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Abstract

The time dimension of datasets and long-term performance of machine learning1

models have received little attention. With extended deployments in the wild,2

models are bound to encounter novel scenarios and concept drift that cannot be3

accounted for during development and training. In order for long-term patterns and4

cycles to appear in datasets, the datasets must cover long periods of time. Since5

this is rarely the case, it is difficult to explore how computer vision algorithms cope6

with changes in data distribution occurring across long-term cycles such as seasons.7

Video surveillance is an application area clearly affected by concept drift. For this8

reason we publish the Long-term Thermal Drift (LTD) dataset. LTD consists of9

thermal surveillance imaging from a single location across 8 months. Along with10

thermal images we provide relevant metadata such as weather, the day/night cycle11

and scene activity. In this paper we use the metadata for in-depth analysis of the12

causal and correlational relationships between environmental variables and the13

performance of selected computer vision algorithms used for anomaly and object14

detection. Long-term performance is shown to be most correlated with temperature,15

humidity, the day/night cycle and scene activity level. This suggests that the16

coverage of these variables should be prioritised when building datasets for similar17

applications. As a baseline, we propose to mitigate the impact of concept drift by18

first detecting points in time where drift occurs. At this point we collect additional19

data that is used to retraining the models. This improves later performance by an20

average of 25% across all tested algorithms.21

1 Introduction22

Once computer vision algorithms step outside the lab and are deployed in real-life outdoor applica-23

tions, their performance tends to drop significantly due to conditions changing over time, i.e. concept24

drift [90, 24, 85]. Concept drift can materialize as gradual, recurring or sudden changes in the visual25

representation of the scene. Existing datasets, in general, favour coverage of multiple locations26

[32, 75] for short periods of time [46, 45, 83]. Such datasets are ill suited for exploring long-term27

effects such as concept drift and algorithms developed on their basis are unlikely to show robustness28

to long-term phenomena. Research studying concept drift [28, 55], uses synthetic datasets or datasets29

augmented in order to introduce drift. This does not necessarily completely represent real-world30

concept drift.31

Our work presents a novel real-world dataset covering the 8 months from January to August. This32

time span means that the dataset encompasses a wide range of weather conditions, human activity,33

seasonal transitions, and recurring cycles such as weekdays, weekends, mornings and evenings.34
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Along with the thermal images, timestamped metadata has been gathered. The metadata includes35

weather data such as temperature, humidity, precipitation, etc. as well as metrics for scene activity36

level. We use the dataset to study concept drift by exploring contributing factors and demonstrating37

their effects on algorithmic performance. By publishing the dataset, we seeks to aid the community38

in evaluating exiting algorithms against a long-term benchmark and in the development of algorithms39

that show greater robustness to long-term phenomena.40

To explore the dataset, two common tasks are chosen, namely anomaly and people detection. These41

tasks tend to suffer strong performance degradation when exposed to long-term concept drift [77].42

Object detection in general or detecting people in particular is a fundamental task involved in43

many use cases such as autonomous driving [86, 10, 8], tracking [6, 67, 73, 19] and re-identification44

[40, 41, 26]. Common for many of the use cases is the application of object detection in unconstrained45

environments and across long spans of time. Anomaly detection, where the goal is to detect unusual46

behavioral patterns, is another task that is exposed to concept drift. These algorithms must be able to47

distinguish irrelevant changes due to e.g. concept drift from emergencies such as burglaries or assaults48

[75], car accidents [39], loitering and suspicious behaviour [89], indoor [27] and outdoor[15, 36, 43]49

falls.50

We select representative algorithms for each task and evaluate their performance across time and in51

relation to environmental factors. As expected, all models exhibit performance degradation, as the52

test data diverges from the training set. Temperature and humidity proves to influence the models53

the most, followed by the change between day and night and the activity level of the scene. On the54

other hand, variation in precipitation and wind do not influence the performance of the models. In55

general, methods that learn from solving tasks that consider the entirety of the image are likely to be56

less impacted by drift, compared to methods that consider small regions or individual pixels [76].57

An example could be object detectors vs. autoencoders, where something like brightness is likely to58

impact the autoencoder’s reconstruction significantly, but won’t effect the class or position of objects.59

By including both autoencoders and object detectors we ensure that both ends of this spectrum are60

covered in our analysis.61

Finally, a baseline algorithm is presented to reduce the consequences of concept drift. This algorithm62

provides additional training data from points in time where concept drift is detected. This baseline63

is intended to encourage researchers to develop other methods of reducing the impact of concept64

drift. We believe that our findings on this novel dataset generalize to other environments and use65

cases, as well as other modalities and therefore will be an example to follow for future definition and66

collection of datasets. This in turn will help the community getting closer to deploying long-term67

computer vision algorithms for real-life outdoor applications. The main contributions of this paper68

can be summarized as follows:69

• The Long-term Thermal Drift (LTD) dataset - the longest-spanning systematically collected70

thermal dataset comprised of 8 months of video data, containing both timestamp and weather71

condition metadata;72

• In-depth analysis of the correlational and causal relationships between the performance of73

models and environmental factors;74

• A baseline algorithm for reducing the effects of concept drift.75

2 Related Work76

2.1 Concept Drift Detection77

As many systems need to be deployed and work stably for long periods of time and with input data78

which can change both gradually and suddenly, the presence of drift and ways to deal with it is a79

topic that has been widely studied. In computer vision it is normally studied by either focusing on80

specific real-world use cases or synthetically augmenting existing datasets. Real-world cases can be81

taken from egocentric video [53] or industrial inspection [52]. These cases present both examples82

of the problem and detection methods, but have limited use outside of the specific environments.83

Augmented versions of popular datasets such as MNIST and CIFAR can also be used. The works by84

[55] and [61] focus on methods for detecting data shifts using differences between the training and85

testing data, utilizing dimensionality reduction and statistical tests like Maximum Mean Discrepancy86

and Kolmogorov-Smirnov test. The benefit of using synthetically augmented data for testing is that87
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Table 1: Existing urban computer vision stationary and changing location datasets. The Location can
be either changing denoting moving camera like the ones on self-driving cars or stationary like on
surveillance cameras. The Type of the datasets can be either RGB, thermal or LiDAR, the Duration
is the size of the dataset in hours, the Period is the capturing time span and the Metadata is any
additional information

Name Year Location Type Duration
[hours] Period Metadata

KAIST [32] 2015 Changing RGB/Thermal 43.41 - -
CVC-14 [20] 2016 Changing RGB/Thermal 11.8 - -
Oxford RobotCar [48] 2017 Changing RGB/LiDAR - 1 year GPS, IMU, Day/Night, Weather
Aachen Day-Night [70] 2018 Changing RGB - - GPS, Day/Night, Weather
Gated2Depth [23] 2019 Changing RGB/LiDAR - - GPS, IMU, Day/Night, Weather
Dark Zurich [68] 2019 Changing RGB - - GPS, Day/Night
ACDC [69] 2020 Changing RGB - several days GPS, Weather
Ford AV [1] 2020 Changing RGB/LiDAR - 1 year GPS, IMU Day/Night, Weather, Time
Bdd100k [87] 2020 Changing RGB - - Weather, Time
UCSD [49] 2010 Stationary RGB 3.1 - -
Caltech Pedestrian [13] 2011 Stationary RGB 10 - -
VIRAT [54] 2011 Stationary RGB 29 - -
Avenue [46] 2013 Stationary RGB 0.5 - -
ShanghaiTech Campus [45] 2018 Stationary RGB 3.6 - -
Surveillance Videos [75] 2018 Stationary RGB 128 - -
Street Scene [62] 2020 Stationary RGB 4 2 summers -
ADOC [60] 2020 Stationary RGB 24 1 day -
AU-AIR [5] 2020 Stationary RGB 2 - Time, Positions
MEVA [12] 2021 Stationary RGB/Thermal 144 3 weeks GPS, Time
LTD (Our) 2021 Stationary Thermal 298 8 months GPS, Day/Night, Weather, Time

different types of shifts can easily be simulated - from gradual drift to adversarial attacks [28]. But88

these simulated shifts do not always correspond to real-world ones. Some more robust methods also89

exist [77], aimed at using real-world drift in wider variaty of use cases. The need for more research90

into concept drift, paired with a long-term real-world dataset is evident, as the effects from it can91

limit long term deployment of vision systems [72, 2].92

2.2 Datasets93

We can separate previous work roughly in two types of use cases - datasets that contain a scenes from94

a stationary location, like the ones captured from CCTV and surveillance cameras and datasets with95

constantly changing locations, like the ones specifically directed towards autonomous cars, robots96

and human egocentric footage. The two types of datasets are used for different tasks, like vehicle and97

pedestrian detection and environmental segmentation for changing datasets [32, 87, 1] and pedestrian98

tracking and anomaly detection for stationary ones [45, 62, 12]. The changing datasets also benefit99

from more diverse data coming from different sensors, compared to more image based stationary100

datasets. Our proposed LTD dataset is directed towards advancing the state-of-the-art in stationary101

location outdoor urban datasets by providing a longer duration, larger variation and rich metadata. A102

comparison in Table 1 shows how the dataset stacks against previous work.103

Datasets used for autonomous driving with changing locations [87, 70, 23, 1], which contain multiple104

modalities like LiDARs, RGB, depth cameras, as well as GPS and IMU data. They also contain105

data with longer duration from multiple days [69] to a whole year [48]. These datasets also focus106

on presenting adverse weather conditions, which can be used for domain adaptation and making107

autonomous driving and robotics application more robust [68, 1, 69].Thermal datasets are less108

prevalent but still widely used [17, 20]. These moving location car datasets normally do not contain109

explicit information of their duration, as they are captured from many cars and the data is sampled.110

On the other hand stationary location datasets do not contain any information about the period over111

which they were collected. This combined with the relative short duration of many of the widely112

used datasets ([49, 45, 13, 44]) makes it impossible for them to be used for studying long-term113

effects on deployed machine learning solutions. The duration of some of these datasets is taken from114

the research presented in [60]. Some larger datasets are gathered from internet videos [75], which115

lack the needed continuity for testing gradual concept drift in the data. More recent datasets have116

been produced with the goal to capture larger variations in the environments [12, 60], but with a117

limited scope. The lack of metadata is another problem, limiting the study of factors causing concept118
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drift, as only some of the investigated datasets provide insufficient metadata [5, 12, 66]. Most of119

the investigated datasets focus on RGB data, with only some containing both RGB and thermal120

data [32, 12]. However, thermal imaging is better at preserving preserving people’s anonymity as it121

does not capture facial and body detail. This removes the need for post-processing like blurring or122

pixelating faces to protect personal data [88, 47, 37], which is a crucial requirement for complying123

with the European general data protection regulations (GDPR).The thermal imaging market has seen124

significant growth [14] and is forecast to expand even more in the following years [65, 34], which125

makes it necessary for long-term public thermal datasets to be easily accessible126

3 The Long-term Thermal Drift (LTD) Dataset127

To address the gaps seen in the stationary surveillance state-of-the-art and to leverage the need for128

more thermal data, a new dataset is proposed. It consists of thermal videos with resolution 288× 384129

captured through the period of 8 months using a Hikvision DS-2TD2235D-25/50 thermal camera130

[30]. The camera is a long wavelength infrared (LWIR) unit, capturing wavelengths between 8 and 14131

µm. Raw data is captured through the day and saved in a mp4 format as 8-bit uncalibrated grayscale132

videos. A pre-processing algorithm is then run through the data. It first cuts the raw files into days133

starting from 00 : 00 and separates them into folders. Each folder is timestamped with the year,134

month and day timestamp. The videos for each day are then cut into 2-minute clips selected every135

30 minutes through the day, for a total of 298 hours. These videos are additionally timestamped with136

hour and minute timestamp. The starting point of the data is May 2020 until September 2020, together137

with a second part from January 2021, up until May 2021. This gives the data a large weather variation138

through the winter, spring and summer seasons. The images were taken on the harbor front in Aalborg,139

Denmark. The approximate longitude and latitude coordinates are given as (9.9217, 57.0488).140

We provide the dataset - https://www.kaggle.com/ivannikolov/longterm-thermal-drift-dataset,141

together with the code to extract the necessary data and to reproduce the experimental pipeline142

https://github.com/IvanNik17/Seasonal-Changes-in-Thermal-Surveillance-Imaging.143

Some examples of seasonal and day and night variation of the captured data, together with weather144

and human activity variation can be seen in Figure 1. These large variations, together with a total size145

almost twice as large as other datasets in Section 2.2, allows for studying the effects of concept drift146

on trained models.147
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Figure 1: Examples of extreme changes in the image data contained in the proposed dataset. From
left to right the day and night rows show example changes from data of February, March, April, June
and August. The third row shows changes based on weather conditions and human activity.

Figure 1 depicts issues stemming from the natural thermal data concept drift, such as grayscale148

inversion in the background and people in different seasons, view limitation and reflections caused by149

weather like fog, rain, snow, view cluttering from multiple people and vehicles.150
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Table 2: Average metadata for each month. From left - temperature, humidity, precipitation, dew
point, wind direction, wind speed, sun radiation and minutes of sunshine in a 10-minute interval.

Temp.
[◦C]

Hum.
[%]

Precip.
[kg/m2]

Dew P.
[◦C]

Wind Dir.
[degrees]

Wind Sp.
[m/s]

Sun Rad.
[W/m2]

Sun
[min]

Jan. -0.48 90.10 0.01 -1.96 161.91 2.58 23.97 0.90
Feb. -0.54 85.15 0.01 -2.83 131.00 2.95 51.12 1.42
Mar. 3.75 83.61 0.01 0.93 218.80 3.58 99.35 1.85
Apr. 4.47 97.25 0.13 4.10 126.50 2.97 67.31 2.23
May 10.74 75.46 0.01 6.07 217.32 3.04 256.76 3.66
June 16.36 71.46 0.01 10.57 151.27 2.37 256.46 3.63
July 12.91 75.32 0.01 8.46 268.15 3.97 270.17 3.62
Aug. 16.93 79.17 0.02 12.69 163.18 2.08 197.86 3.15

3.1 Metadata Analysis151

Besides video data we also provide metadata in the form of weather data, gathered using the open152

source Danish Meteorological Institute (DMI) weather API [33] in 10-minute intervals. The selected153

properties are - temperature, measured in [◦C], relative humidity percentage measured 2m over154

terrain, accumulated precipitation in [kg/m2], dew point temperature in [◦C] measured 2m over155

terrain, wind direction in degrees orientation, wind speed in [m/s], both measured 10m over terrain,156

mean sun radiation in [W/m2] and minutes of sunshine in the measured interval. These properties157

are selected, as it is speculated that they would be useful to explain changes in the captured image158

data. An overview of the average weather metadata measurements of the dataset can be seen in Table159

2. Temperature and relative humidity have been shown to affect thermal cameras, when detecting160

surface defects in concrete structures [80], measuring skin temperature changes on athletes [35],161

getting accurate readings for volcanology [3] and inspecting food [21]. Precipitation and dew point162

temperature can indicate the presence of rain, fog or high moisture and condensation. These can163

increase attenuation of infrared light and change the produced camera response [4, 11]. The build-up164

of moisture can create puddles in the images, which would change the scene reflectivity and reflected165

temperature [7]. The sun radiation and amount of sunshine can affect the captured images by rapidly166

changing the intensity of the infrared light. Finally wind speed and direction can cause movement of167

background parts of the scene like water ripples, ropes, etc., as well as movement of the camera itself.168

4 Long-term Performance Experiment169

We study the effects of concept drift on six machine learning models - two autoencoders, two object170

detectors and anomaly detectors. For these experiments only weather parameters not found to have171

significant correlation to other parameters are considered, namely - temperature, humidity, wind speed,172

wind direction and precipitation. More information on the correlation between weather parameters is173

given in the Appendix.174

4.1 Data Selection Protocol175

In order to keep the experiments and labelling effort manageable, samples across the full data set176

are selected based on the following protocol. This is done to minimize the number of frames and177

maximize the variation covered by the selection. For the sampling temperature metadata is used, as178

it is proven to directly correlate with changes to thermal images [80, 35, 21]. The protocol can be179

summarized as follows:180

1. Every 2-minute clip in the dataset is sampled with a frequency of one frame per second,181

resulting in 120 frames per clip;182

2. Based on the temperature metadata, we select a cold month for the training set and another183

cold month, a median temperature one, and a warm month for the test set;184

3. The training set exists in three variants: coldest day 13th of February, the corresponding185

week 13-20 of February, and the entirety of February;186

4. The test sets consist of data from January (similar cold month), April (month with median187

temperature), and August (warmest month).188
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From each of the thus created subsets, a greedy furthest point sampling is used for selecting frames.189

The frames for each day are sampled by calculating the farthest distances in the 2D feature space190

of the frame numbering and the temperature. A visual example of the sampling can be seen in191

the Appendix. The amounts of selected samples vary for the training data depending on the used192

algorithm. This is further discussed in the next sections.193

4.2 Tested Models194

Six deep learning models are tested. All six are originally designed to work with RGB data, so their195

input channel is reduced from 3 to 1, corresponding to a change to the grayscale thermal data. No196

additional changes were made, as the focus of the paper is not algorithm performance but change in197

performance over time.198

Two of tested models are autoencoders, as representatives for dimensional reduction, noise removal,199

concept drift detection and anomaly detection methods. Autoencoders are well suited for researching200

concept drift in long-term datasets, as their reconstruction performance is inherently tightly connected201

to the training data. The first autoencoder follows a simple fully convolutional architecture with202

symmetric 5-layer encoder and decoder. The implementation is based on the autoencoder used in a203

previous work [43]. It is theorized that its simplicity will make it sensitive to concept drift in the input204

data. The second autoencoder is the latest version of the Vector Quantised Variational Autoencoder205

(VQVAE2) [63]. This autoencoder uses collections of multi-scale hierarchical discrete tensors, called206

codebooks, to map its latent space. This gives it more robustness compared to regular autoencoders.207

The VQVAE2 implementation used here is closely based on [50]. Both autoencoders are trained for208

200 epochs.209

Two versions of the anomaly detector method MNAD [57] are also tested. They extend traditional210

autoencoders, by introducing memory-guided normality detection. We look at the typical reconstruc-211

tion based comparison (MNAD_recon), as well as the prediction approach (MNAD_pred), using212

the preceding four consecutive frames to predict the future frame. The backbone consists of the213

U-Net structure, without skip-connections for the MNAD_recon variant. In between the encoder and214

decoder of U-Net is a memory module, storing prototypical events, concatenated with the original215

encoder output. The memory is primarily learned during training, but also updates during testing.216

Both versions are trained for 100 epochs.217

Lastly two supervised object detectors are also tested - the YOLOv5 and Faster R-CNN[64]. The218

chosen hyperparameters for YOLOv5 remain the same as the work in [82], except that the initial219

learning rate is set to 0.00075 and trained for 200 epochs. The Faster R-CNN is trained for 200220

epochs as well with SGD, with initial learning rate set as 0.005, the weight decay as 0.005 and the221

momentum kept at 0.9. Both object detectors have previously been successfully applied to outdoor222

thermal imaging [38, 31, 9, 18].223

The autoencoders are trained on a NVIDIA GTX1070 Super, the anomaly detectors on a NVIDIA224

RTX3080 and the object detectors on a NVIDIA RTX2080Ti.225

4.3 Drift Algorithmic Performance Analysis226

This experiment aims to see how the performance of the selected algorithms changes depending on227

the variation of the training data.228

The training sets for the autoencoders and the anomaly detectors contain 5000 frames per subset, sam-229

pled using the method discussed in subsection 4.1, where 20% are used for validation. Performance230

is reported as the average MSE across every image in each of the three test sets. The performance of231

the two autoencoders and anomaly detectors is listed in Table 3. We can see that the MSE for the232

CAE, VQVAE2 and MNAD_recon increases the farther away the test data goes from the training data.233

It can also be seen that the larger temporal pool provided for sampling for the weekly and monthly234

training data helps with keeping the MSE lower through the different months. The MNAD_pred is235

the only model keeping a consistent performance through the months without any noticeable drift.236

This is most likely due to the U-Net skip connections being able to reconstruct the background scene237

with a very low reconstruction error.238

For the object detectors, because of the necessary data-labeling a smaller number of images are239

used for training and testing - both having 100 frames per subset. In addition to these a validation240
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set comprising of 51 images evenly sampled from a previous annotated dataset [43] collected in241

February 2020 is used. All of the subsets are annotated with bounding boxes around people seen242

in each frame using the LabelImg open source program [81]. The annotations are also part of the243

LTD dataset. Since the performance of object detector is based on detected bounding boxes, mAP is244

used to evaluate it. The performance of the object detectors is given in Table 4. The accuracy of both245

object detectors, drastically drops in the month of April. To prevent overfitting the smaller amount of246

training data, we observe the validation and test loss.247

As a conclusion from the performance analysis the higher variation provided by sampling from248

the week and month data, has been translated to better and more stable models in all the tested249

models. We can still see the effects of the seasonal drift, so additional analysis will be provided in the250

following sections.251

Table 3: Results are reported as the average
of the MSE across every frame in the test set.
Higher results show worse performance.

Train Test
Methods Feb. Jan. Apr. Aug.

CAE
Day 5k 0.0096 0.0202 0.0242
Week 5k 0.0061 0.0167 0.0212
Month 5k 0.0042 0.0109 0.0147

VQVAE2
Day 5k 0.0051 0.0072 0.0068
Week 5k 0.0039 0.0066 0.0061
Month 5k 0.0021 0.0039 0.0035

MNAD
Recon.

Day 5k 0.0028 0.0057 0.0069
Week 5k 0.0065 0.0066 0.0062
Month 5k 0.0015 0.0041 0.0048

MNAD
Pred.

Day 5k 0.0008 0.0007 0.0009
Week 5k 0.0007 0.0006 0.0007
Month 5k 0.0007 0.0006 0.0007

Table 4: Results are reported as the mAP50

across every frame in the test set. Lower re-
sults show worse performance.

Train Test
Method Feb. Jan. Apr. Aug.

YOLOv5
Day 100 0.8010 0.5390 0.5240
Week 100 0.7940 0.4540 0.4860
Month 100 0.7930 0.4860 0.4830

Faster
R-CNN

Day 100 0.6760 0.3230 0.3370
Week 100 0.6740 0.2790 0.3060
Month 100 0.6400 0.2560 0.3180

5 Drift Analysis252

In this section we look at the possible relations between the observed model performance drift and253

the changes in the captured metadata. Looking through the data examples given in Figure 1, two254

main visual change types are identified - seasonal and day/night. These types can be caused by either255

changes in the weather conditions, the human activity or a combination between the two. The relation256

between the model performance metrics and metadata features representing these changes is analysed.257

As discussed in section 3.1, we choose temperature, humidity, precipitation, wind direction and wind258

speed as weather data features. For analysing the day/night changes the timestamp data is used to259

calculate hours of the day, as well as to calculate the sunrise and sunset times [74, 51]. To quantify260

the activity in the scene the difference between each testing frame and the previous frame from the261

main dataset is calculated. The mean value from this difference is selected. To focus only on scene262

activity everything in the background that moves like the waterfront and the visible ropes and masts263

is masked out. More information on this can be found in the Appendix.264

We choose to use the results only from the models trained on the monthly February data, for easier265

visualization. The correlation between each of these features and the measured performance metric266

for each of the methods is first calculated. For the autoencoders and anomaly detectors this is the267

MSE, while for the object detectors we calculate the F1-score from all images containing people, as it268

gives a good overview of the precision and recall of the models. Both the basic Pearson’s correlation,269

as well as the more sensitive to non-linear relations Distance correlation [78, 16] are calculated. The270

statistical significance p-values are also calculated with threshold at 0.05. The calculated correlation271

r values are given in Table 5, where those with p-values below the threshold are shown in red.272

From Table 5 it can be seen that temperature and humidity have both the largest correlation values to273

most of the metrics, as well as the most consistently statistically significant results, followed by the274

scene activity and day/night features. We focus on these four features in the following analysis.275

To get a better understanding of not only the correlational, but also causal relations between the276

models’ performance metrics and the chosen features, we look at the Granger causality test [22].277
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Table 5: Correlation between the model’s measured performance values MSE and F1-score and the
weather, time and scene activity features. Two correlation measures are used - Pearson’s (P.C.) and
Distance (D.C.) correlation. Measures which do not meet the statistical significance threshold of their
p-values are shown in red and marked 7. The Day/Night features is specified as D./N.

Measure Temp. Hum. Wind Dir. Wind Sp. Precip. Activ. D./N. Hour

CAE - MSE
P. C. 0.679 0.636 0.018 7 0.157 0.109 7 0.270 0.545 0.166
D. C. 0.682 0.588 0.158 0.170 0.126 7 0.291 0.538 0.287

VQVAE2 - MSE
P. C. 0.381 0.690 0.001 7 0.194 0.172 0.217 0.403 0.124
D. C. 0.347 0.639 0.174 0.201 0.224 0.217 0.382 0.213

MNAD Recon. - MSE
P. C. 0.607 0.672 0.016 7 0.173 0.126 0.220 0.509 0.156
D. C. 0.617 0.629 0.188 0.177 0.155 0.252 0.501 0.273

MNAD Pred. - MSE
P. C. 0.107 7 0.277 0.064 7 0.152 0.072 7 0.677 0.369 0.137
D. C. 0.231 0.348 0.154 0.172 0.0867 0.665 0.462 0.312

YOLOv5 - F1-score
P. C. 0.261 0.258 0.102 7 0.011 7 0.096 7 0.124 7 0.047 7 0.009 7

D. C. 0.293 0.283 0.146 7 0.094 7 0.135 7 0.255 0.113 7 0.174 7

Faster R-CNN - F1-score
P. C. 0.354 0.456 0.115 7 0.135 7 0.01247 0.199 0.147 0.001 7

D. C. 0.334 0.460 0.228 0.149 7 0.065 7 0.231 0.163 0.118 7

The test only guarantees a predictive causality between variables, but would be able to point out278

any possible connections. The Granger causality tests the null hypothesis that the past values of one279

variable do not cause another. The p-value threshold is set to 0.05, below that the null hypothesis280

can be rejected, with the conclusion that there is a predictive causality between the variables. As the281

normal Granger causality test as presented in [71] is used on data with linear relations, we also use282

the more robust non-linear Neural Granger test [79]. Two best performing versions are used, based283

on long-short term memory networks (LSTM) and multi-level perceptron (MLP). Both models were284

trained using proximal gradient descent [56], with λ = 0.002, ridge regression coefficient 0.01 and285

learning rate of 0.005. The results from the Granger causality tests are given in Table 6, where cells286

shown with green indicate a statistically significant presence of Granger causality and the ones with287

red - no presence.288

Table 6: Results from calculating linear and non-linear (LSTM and MLP) Granger causality tests.
The cells marked with 3 show positive predictive causality, while cells marked with 7 show no
significant causality.

Temp. Hum. Activ. D./N.

Basic LSTM MLP Basic LSTM MLP Basic LSTM MLP Basic LSTM MLP
CAE - MSE 3 3 3 3 3 7 7 7 7 3 3 3

VQVAE2 - MSE 3 3 3 3 3 7 7 7 7 3 3 3

MNAD Recon. - MSE 3 3 3 3 3 7 7 7 7 3 3 3

MNAD Pred. - MSE 3 3 7 7 7 7 7 3 7 3 3 3

YOLOv5 - F1-score 3 7 7 3 7 3 7 7 7 7 7 7

Faster R-CNN - F1-score 7 7 7 7 3 7 7 7 7 3 3 3

The results show that the human activity has no predictive causality towards the performance of the289

models, which combined with the results from the correlation analysis, can point towards a second-290

hand relation. Our hypothesis is that the change in weather conditions and the day/night cycle are291

related to the change in human activity. From the other features, temperature has stronger predictive292

causality towards the autoencoders and anomaly detectors, while humidity and the day/night cycle293

have a more balanced predictive causality.294

Figure 2 shows the relationship between the features and the model metrics. As a processing step295

before plotting the temperature and humidity they are first smoothed using a mean filter with a kernel296

size of 20 and then the MSE is normalized between 0 and 1. This is done as they are not compared,297

but the trend of their change is visualized. We plot the average values for the training month of298

February, as a vertical red line, to indicate a "threshold".299
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Figure 2: Visual representation of the changes of MSE and F1-score for the tested models compared
to the temperature, humidity and day/night cycle.

6 Drift Prediction Baseline300

As a baseline for exploring and mitigating the effects of concept drift a reference algorithm for301

predicting drift is presented. We use three strongest features - temperature, humidity and day/night302

cycle, together with MSE from our convolutional autoencoder (CAE) trained on the February monthly303

data. The CAE is chosen, as it is the most sensitive to changes in the dataset and is strongly correlated304

to the performance of all other tested models, except Faster R-CNN. The CAE MSE results from305

the training data are used together with the chosen features to train two widely used novelty/outlier306

detection models - isolation forests [42] and one-class SVM [59], available as part of scikit-learn307

[58]. The isolation forest has 100 base estimators, the one-class SVM has a radial basis function308

(RBF) kernel and γ of 0.03. We then test the results from each day from the full LTD dataset to detect309

points where many outliers emerge in both predictors. The first large concentration of outliers in 7310

consecutive days is selected, which in our case is 5th of March.311

To test if taking in consideration data from the found drift point can help with the performance of the312

models against concept drift, training data from one week starting after the 5th of March is sampled.313

The new data is used together with the previous training data from February to retrain the tested314

models. The results, together with the month results from Table 3 and 4 for comparison, are given in315

Table 7 and Table 8. By adding the March data, all tested models achieve better results. We can see316

that the outlier detection models trained on the CAE MSE, together with the temperature, humidity317

and day/night cycle can be used together as a indicator for the amount of drift present in the input318

data.319

7 Conclusion and Future Work320

In this paper we introduced the Long-term Thermal Drift (LTD) dataset spanning 8 months for321

detecting concept drift in deep learning models. The dataset and the accompanying metadata can be322

used to document performance degradation as data drifts from the training set. These effects were323

studied on anomaly and object detection models, as well as autoencoders. It was demonstrated that324

more diverse training data lowers the effects of concept drift. The performance of the models showed325

a strong correlational and causal relationship to the change in temperature and humidity. A less326

pronounced relationship was observed to the day/night cycle and scene activity. Lastly, we showed327
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Table 7: The MSE results from the full month
in Table 3, compared to the ones using the
new training datasets containing a combina-
tion of February and the week in March where
drift is detected. Higher results show worse
performance.

Train Test
Methods Jan. Apr. Aug.

VQVAE2
Feb. 5k 0.0021 0.0039 0.0035
Feb. 5k + Mar. 5k 0.0020 0.0033 0.0030

MNAD
Recon.

Feb. 5k 0.0015 0.0041 0.0048
Feb. 5k + Mar. 5k 0.0006 0.0015 0.0025

MNAD
Pred.

Feb. 5k 0.0007 0.0006 0.0007
Feb. 5k + Mar. 5k 0.0007 0.0005 0.0006

Table 8: The mAP50 Results from the full
month in Table 4, compared to the ones using
the new training datasets containing a com-
bination of February and the week in March
where drift is detected. Lower results show
worse performance.

Train Test
Method Jan. Apr. Aug.

YOLOv5
Feb. 100 0.7930 0.4860 0.4830
Feb. 100 + Mar. 100 0.8690 0.6640 0.6110

Faster
R-CNN

Feb. 100 0.6400 0.2560 0.3180
Feb. 100 + Mar. 100 0.6990 0.3910 0.3380

how the concept drift can be further mitigated by detecting when it starts to manifest and providing328

additional data to the training process.329

The proposed LTD dataset contains a combination of diverse environmental images and granular330

metadata. The equally spaced long-term data can be used to test the change in performance of deep331

learning models at different data scenarios - only day or night data, changes between activity in the332

weekday and weekends, summer and winter scenarios. The influence of weather conditions like rain,333

snow or fog can also be explored. The possibility of training more robust models and predicting334

when steps need to be taken, before their performance degrades, is only possible with such long-term335

sequential datasets.336

Possible negative social impacts of such long-term datasets concentrating on a single location is that337

they can be used to track the habits, interactions and movements of people. We offset this by providing338

a thermal dataset, which provides greater protection of people’s anonymity than conventional RGB339

and does not require post-processing for blurring facial features.340

The long-term nature of the dataset can also be used, as demonstrated in this paper, to utilize time-341

series analysis procedures on the outputs from different layers of deep learning models. From simple342

time-series analysis and forecasting models like Vector Autoregressive (VAR) Models [29] to more343

complex and data agnostic models like STRIPE [25] or Adversarial Sparse Transformers [84].344

We believe that the proposed dataset and the accompanied analysis would help researchers understand345

the causes for performance drift in models and hence enable easier deployment of long-term solutions346

in outdoor environments.347
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