstairs concerning the acceleration of the
X-axis. In contrast, the visualization patterns of walking and
jogging are significantly different, and both different from that
of upstairs and downstairs.

Figure 5. Spectrum visualization of raw (top) and transformed (bottom)
X axis user acceleration data of different activities from one user of the
MotionSense dataset.

4.3.4 Impact of Loss Functions
In this section, we discuss the impact of different loss functions `φi
on the performance of the presented framework. A reconstruction
loss defined as `fr = 1

md ||Sd − Ŝd||
2
2 that encourages the trans-

formed data to be the same with the raw data is also introduced
for a comparison study as this loss function is commonly used in
previous studies for sensitivity-hiding data transformation [11].

Figure 6 shows the sensitive information hiding performance
of the proposed framework trained with different loss functions
on the MotionSense dataset. When training with the usability loss
`φu only, the transformed data can keep approximately the same
usability characteristics as the raw data. However, even though
the transformation process has modified the raw data that the
transformed data and the raw data have different distributions,
the sensitive information is still retained unintentionally after data
transformation. This result is in consonance with that reported in
[3]. When looking into the results achieved with the content loss
`φc only, we find it promotes more information preservation than
the usability loss `φu since `φc encourages the extracted features
of the transformed data to be the same with the raw data rather
than only the final recognition accuracy. Besides, the content loss
can be used when the ground truth of the desired information
is unavailable, and the LossNet is a general pretrained neural
network that is not specifically designed for inferring the desired
information. In contrast, as indicated in Figure 6, the style loss `φs
advocates all test information damaged to a massive extent that
the activity recognition accuracy drops to a random guess level.

Although the reconstruction loss helps to retain more raw
information even including some hidden ones than the other loss
functions, it is such a tight constraint that degrades the sensitive

protection. On the contrary, the content loss is a relatively loose
constraint compared to the reconstruction loss, yet also has po-
tential abilities to preserve unknown information. Thus we use the
content loss rather than the reconstruction loss, which is often used
in previously reported transformation-based sensitive information
hiding strategies.

5 DISCUSSION

5.1 Release Privacy-free Data versus Release Recogni-
tion Results
This paper aims to solve the privacy leakage issue and proposes to
transform raw signals at the user-end to hide private information
and then release the privacy-free data. Another simple and intuitive
solution to such a privacy leakage problem is to perform the
human activity recognition at the user-end directly and release
mere activity recognition results instead of transformed signals.
However, this solution only works for the simplest scenario while
it is not flexible to deal with complicated real-world scenarios.
One ordinary scenario that merely releasing recognition results
cannot handle is to collect a dataset for algorithm development and
validation. In contrast, releasing privacy-free data not only satisfies
the requirement properly but also helps to hide participants’
private information. Another common scenario that requires signal
data instead of mere recognition results is to manually inspect
data when an abnormal recognition result occurs. Experts would
request to inspect signal data to examine whether an unusual
activity is attributed to the failure of a recognition algorithm or
the occurrence of an emergency. Moreover, it is also desirable
to having the signal data, when an algorithm fails to recognize a
critical activity (e.g., falling), for developing and testing new algo-
rithms. Therefore, simply releasing recognition results is severely
limited in real-world applications.

5.2 Impact of LossNet
In the proposed framework, the LossNet is trained to use raw
sensor data to categorize human activities. It has the explicit ability
to extract features of activities and the implicit ability to extract
features of user personal information [3]. These two properties
are utilized to define the loss function for training the TransNet
so that the transformed data can hide sensitive information while
keep activity information. The LossNet is not used during the
transformation process. Thus, even though the LossNet can extract
sensitive information, it will not let the transformed data in-
herit any sensitive information during the transformation process.
Moreover, it is only the loss function that determines whether the
TransNet can hide sensitive information or not. The LossNet is
merely used to provide style features for defining the loss. We
design the loss function to have the style features extracted from
transformed data similar to those extracted from random noise.
The LossNet has the ability to extract style features but not to
preserve any styles in it. When the input is random noise, the
LossNet can only extract style features from random noise, that
has no specific styles. Therefore, having random noise as the style
training target, the transformed data will not contain any specific
styles (sensitive information).

5.3 Limitations and Future Directions
Although the experimental results have demonstrated the efficacy
of the proposed method, there are some scenarios where the
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Figure 6. Impact of Different Loss Functions. The activity, gender, and ID are evaluated with classification accuracy; the height, weight, and age are
evaluated with MAE.

proposed approach is not able to handle or requires further
exploration and development. A limitation of this paper is that the
transformation process not only hides users’ private information
but also unintendedly removes possible unique activity patterns.
This is unfavorable for some special applications. For example, it
is desirable to retain the unique walking patterns of leg-disordered
patients for physicians to analyze the patients’ rehabilitation
process. A potential solution is to design an auxiliary module to
capture such unique patterns and release the unique patterns along
with common patterns to service providers. Another limitation
of this work is that there are no mathematical supports for the
assumption that all sensitive information can be captured by the
Gram matrix. This assumption is based on that matching Gram
matrices is actually a domain adaptation process that aligns the
distribution of raw data to the distribution of random noise. A
future direction is to verify this assumption for different sensitive
attributes and investigate other matrices that can achieve the
similar goal. Theoretical analysis of the sensitive information
removal process is also an important future research direction. [37]
proposed that the task-irrelevant and dataset-specific information
could be minimized by adding a regularization term to the loss
function in a supervised training process. Although the reference
did not address the domain adaptation problem, extending the
theoretical analysis in [37] to the domain adaptation in this work is
an interesting and important subject of future investigations. A pre-
liminary idea is that the style transformation loss can be regarded
as a regularization term to control the task-irrelevant information.
Regarding the framework structure, a potential direction is to take
the advantage of GAN-style settings, where LossNet and TransNet
are trained alternatively and repeatedly, to update the LossNet and
TransNet simultaneously instead of in a sequential setting. In such
a way, a more robust transformation function can be achieved.

6 CONCLUSION

In light of the drawbacks of being effective only on one specific
sensitive information and requiring user information for training,
this paper targets to resolve the limitations of previous work on
hiding user sensitive information from mobile sensing signals.
Other than hiding a dedicated sensitive trait, we introduce to

detach multiple sensitive information from the signals and convert
it to be stochastic at a one-time transformation. Meanwhile, the
desired information, which is human activities in this research, is
kept as constant. To achieve such a goal, we adopt the idea of style
transfer to transform raw sensor data into a new representation that
has no specific “styles” (sensitive information) like random noise
and has “content” (desired information) same as raw signals. As
a result, various user sensitive traits are disturbed simultaneously
at a one-time transformation and no user personal information is
required for training. We carry out experiments on two multimodal
human activity recognition datasets to validate the empirical
effectiveness of the reported approach. With regard to hiding five
sorts of sensitive information (i.e., gender, ID, height, weight, and
age), our proposed mechanism exhibits satisfactory performance
on deteriorating their inference precision while holding the activity
recognition accuracy with only marginal drop.
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