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A B S T R A C T   

Climate projected continuous rain series are required for urban drainage design and analysis. Outputs from 
regional climate models are yet insufficient in quality and resolution for this purpose. Here, we introduce a novel 
method, CLIMACS (CLImate projection of MeAsured preCipitation Series) for stochastic climate projection of 
point rain series for urban drainage design. It is developed and evaluated to represent current climate conditions 
as well as projections for the period 2071–2100 with RCP scenarios 4.5 and 8.5. CLIMACS includes seasonal 
stochastic resampling of individual rain events and rainfall intermittency as well as climate scaling. Fifteen 
climate variables representing multiple changes in the future rainfall are selected and projected to target future 
conditions. Realizations of the resampled and stochastically generated rain series are ranked and selected ac
cording to the minimum relative error between realization and target. To give an insight into the uncertainty of 
the climate projection as well as year-to-year variability of precipitation climate variables, an ensemble of the top 
100 realizations for each climate scenario is selected for further analysis. It is concluded that the ensembles 
represent the future conditions well, however, with a large variability due to the uncertainties in climate pro
jection. With the aim of showing the impact in urban drainage system design, a stormwater detention pond 
design with multiple design parameters and climate scenarios is demonstrated. The pond design results show a 
significant difference in required pond volume depending on the design parameters and the choice of climate 
scenario, which emphasizes the need for climate projected continuous rain series for urban design purposes as an 
alternative to design storms.   

1. Introduction 

In design and planning of urban drainage systems, it is crucial to be 
able to give an estimate of the future loading of the drainage system in 
order to certify a long lifetime of the designed systems. The impacts of 
how global warming changes precipitation patterns, therefore, have to 
be taken into account. In the projection of climate change for Northern 
Europe, it is well-known that the most high-intensity rainfall will in
crease and that the average annual precipitation will increase. This is the 
case for all RCP scenarios (Kovats et al., 2014). The climate changes 
might also cause a shift in the annual precipitation patterns. One 
example for Denmark is that the summer precipitation is expected to 
decrease or remain at the same level in 2071–2100 as in the current 
climate conditions (1981–2010). At the same time, the heavy rain events 
are expected to increase by some 30–40 % - resulting in longer drought 
periods between events (Thejll et al., 2020). 

Small or upstream parts of drainage systems are most commonly 

designed with IDF-curves or design storms, where rain intensities for a 
given short duration with a given return period are multiplied by a 
contributing area to assess a maximum flow corresponding to the 
specified return period, cf. the rational method (Kuichling, 1889). The 
design rainfall can easily be climate projected by multiplying the rainfall 
intensity with a climate factor that represents the increase in rainfall 
intensity for short heavy rain events. For larger systems or downstream 
parts where branches confluence and flow are regulated by pumps, 
detention ponds, weirs, etc., flow patterns become more complex. The 
assumption of unity between the return period of the rain and the return 
period of the flow is therefore not necessarily in agreement. Rather than 
using design storms, design and impact analysis of complex drainage 
systems are therefore often done with numerical models that simulate 
flow with inputs from continuous rain series (Schaarup-Jensen et al., 
2009; Thorndahl, 2009; Thorndahl et al., 2008). The return periods of 
flow or water levels exceeding specified thresholds can hereby be esti
mated as part of the design process. Where the design does not only 
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depend on the peak rainfall intensity of the rain over a specified dura
tion, but on multiple combinations of rain intensities with different 
durations as well as regulated flows, the linear scaling with regard to 
climate change also falls short. It is necessary to produce continuous rain 
series that represent the future rain patterns, e.g., by scaling the ex
tremes and less intensive rain differently from each other. Moreover, it is 
important to represent how the dry periods between events change with 
changing climate conditions. This applies in situations where runoff, 
peak flows, etc. dependent on the antecedent soil moisture conditions 
(Nielsen et al., 2019; Pathiraja et al., 2012), or the design of stormwater 
detention ponds where the emptying time between rain events is crucial 
for required volumes. 

In a broader urban drainage context, it is essential to be able to 
calculate loads on receiving waters either from combined or separate 
sewer systems. To do this correctly, the yearly and seasonal precipitation 
amounts also have to match future climate conditions. This can only be 
achieved by developing climate-projected continuous rain series. 

Global circulation models with different forcings of climate gas 
concentrations can represent future global warming and thereby 
changes in climate. By deriving relevant boundary conditions from the 
global models, regional climate models can be applied to simulate the 
impacts of climate change on regional scales. This includes the projec
tion of the changes in precipitation. In comparison with the observations 
or rainfall statistics used for urban drainage design or impact analysis, 
the regional climate models are however biased and in course temporal 
and spatial resolutions. It is therefore widely recognized to apply out
puts from regional climate models to statistically downscale climate 
changes to sufficient scales (Willems et al., 2012). 

There are different approaches to statistical downscaling, e.g., 
weather typing (Van Uytven et al., 2020a; Willems and Vrac, 2011), 
stochastic rainfall generation (Burton et al., 2008; Chen et al., 2021; 
Haberlandt et al., 2015; Kim and Olivera, 2011; Park et al., 2021), or 
methods that modify or perturbate time series (often referred as change 
factor-based methods, e.g. Ntegeka et al., 2014; Olsson et al., 2009; 
Sørup et al., 2017; Sunyer et al., 2015). Van Uytven et al. (2020b) argued 
that the change factor-based methods have advantages over rainfall 
stochastic rainfall generators since they do not contain stochastic ele
ments and therefore can produce one single perturbation of a rain series 
rather than a stochastic ensemble. In this paper, we argue for the 
opposite, namely, those stochastic rainfall generators have the advan
tage to simulate an ensemble that can represent the uncertainty in the 
climate projections of rain series and due to the stochastic features they, 
can be targeted through specific applications in urban drainage design 
and impact analyses. 

We present a stochastic rainfall generator procedure, CLIMACS 
(CLImate projection of MeAsured preCipitation Series) that can generate 
a continuous climate projected rain series for urban drainage design and 
impact analyses. A former version is presented in the HESS publication 
“Event-based Stochastic Point Rainfall Resampling for Statistical Repli
cation and Climate Projection of Historical Rainfall Series” by Thorndahl 
et al. (2017) and has been evaluated along with other methods in Sørup 
et al. (2018) and De Niel et al. (2019). 

Compared to Thorndahl et al. (2017), the procedure is further 
developed and improved with regards to simulating yearly variability, 
implementation of uncertainties in climate projections as well as new 
stochastic generation and evaluation procedures that make the sto
chastic procedure faster and more consistent. In addition to the targeting 
of rain series to statistically represent climate variables relevant for 
precipitation, CLIMACS also features validation on the dry weather pe
riods between rainfall events. CLIMACS applies new processing of 
climate model ensembles from the EUROCORDEX database for both RCP 
4.5 and 8.5. Here, we aim to present and evaluate the new features of the 
improved procedure. 

CLIMACS produces ensembles of stochastically sampled rain events. 
The idea is not to produce rain series that match the true climate and 
precipitation pattern for a given period but to create rain series that 

statistically represent rainfall for a given period and which can be used 
for the design of hydrological systems, e.g. urban drainage systems. 
CLIMACS can provide rain series representing current climate conditions 
as well as future conditions projected by different climate scenarios. The 
former is considered as a validation of the procedure when the reference 
rain series and a resampled rain series statistically are in agreement. It is 
important to emphasize that each stochastic realization of a rain series is 
different. The objective of this paper is therefore also to investigate the 
ensemble variability between generated rain series and to assess how 
large an ensemble is required in a given design process. 

To investigate and compare the generated rain series under different 
hydrological design conditions and climate conditions, we apply a 
simple stormwater detention pond design routine that estimates the 
required pond volume for a given unit area and return period. By 
varying the outlet flow rate from the detention pond, the design volume 
becomes differently dependent on the continuity of the rain series and 
thus the time between rain events. The difference in detention pond 
design volume is investigated and compared for both current and future 
climate conditions. 

Other applications of CLIMACS rain series as inputs to urban hy
drological models of integrated systems, e.g. to simulate flooding, sur
charge, combined sewer overflow, is also tested as part of the evaluation 
of CLIMACS, but not reported here. 

The paper is structured as follows. In section 2.1 the stochastic 
procedure and the novel features are presented. In Section 2.2, the 
method for evaluating the generated time series in detention pond 
design is presented. The rainfall data and climate model projections 
applied to exemplify the procedure are presented in section 3. Results of 
the evaluation of both rainfall statistics and detention pond design are 
presented in Section 4. Section 5 features a discussion of the ensemble 
size related to urban drainage design. Conclusions are provided in Sec
tion 6. 

2. Methods 

2.1. Stochastic generation and evaluation of rain series 

The procedure for generating both resampled rain series (repre
senting the current climate) and climate projected rain series (repre
senting a given future climate scenario), is presented in the following 
section. For specific details on the procedure, you can refer to Thorndahl 
et al. (2017) and the explanations are limited here to present a general 
understanding of the procedure’s steps (Fig. 1) as well as emphasize and 
detail the improvements of the method. 

CLIMACS can run in two modes: Single station mode, where rain 
events are sampled from a single historical rain series (referred as the 
reference rain series from hereon) and fitted to the statistics or pro
jections of the same rain series; or in a multiple station mode (Thorndahl 
and Andersen, 2021), where events are resampled from multiple his
torical rain series and fitted to regional rainfall statistics and climate 
projections. Where the single station mode will generate a rain series 
representative for the location of the reference rain series, the multiple 
station mode can generate a rain series to represent a random location as 
long as the regional rainfall statistics and climate projections are 
available as targets. In this paper, we limit the description to the single 
station mode. The stochastic generation procedure therefore exclusively 
samples rain events from the original reference rain series. 

It is a key feature in CLIMACS that the stochastic sampling and 
climate scaling are split into individual seasons (winter, spring, summer, 
and autumn), which allows for different climate projections depending 
on the season. We apply brute force sampling of rain events, interevent 
time, and climate scaling which is stochastic and unconditional on the 
past. CLIMACS will generate numerous rain series and the concept is that 
the posterior evaluation procedure determines if each individual reali
zation should be accepted or rejected based on the statistics of a number 
of target climate variables. These target climate variables are solely 
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related to precipitation and serve as evaluation indicators throughout 
the paper. Due to the brute force randomization, the greater majority of 
series are rejected due to too large errors on one or more of the target 
variables. The evaluation and accept/reject procedure is based on 
relative errors between realization and targets related to both annual 
and seasonal statistics as well as extreme statistics. This ensures that the 
minority of the generated series that in fact comply with the acceptance 
criteria has low errors on multiple statistical parameters and therefore 
can represent real rainfall statistics for either the current climate or 
projections of the future climate. 

2.2. Alternating stochastic sampling of single rain event and interevent 
time 

Rainfall intermittency (interevent time) is stochastically sampled 
from a two-component mixed exponential probability density function 
for each season (Thorndahl et al., 2017). The probability distribution 
has three parameters for each of the four seasons. For replicating the 
current climate, the parameters are assessed by fitting the reference rain 
series. In order for the climate projected rain series to include different 
interevent time distributions, the three parameters for each season are 
sampled randomly from a uniform distribution with fixed upper and 
lower boundaries. This allows for a shift in interevent times, e.g., to 
accommodate for longer drought periods or periods with an increased 
frequency of event occurrences in the future climate. Rain events are 
sampled randomly from the pool of seasonally grouped historical events 
from the reference rain series, and each event is treated as an inde
pendent event. Other studies have applied Markovian processes (e.g. 
Basinger et al., 2010; Fowler et al., 2005) or even more complex weather 
generators (e.g. Kim and Onof, 2020; Peleg et al., 2017) to introduce or 
simulate interevent dependency. Since the objective of CLIMACS is to 
produce continuous rain series which are statistically valid for urban 
drainage design, and not to reproduce real rainfall, the interevent de
pendency is neglected, and the continuity of the individual rain events 
and interevent times are evaluated seasonally by the target climate 
variables. The discrete stochastic sampling of individual rain events to 
produce continuous rain series is stochastic and unconditional on the 
past and can thus be described as a non-markovian process. Therefore, it 
is crucial to statistically evaluate the generated series and to reject re
alizations that do not comply with the acceptance criteria for each 
climate variable. 

We allow for random sampling of the same event multiple times. 
Unlike other studies, (e.g., Sørup et al., 2017), there is no grouping by 
rainfall intensity or total rain depth of the individual events prior to the 
random sampling. This makes the method flexible in terms of sampling 
from the complete distribution of events without introducing 

assumptions on the grouping. The disadvantage of this approach is that 
many generated rain series have to be rejected due to low-performance 
scores (or high relative errors) on one or more target climate variables. 
This is elaborated in section 4.1. The alternating sampling of rain events 
and interevent times is repeated until the desired length of the generated 
rain series is obtained. 

2.3. Climate scaling 

In the generated continuous rain series, climate scaling is imple
mented by a linear scaling of the rain intensity (i). A scale factor (c) for 
each season is calculated using a first-order function with a contribution 
from a scale factor (β) which is drawn randomly from a uniform distri
bution for each season and a contribution (α, also sampled from a sea
sonal uniform distribution) depending on the fitted two-component 
mixed exponential cumulative probability (F(i)) of rain intensity for the 
season in question: 

c(i) = αF(i)+ β (1) 

The scaling with regard to intensity allows for different change fac
tors for different intensities and gives more variability between the 
generated rain series. An example of a scale factor from a set of 
randomly selected parameter values for a given season could be β = 1.09 
and α = 0.05. The scale factor c would therefore range between 1.09 (for 
F(i) = 0) and 1.14 (for F(i) = 1) The scaling factor (c) is different from 
the climate factor (cf) defined in the “evaluation procedure” and given in 
Table 1. The latter serves as the projection of the individual target 
variables, whereas the former serves as a stochastic input to the climate 
scaling. 

The linear scaling of rain intensities is inspired by the delta change 
method, as applied in Olsson et al. (2009) in which the scaling depends 
on the intensity distribution. Compared to a static climate projection (e. 
g. Sørup et al, 2017), which might have been implemented using 
selected climate factors from Table 1, directly as scaling parameters, the 
linear scaling creates a dynamic climate projection. It allows for the 
climate scale factor, c(i) to be both smaller and larger than 1, and since 
parameters, α and β are drawn randomly for each season, there is a very 
large flexibility in the scaling procedure. The climate scaling, however, 
is very dependent on the succeeding evaluation and rejection of series 
with too large relative errors. The brute force approach, in which event 
sampling and scaling parameters are consistently randomized, requires 
the generation of many realizations to obtain a few that comply with 
acceptance criteria. 

Fig. 1. Flow diagram of the procedure and inputs of CLIMACS.  
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2.4. Evaluation procedure 

A central part of the stochastic generation of rain series is the eval
uation of the generated series according to the specified target climate 
variables, and how the weights of the different targets are applied to 
calculate the metrics for each individual rain series realization. The 
criterion for accepting a rain series realization is twofold. Initially, each 
individual target variable has to fit within a specified range of each 
target defined by the relative error; and secondly, the overall weighted 
relative error of the realization must satisfy a specified acceptance 
criterion. 

The applied target variables are presented in Table 1 along with the 
applied weights. The developed methodology has no upper limit with 
regard to the number of target variables and other variables might be 
added or replaced if other or better climate variables become available. 
In this paper, however, we limit the target climate variables to the ones 
presented in Table 1. The climate variables presented in Table 2 are 
related to the dry weather periods between rainfall. In this case, they are 
used as validation variables, but could also have been equally imple
mented as targets and weights. The interevent times that we sample as 

part of the alternating procedure are fully stochastic and therefore in
dependent from the projections of dry weather periods. Furthermore, 
the interevent times are at a minutely timescale as the rain series. The 
dry weather periods are estimated in days. Although interevent times 
and dry weather periods indeed represent the same, we choose to 
distinguish between them, since the interevent times are used as part of 
the input for generating rain series and the dry weather periods are used 
as part of the validation procedure. 

Compared to the methodology presented in Thorndahl et al. (2017) 
an improved metric of defining the acceptance range for each target 
variable is developed. It is hereby possible to include both variabilities 
from year to year (for the target variables defined annually) as well as 
the uncertainty estimates of the climate projections of the individual 
target variables. 

For each climate variable (m) the relative error (RE) for each reali
zation (n) is calculated as: 

REm,n =

⃒
⃒Tm − Rm,n

⃒
⃒

Tm
(2) 

In which T is the target value and R is the corresponding value based 
on the realizations. 

In the present climate simulations, the target value is an absolute 
value for a given climate variable, e.g. the mean summer precipitation. 
In the case of the evaluation of climate projected rain series, the target 
value is the absolute value multiplied by the climate factor, cf of the 
climate variable in question. For climate variables defined with annual 
values (e.g., seasonal precipitation, number of days with precipitation 
over a specific threshold, etc.), the relative error term is calculated both 
as a mean for the period of the rain series as well as the standard de
viations of the annual values. The target and the realization value 
related to the means are calculated by: 

Tm = X
−

mcf m (3)  

Rm,n = Y
−

m,n (4) 

In which X and Y are the annual climate variable estimates for the 
reference rain series, and the realization rain series respectively. 

The target (T) and the realization value (R) related to the standard 
deviations are calculated by: 

Tm =

(

s2
Xm

σ2
cf m

+ s2
Xm

cf 2
m + σ2

cf m
X
−

m
2
)1/2

(5)  

Rm,n = sYm (6) 

Table 1 
Mean and standard deviation (SD) of absolute values and climate factors, cf, for the 15 selected climate variables.    

Absolute values Climate factor Climate factor  

Target climate variable Notation Current climate RCP 4.5 RCP 8.5 Weight   

Mean SD Mean SD Mean SD  

Annual precipitation ap (mm) 660 131  1.07  0.10  1.14  0.09 0 
Seasonal precipitation, winter spwi (mm) 132 59  1.12  0.11  1.24  0.13 0.125 
Seasonal precipitation, spring spsp (mm) 121 40  1.12  0.11  1.20  0.13 0.125 
Seasonal precipitation, summer spsu (mm) 185 69  1.05  0.20  0.98  0.23 0.125 
Seasonal precipitation, autumn spau (mm) 184 56  1.04  0.09  1.10  0.13 0.125 
Annual number of events above 10 mm per day n10mm (#) 16.5 5.6  1.15  0.18  1.29  0.13 0.06 
Annual number of events above 20 mm per day n20mm (#) 3.0 1.9  1.31  0.33  1.61  0.31 0.04 
Annual Maximum daily precipitation mdp (mm) 33.6 12.2  1.13  0.11  1.23  0.16 0.05 
Annual Maximum 5-day precipitation m5dp (mm) 55.7 15.8  1.09  0.10  1.18  0.11 0.05 
Rain intensity for 10 min, T = 2 years d10T2 (mm/h) 52.9   1.18  0.16  1.31  0.20 0.06 
Rain intensity for 10 min, T = 10 years d10T10 (mm/h) 69.2   1.23  0.20  1.38  0.29 0.04 
Rain intensity for 60 min, T = 2 years d60T2 (mm/h) 16.6   1.18  0.16  1.31  0.20 0.06 
Rain intensity for 60 min, T = 10 years d60T10 (mm/h) 20.9   1.23  0.20  1.38  0.29 0.04 
Rain intensity for 360 min, T = 2 years d360T2 (mm/h) 5.0   1.18  0.16  1.31  0.20 0.06 
Rain intensity for 360 min, T = 10 years d360T10 (mm/h) 6.1   1.23  0.20  1.38  0.29 0.04         

1  

Table 2 
Mean and standard deviations (SD) of absolute values and climate factors, cf, for 
the 8 selected validation variables related to dry weather periods.    

Absolute 
values 

Climate 
factor 

Climate 
factor 

Validation 
variables 

Notation Current 
climate 

RCP 4.5 RCP 8.5   

Mean SD Mean SD Mean SD 

Number of dry 
days, winter 

nddwi 
(days)  

53.8  10.4  0.98  0.05  0.99  0.04 

Number of dry 
days, spring 

nddsp 
(days)  

65.4  7.8  0.98  0.03  0.97  0.04 

Number of dry 
days, summer 

nddsu 
(days)  

59.9  7.8  1.01  0.07  1.07  0.09 

Number of dry 
days, autumn 

nddau 
days)  

53.6  7.8  1.02  0.05  1.03  0.08 

Maximum dry 
period, winter 

mddwi 
(days)  

9.5  4.6  0.98  0.15  0.92  0.12 

Maximum dry 
period, spring 

mddsp 
(days)  

12.5  4.7  0.98  0.12  0.95  0.13 

Maximum dry 
period, 
summer 

mddsu 
(days)  

12.8  4.1  1.04  0.12  1.11  0.17 

Maximum dry 
period, 
autumn 

mddau 
(days)  

11.0  4.3  1.02  0.15  1.08  0.18  
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In which s is the sample standard deviation of the annual climate 
variable estimates and σcf is the standard deviation of the climate factor. 
The target is equal to the standard deviation of a product of two 
Gaussian distributions. In this way, we can both include the year-to-year 
variability as well as uncertainty estimates on climate factors. 

With regard to the extreme target climate variables (defined here as 
variables that are not estimated on an annual basis, but with respect to a 
return period or frequency (f)), the target and realization values are 
calculated by: 

Tm = i(d, f ,Xm)cf m (7)  

Rm = i(d, f , Ym,n) (8)  

where i is the rainfall intensity for a specific duration d and frequency f. 
To fulfill the acceptance criterion each target variable must fulfill: 

REm,n ≤
2σcf ,m

cf m
(9)  

where σcf ,m is the standard deviation of the climate factor, cf, for climate 
variable m. Acceptance is thus allowed if the relative error is within the 
95 % confidence interval of the climate factor assuming a Gaussian 
distribution. 

The first step of the evaluation procedure certifies that each indi
vidual climate variable of each individual realization rain series com
plies with the acceptance criterion. In the second step, the average 
relative error based on the weighted mean of all climate variables is 
calculated by: 

RE
−

n = w1RE1,n +w2RE2,n +⋯+wmREm,n (10)  

wm are the weights for each individual climate variable, m. 
By ranking the estimated average relative errors, the realizations 

with the lowest overall errors are identified and selected for further 
application. The accepted realizations for each climate scenario are 
referred as an ensemble. Weights can be changed depending on the 
application of the generated rain series, e.g. by weighting some seasons 
higher than other seasons, or by weighting extremes higher than annual 
estimates. 

The brute force sampling and evaluation procedure of CLIMACS 
based on an initial acceptance criterion for each climate variable and the 
succeeding ranking by the weighted errors is inspired by the GLUE 
methodology (Beven and Binley, 1992; Thorndahl et al., 2008). 

2.5. Stormwater detention pond design 

We use a stormwater detention design to exemplify the application of 
continuous climate projected rain series as this design is dependent on 
both the peak rain intensity over as specific rainfall duration as well as 
the antecedent conditions. This mutual dependency displays the 
importance of the application of continuous rain series rather than single 
design events in estimating required storage volumes. 

In the procedure for designing stormwater detention ponds we 
evaluate and compare the ensemble of generated rain series represent
ing current and future climate conditions in order to investigate how 
both changes in rain intensities as well as interevent times affect the 
required design volumes. 

The procedure furthermore serves the purpose to investigate the 
variability between the accepted realizations in each climate scenario 
ensemble and to explore differences in design volumes depending on the 
design parameters and choice of the climate scenario. 

For the detention pond design, a simple mass-balance box model is 
formulated as a first-order differential equation (as e.g. presented in 
Hvitved-Jacobsen et al., 2010): 

dV(t)
dt

= i(t)Fr − Qout(t) (11)  

where dV(t)/dt is the increase in pond volume per time step, dt, i(t) is the 
rain intensity, Fr is the contributing catchment area, and Qout(t) is the 
outlet flow from the pond. The time of runoff in the catchment is 
neglected since this is most often insignificant to the emptying time of 
the pond. 

Eq. (11) is solved explicitly using backward Euler: 

V(t + 1) = V(t) + (i(t)Fr − Qout)Δt (12) 

In which V is the stormwater pond volume and Δt is a fixed time step. 
The outlet flow is for simplicity reasons assumed to be a constant defined 
by an outlet flow rate, a (l s− 1 ha− 1), hence Qout = a Fr. 

The simulation of detention pond volumes is executed by a contin
uous simulation over the total period of each generated rain series. 
Thereby, it is possible to simulate how the detention pond volume de
pends on antecedent rainfall and thereby by the emptying of the pond 
between rain events. If the outlet flow rate is low, the pond will empty at 
a slower pace, and the antecedent rainfall period becomes relatively 
more important for low outlet flow rates than for larger ditto. 

The storage pond volume corresponding to a specific return period is 
found by ranking the event-separated volumes applying the California 
method (as cited in e.g. Rakhecha and Singh, 2009) and a linear inter
polation between discrete return periods. Events are separated by the 
maximum emptying time (or drain time) of the pond. 

3. Data 

The reference rain series applied exclusively for the stochastic gen
eration of rain series in the present study is based on tipping bucket rain 
gauge recordings from a station in Viby (Aarhus) Denmark. The rain 
gauge is part of the rain gauge network of the Danish water pollution 
committee (Sarup, 2020). It covers the period from 1979 to 2018. The 
total observation period is 38 years when the rain series is corrected for 
outages. Rainfall data is filtered and quality controlled in regard to the 
recommendations in Publication no. 26 of the Danish Water Pollution 
Committee (WPC, 1999). The rain series contains 9253 individual rain 
events separated by at least one hour of dry weather and a minimum rain 
depth of 0.4 mm. The temporal resolution of the rain series is 1 min. The 
total observed rain depth corresponds to an average of 660 mm per year. 
Individual years with more than 30 days of total downtime are excluded 
from the annual statistics to remove potential biases in the annual and 
seasonal statistics. Individual rain events from the discarded years are 
however included in the pool of events similar to data from the approved 
years. The calculated absolute mean and standard deviation values for 
the selected target climate variables (as described in the following sec
tion) are shown in Table 1 with respect to the reference rain series. 
Correspondingly, Table 2 presents the same values, however for the 
validation climate variables related to dry weather periods. 

The selection of climate variables and climate factors for each indi
vidual climate variable is based on a processing of 20 EURO-CORDEX 
0.11◦ ensembles for RCP 4.5 and 57 EURO-CORDEX 0.11◦ ensembles 
for RCP 8.5, (Jacob et al., 2014; Kotlarski et al., 2014; Prein et al., 2016; 
Thejll et al., 2020). From this processing, it is possible to derive the 
climate variables that relate to the annual and seasonal values of Table 1 
and 2. The derived climate factors and their uncertainty estimates 
represent means and standard deviations for the ratio between the 
projected period 2071–2100 with RCP 4.5, RCP 8.5 and the reference 
period (1981–2010). The climate projections are available from the 
Danish Climate Atlas at (https://www.dmi.dk/klima-atlas/data-i-kl 
imaatlas/). In CLIMACS, only the relative projections between the 
reference period and the projected period are used. It is also possible to 
use absolute climate variables as targets. This is covered further in 
Thorndahl and Andersen (2021). 

The climate factors that relate to the extreme rainfall intensities and 
their durations and return periods (Table 1) are based on derived sce
narios from the Danish design practice (WPC, 2014). The derived 
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climate factors from herein have their origin in the A1B climate scenario 
from the ENSEMBLES project (Van Der Linden and Mitchell, 2009) 
supplemented by other single RCP4.5 and RCP8.5 simulations (reported 
in Gregersen et al., 2014; Sørup et al., 2016). Due to problems of 
simulating in very fine timescales with climate models, they are based 
on downscaled values from courser models. The climate factors are 
derived to represent Danish conditions and are in general agreement 
with the more recent and EURO-CORDEX- 0.11◦ findings of Berg et al. 
(2019), which includes simulations at an hourly timescale. 

The climate variables of Table 1 are chosen to represent different 
rainfall conditions. In comparison with Thorndahl et al. (2017), more 
climate variables are added to cover a wider range of applications within 
urban drainage design. The annual maximum 5-day precipitation is 
added to include a target related to changes in consecutive rainfall days. 
In an urban drainage context, the 5-day precipitation has an impact on 
the continuous filling and thus the emptying time of stormwater 
detention ponds with low outflow rates. Furthermore, rain intensities for 
very short durations of 10 min with return periods 2 and 10 years are 
added along with rain intensities over 360 min for the same return pe
riods. By introducing both shorter and longer durations than the original 
60 min, we accommodate a range of durations that covers most drainage 
system pipe design values in Denmark. 

In the generation of rain series representing the current climate, 
climate factors corresponding to cf = 1 are applied and the standard 
deviations of the climate factors (used in Eq. (3), 5, 7, and 9) are derived 
from the absolute values. 

The validation climate variables (Table 2), represent both the total 
number of dry days per season as well as the maximum contiguous 
number of dry days per season. In this way, the dry weather periods are 
parameterized to represent average seasonal values as well as seasonal 
extremes. The absolute values are indeed sensitive to rain gauge station 
downtime and filtering of defective data. Therefore, some potential 
uncertainty is associated with estimating these variables solely on the 
reference series as we do with the target climate variables. To overcome 
this problem, we establish the absolute values as well as the climate 
factors on average regional values from the Danish Climate Atlas (Thejll 
et al., 2020). 

The weights applied to estimate the average relative error are also 
presented in Table 1. In this case, we assign equal weights to the sea
sonal rainfall totals and weigh them with a total of 50 % (12.5 % for each 
season). The rest of the climate variables are given weights of 6 % (for 
the climate variables with the highest occurrence) and 4 % (for climate 
variables with the lowest occurrence). This weighting certifies that both 
seasonal and extreme values are represented. However, if one season or 
one specific extreme value is more important for particular applications, 
there is the opportunity to change the weights accordingly. It is 
important to notice that the weights are merely applied to rank the re
alizations that are already accepted based on the individual climate 
variable criterion (Eq. (9)). 

In the stochastic generation of rain series, we assume stationarity 
over the period of a climatological normal corresponding to 30 years. It 
is assumed that the period of the reference series (1979–2018) is 
climatological equivalent to the period of the current climate as applied 
in the EUROCORDEX database (1981–2010). Despite the findings by 
Gregersen et al. (2015) and Willems (2013), any potential gradually 
increasing effects of climate change during the 38 years of the observed 
reference rain series is thus not considered. 

4. Results 

4.1. Generation and evaluation of rain series 

A total of 50,000 rain series realizations are generated with 
seasonally variable random parameter values for interevent time dis
tribution, climate scaling, and event sampling. Each of the generated 
rain series covers 39 years, which is the same period as the approved 

period of the historical reference rain series. 
For each of the climate scenarios, the realizations that fulfill the 

relative error acceptance criteria are selected for further analyses. 
Concerning the current climate conditions (resampled historical), 1,049 
of the 50,000 realizations fulfill the relative error criteria (Eq. (9)) for all 
of the 15 climate variables (Table 1). Equivalently, 145 and 253 re
alizations are accepted for the realizations of RCP 4.5 and 8.5 respec
tively. The acceptance ratios are indeed low, which is because we define 
an ultimate acceptance criterion that Eq. (9) must be kept for all 15 
target variables. Many of the generated rain series are rejected because 
maybe one or two target variables are outside the acceptance range. This 
is definitely a disadvantage of CLIMACS which leads to more than 98 % 
of the realizations being rejected. On the positive side, we do not 
compromise results by lowering the acceptance criteria and therefore 
maintain the stochasticity of each generated series as well as the sta
tistical agreement with targets. 

Fig. 2 shows time series plots of the historical reference series as well 
as the realizations of current climate and RCP 4.5 and 8.5 with the 
lowest weighted relative errors (RE, Eq. (10)). These time series serve as 
examples of the generated series. 

We rank the top 100 realizations by the smallest weighted average 
relative errors (Eq. (10)) and append them to an ensemble for each 
climate scenario. The weighted relative errors of the 100-member en
sembles for the current climate and projections to 2100 with RCP 4.5 
and 8.5 are presented in Fig. 3. The weighted average relative errors of 
the ensemble of the top 100 realizations are between 5.5 and 8.6 %for 
the resampled current climate conditions (resampled hist.), and 3.6–7.9 
% and 6.2–11.3 % for RCP 4.5 and 8.5 respectively. RCP 8.5 has larger 
relative errors due to larger standard deviation of the climate factors 
compared to RCP 4.5. The relative errors of winter and summer pre
cipitation are generally larger than the relative errors of spring and 
autumn precipitation. This is due to uncertainties related to solid pre
cipitation in winter (see further discussion of this below) and more oc
currences of extreme intensity events and larger climate factors in 
summer compared to the other seasons. 

Fig. 2. Rainfall intensity time series plots of historical reference series and 
realizations of generated rain series with the lowest weighted relative errors 
(RE, Eq. (10) and Fig. 3) for current climate (resampled historical series) and 
RCP 4.5 and 8.5. ap is the mean annual precipitation of the displayed 
rain series. 
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The absolute values for the targets and realization results of the rain 
series generation are presented in Fig. 4 as boxplots for the different 
climate parameters and climate scenarios. The boxplots in muted colors 
represent the projection of each climate variable with mean and stan
dard deviation of climate factors and absolute values from Table 1 
assuming Gaussian distributions. The boxplots in vivid colors display the 
results of the top 100 realizations for each climate scenario. The box
plots show medians (horizontal lines), 25 % and 75 % quantiles, and 
whiskers as 5 % and 95% quantiles. All top 100 realizations for each 
climate scenario and climate variable are pooled, such that the boxplot 
illustrates the aggregated results of all realizations. Each boxplot span 
thus represents both the year-to-year variability, the uncertainty related 
to the climate scenarios as defined by equations (5) and (6), as well as 
the variability between the realizations. The year-to-year variability and 
the variability from ensemble member to ensemble member are dis
cussed further in section 4.3. 

In general, there is a good agreement between the median values of 
targets and realizations and the equivalent quantiles for all climate 
variables. The realizations of winter precipitation have a smaller range 
than the target values, which to some extent also appear in the re
alizations of annual precipitation. This is most certainly due to larger 
uncertainties in winter precipitation observations due to the occurrence 
of solid precipitation in this period. In an earlier attempt, solid precip
itation is removed from the reference rain series by temperature 
filtering. Unfortunately, that leads to a severe underestimation of winter 
precipitation in the reference rain series and subsequent difficulties in 
fitting and accepting the realizations. Based on these evaluations, it is 
decided to keep the data with potential solid precipitation in the refer
ence data and accept larger uncertainties related to winter precipitation. 

The statistics of dry weather periods, which we do not apply as 

targets for the acceptance criteria, but only serve as a validation of the 
accepted rain series for each climate scenario, are presented in Fig. 5 as 
similar boxplots as in Fig. 4. As also shown in Table 2, the climate 
change impacts on dry weather periods are generally less than +/- 5 % 
in both RCP 4.5 and 8.5. The most significant changes are the increase in 
the maximum dry summer period (mddsu) in RCP 8.5 which increases 
by 11%, and the decrease in the maximum dry winter period (mddwi) of 
8 % in RCP 8.5. 

Dry weather periods are generally larger in spring and summer than 
in autumn and winter both in current and future climate conditions. By 
acknowledging the rather large year-to-year variability, we consider, the 
generated rain series to represent both current and future climate con
ditions well both with regards to the total number of dry days per season 
as well as the maximum dry periods per season. This is also expected 
since we get good fits of the seasonal precipitation amounts (Fig. 4). If it 
was the case, that we obtained a bias in the seasonal precipitation be
tween target and realization, it would also show as a bias in the dry 
weather periods. This justifies the exclusion of the dry weather periods 
as direct target variables. 

Fig. 6 shows IDF-relationships for the top 100 realizations and targets 
of the extremes defined by return periods. The IDF relationships of the 
historical rain series (reference) are well represented by the realizations 
of the current climate (hist. resampled) for the 2- and 10-year return 
levels. There is a larger variability of the data concerning return periods 
larger than 10 years (not shown, but exemplified in the stormwater pond 
design, Fig. 8). This generally is due to the sparse occurrence of the 
highest-ranked events (rank 1–4) in the observation/simulation periods 
of 38 years. 

From Fig. 6, it is also clear that there is a general increase in rain 
intensity from the current climate situation to the two future climate 
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Fig. 3. Weighted relative errors of 100 ensemble members for each climate scenario. The grouped relative errors indicated by the different colors correspond to the 
notation of climate variables in Table 1. 
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Fig. 4. Boxplots of target distributions (developed from Eq. (3) and (5)) for each climate scenario and climate variable (green: current climate, blue: RCP 4.5, and 
red: RCP 8.5, in muted colors) and boxplots of the top 100 realizations (based on Eq. (4) and (6)) for each climate scenario and climate variable (in vivid colors). The 
climate variables are: Top: Annual precipitation (ap, left ordinate axis), seasonal precipitation for winter (spwi), spring (spsp), summer (spsu), authmn (spau) on the 
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scenarios. The top 100 realizations for each climate scenario present a 
substantial variability, which is caused both by the stochasticity in the 
generation of rain series as well as the representation of uncertainties in 
climate projections. This is analyzed further in the response analysis 
(Section 4.2). 

In conclusion, the specified climate variables and their target values 
for both means, standard deviations as well as extremes are well trans
ferred to the stochastic realizations of current and future climate. The 
generated rain series therefore statistically represent both current and 
future climate conditions to the degree that fulfill the acceptance criteria 
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Fig. 5. Boxplots of variables related to dry weather 
periods for each climate scenario and validation 
variable (green: current climate, blue: RCP 4.5, and 
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100 realizations for each climate scenario and 
validation variable (in vivid colors). The validation 
variables are: Top: Number of dry days per season 
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reader is referred to the web version of this article.)   
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we define in CLIMACS. 

4.2. Evaluation of rain series ensembles in stormwater detention pond 
design 

The detention pond design is completed for a pond with a unit area of 
1 ha of contributing catchment. We apply the historical reference series 
as well as each member of the three ensembles representing current and 
future climate conditions as continuous inputs to the calculations of 
pond volumes (Eq. (12)) and rank the calculated volumes to estimate the 
volumes corresponding to specific return periods. Fig. 7 presents an 
example of a continuous simulation of detention pond volume with the 
RCP8.5 rain series with the lowest weighted relative error (same rain 
series as shown on the bottom panel of Fig. 2). The highest-ranking 
design volumes are indicated by their respective return periods. 

The return period for the design volume is initially selected as 5 years 
corresponding to the engineering practice of many Danish municipal
ities (WPC, 2007). The required pond volume is estimated for the 
different rain series with an outlet flow rate of 0.5, 1.0, and 5.0 l s− 1 ha− 1 

corresponding to 0.18, 0.36, and 1.8 mm/h, respectively. These values 
represent typical outlet flow rates specified in regulatory permits given 
by Danish water authorities when discharging to receiving waters with 
different sizes and capacities (Jensen et al., 2020). A maximum outlet 

flow rate of 0.5 l s− 1 ha− 1 will typically be permitted discharging to a 
small stream, whereas 5.0 l s− 1 ha− 1 will represent a robust large stream 
or river. 

Fig. 8 shows the calculated detention pond volumes for the different 
climate scenarios and the three initially selected outlet flow rates and for 
a fixed return period of 5 years. The ranges of the boxplots represent the 
ensemble variability. 

Generally, there is little difference between the volumes obtained 
from historical (reference) and median of the resampled, which in
dicates that the resampled rain series on average represent the current 
climate well. The increase in rain intensity is evident for the two climate 
scenarios. The reason that the required volumes are smaller for 
increasing outlet flow rates is that the detention pond with a larger 
outlet flow rate will empty faster than with a smaller outlet flow rate. 
The design with smaller outlet rates will therefore consist of many 
succeeding coupled smaller rain events, whereas the pond design with 
larger flow rates is constituted by larger-intensity single events. This is 
also reflected in the emptying time of the ponds (Table 3), which are 
shown to last up to more than 20 days for very low outlet flow rates. 

There is significant variability of the detention pond volumes for the 
top 100 realizations (Fig. 8). This variability also depends on the return 
period and to illustrate this, the required pond volumes are estimated as 
a function of return periods with a fixed outlet flow rate of 1 l s− 1 ha− 1 in 
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Fig. 9. As typically seen in extreme event analysis, there is an increase in 
variability as a function of return periods due to the ranking procedure 
and less data with increasing return periods. This illustrates the 
importance of having an ensemble of rain series to apply in the detention 
pond design process to evaluate the uncertainty related to the design. 

In Fig. 8, it is observed that with an increase in outlet flow rate, the 
difference between the current and the future climate projections be
comes larger. This is studied further in Fig. 10, where the mean increase 
in required detention pond volumes between current (represented by the 
mean of the resampled rain series) and future climates are plotted as a 
function of outlet flow rate. This shows an increase in required volume 
from current to future climate conditions of approx. 18 % (RCP 4.5) and 
27 % (RCP 8.5) for outlet flow rates of 0.5 l s− 1 ha− 1 up to 29 % (RCP 
4.5) and 44 % (RCP 8.5) for outlet flow rates of 8 l s− 1 ha− 1. The fact that 
the impact of climate change is less for the smaller outlet flow rates is 
found in the change of distribution of rain in future climate. It is pri
marily the summer rainfall that constitutes the design rainfall. The total 
summer rainfall changes little in the future climate and at the same time, 
the extremes will become significantly larger (this is even more signif
icant in RCP 8.5 than in RCP 4.5). These changes in rainfall patterns will 
allow for more time between individual events, which is also shown by 
the climate factors of the summer dry weather periods. A larger inter
event time will work in favor of smaller outlet flow rates. Since the pond 
design with larger outlet flow rates is more dependent on single events, 
the impact of the projected extreme events becomes more significant. 
RCP 8.5 has larger changes in peak intensity and even less total summer 
rainfall, compared to RCP 4.5, and therefore the mean increase-curves of 
Fig. 10 diverge as a function of increasing outlet flow rate. 

5. Discussion 

Based on the evaluation of the generated rain series on climate 
variables (Section 4.1) and the application of rain series ensembles in 
stormwater pond design (Section 4.2), it is interesting to consider and 
discuss the ensemble size. In many practical design applications, it might 
be too comprehensive to apply ensembles with 100 members for each 
climate scenario - especially if these practical applications are using 
integrated model simulations of large and complex drainage systems. It 
is, however, difficult to recommend a smaller ensemble of rain series or 
to select individual rain series that represent a specific quantile without 
considering each climate variable or other derived variables relevant for 
the application in question. Since the generated rain series are sto
chastic, a single ensemble member rain series might represent the upper 
distribution quantile for one climate variable and a lower quantile for 
another climate variable. A selection of an ensemble with fewer mem
bers, or even a selection of ensemble members to represent, e.g., the 
mean or a specific quantile, must rely on a specific derived rainfall 
variable. If, for example, the 60 min. rainfall intensity is identified as the 
most critical rainfall duration for a specific part of a drainage system, the 
reduction of the ensemble, or the selection of specific members should 
be done based on the statistics of the 60 min. rainfall. If, on the other 
hand, the application depends on multiple variables, or critical variables 
that have not been identified beforehand, it is recommended to apply 
the full ensemble to propagate the uncertainty of the climate projections 
through the application. Statistics of the simulated model response can 
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Fig. 8. Boxplots of required stormwater detention pond volumes with outlet 
flow rates of 0.5 l s-1 ha-1 (top), 1.0 l s-1 ha-1 (middle) and 5.0 l s-1 ha-1 (bottom) 
for return periods of 5 years. 

Table 3 
Mean emptying time of stormwater ponds as a function of outlet flow rate and 
climate scenario.  

Outlet flow rate 
(l s− 1 ha− 1) 

Mean detention pond emptying time 
(h)  

Historical Resampled RCP 4.5 RCP 8.5  

0.5 465 465 553 595  
1.0 153 148 177 189  
5.0 15 16 20 22  
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then subsequently be derived and design decisions can be made based on 
the uncertainty evaluation of the system response rather than on the 
rainfall input. 

6. Conclusion 

The current need for climate projected continuous long-term rain 
series for urban drainage design is provided by the development of 
CLIMACS. The method provides a novel stochastic resampling of indi
vidual rain events, interevent time, and climate scaling. Based on one 
single historical reference rain series, three ensembles, each with 100 
members are developed to represent current climate conditions as well 
as projections to the period 2071–2100 with RCP 4.5 and 8.5, respec
tively. The ensemble members are selected according to a minimization 
of the relative error between the 15 target climate variables and re
alizations of generated rain series. It is possible to generate rain series 
that fit both seasonal precipitation and dry weather means and standard 

deviations as well as extremes considering both year-to-year variabil
ities as well as the uncertainty of climate projections of climate vari
ables. Due to large uncertainties in the projections of the 15 climate 
variables, the variability of the generated rain series also becomes large. 
In the application of the generated rain series for urban drainage design 
purposes, it is therefore important to consider the ensemble variability 
to evaluate the uncertainty related to the design and climate projection. 

CLIMACS has a general application within urban drainage design 
that requires long-term continuous rain series to represent the 
complexity of drainage system response based on rainfall loads. This is 
illustrated by the design of stormwater detention ponds where contin
uous rain series are needed as inputs to simulate the effects of antecedent 
rainfall conditions, that is, the emptying of the pond between rain 
events. By varying the outlet flow rate from the detention pond, the 
design volume becomes differently dependent on the continuity of the 
rain series. With a large outlet flow rate, the design volume is more or 
less dependent on single events. For smaller outlet flow rates, the pond 
does not empty between events and therefore becomes more dependent 
on multiple successive events and the interevent time. In the future 
climate, the pond volume, therefore, becomes dependent on the pro
jection of dry weather periods as well as the increase in the design 
rainfall intensity. This complexity illustrates the need for a continuous 
climate projected rain series that can include heterogeneity in the pro
jection of rainfall to represent multiple climate variables, seasonal 
variability, representation of extremes, and changes in interevent time 
(or dry weather periods). 
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Fig. 10. Mean increase in required storage volume from current to future 
climate as a function of outlet flow rate. 
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Årsnotat 2019. Copenhagen, https://www.dmi.dk/fileadmin/Rapporter/2020/DMI_ 
Report_20_3.pdf. 

Schaarup-Jensen, K., Rasmussen, M.R., Thorndahl, S., 2009. To what extent does 
variability of historical rainfall series influence extreme event statistics of sewer 
system surcharge and overflows? Water Sci. Technol. 60, 87–95. https://doi.org/ 
10.2166/wst.2009.290. 

Sørup, H.J.D., Christensen, O.B., Arnbjerg-Nielsen, K., Mikkelsen, P.S., 2016. 
Downscaling future precipitation extremes to urban hydrology scales using a spatio- 
temporal Neyman-Scott weather generator. Hydrol. Earth Syst. Sci. 20 (4), 
1387–1403. https://doi.org/10.5194/hess-20-1387-2016. 
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