

Aalborg Universitet

A Dataset for Buffering Delays Due to the Interaction Between the Nagle Algorithm and
the Delayed Acknowledgement Algorithm in Cyber-Physical Systems Communication

Al-Hammouri, Ahmad T.; Olsen, Rasmus Løvenstein

Published in:
Data in Brief

DOI (link to publication from Publisher):
10.1016/j.dib.2021.107530

Creative Commons License
CC BY 4.0

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Al-Hammouri, A. T., & Olsen, R. L. (2021). A Dataset for Buffering Delays Due to the Interaction Between the
Nagle Algorithm and the Delayed Acknowledgement Algorithm in Cyber-Physical Systems Communication. Data
in Brief, 39, [107530]. https://doi.org/10.1016/j.dib.2021.107530

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1016/j.dib.2021.107530
https://vbn.aau.dk/en/publications/c1d2bfe2-904c-48d8-b53f-d1319e9b1078
https://doi.org/10.1016/j.dib.2021.107530

Data in Brief 39 (2021) 107530

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

A dataset for buffering delays due to the

interaction between the Nagle algorithm and

the delayed acknowledgement algorithm in

cyber-physical systems communication

Ahmad T. Al-Hammouri a , ∗, Rasmus L. Olsen

b

a Department of Network Engineering and Security, Jordan University of Science and Technology, P.O. Box 3030,

Irbid 22110, Jordan
b Department of Electronic Systems, Aalborg University, P.O. Box 159, Aalborg 9100, Denmark

a r t i c l e i n f o

Article history:

Received 11 October 2021

Revised 24 October 2021

Accepted 25 October 2021

Available online 29 October 2021

Keywords:

IoT communication

Real-time communication

Sender-side delay

TCP buffering

Protocol parameter tuning

Real-life operating systems

a b s t r a c t

In this article, we provide the research community with a

dataset for the buffering delays that data packets experience

at the TCP sending side in the realm of Cyber-Physical Sys-

tems (CPSs) and IoT. We focus on the buffering that occurs

at the sender side due to the the adverse interaction between

the Nagle algorithm and the delayed acknowledgement algo-

rithm, which both were originally introduced into TCP to pre-

vent sending out many small-sized packets over the network.

These two algorithms are turned on (enabled) by default in

most operating systems.

The dataset is collected using four real-life operating sys-

tems: Windows, Linux, FreeBSD, and QNX (a real-time oper-

ating system). In each scenario, there are three separate dif-

ferent (virtual) machines running various operating systems.

One machine, or an end-host, acts a data source, another acts

as a data sink, and a third acts a network emulator that in-

troduces artificial propagation delays between the source and

the destination.

To measure buffering delay at the sender side, we record for

each sent packet the two time instants: when the packet

is first generated at the application layer, and when it is

∗ Corresponding author.

E-mail addresses: hammouri@just.edu.jo (A.T. Al-Hammouri), rlo@es.aau.dk (R.L. Olsen).

https://doi.org/10.1016/j.dib.2021.107530

2352-3409/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.dib.2021.107530
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dib
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2021.107530&domain=pdf
mailto:hammouri@just.edu.jo
mailto:rlo@es.aau.dk
https://doi.org/10.1016/j.dib.2021.107530
http://creativecommons.org/licenses/by/4.0/

2 A.T. Al-Hammouri and R.L. Olsen / Data in Brief 39 (2021) 107530

actually sent on the physical network. In each case, 10 differ-

ent independent experiment replications/runs are executed.

Here, we provide the full distribution of all delay samples

represented by the cumulative distribution function (CDF),

which is expressed mathematically by

F X (x) = P(X ≤ x) ,

where x is the delay measured in milliseconds, and P is the

probability operator.

The data exhibited here gives an impression of the amount

and scale of the delay occurring at sender-side in TCP. More

importantly, the data can be used to investigate the degree

these delays affect the performance of cyber-physical systems

and IoT or other real-time applications employing TCP.

© 2021 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

S

V

pecifications Table

Subject Computer Science

Specific subject area Computer Networks and Communications, buffering delay in Cyber-Physical

Systems and IoT

Type of data Table

How data were acquired Server hardware, VMware ESXi Hypervisor, Operating Systems (QNX, Windows,

Ubuntu Linux, and FreeBSD Unix), TCP server program, TCP client program,

packet sniffing/capturing program, and traffic shaping control program

Data format Raw, analyzed

Parameters for data collection Three virtual machines (a source, network emulator, and destination) run atop

VMware ESXi hypervisor. The source runs the QNX Neutrino 7.0 real-time

operating system. The destination runs one of four operating systems: QNX 7.0,

Windows 7, Ubuntu Linux 18.04, or FreeBSD 12.1. The Network Emulator runs

Ubuntu Linux 18.04. Each machine is equipped with 4GB of RAM and two

CPUs. Each packet exchanged is of size 100B

Description of data collection The source runs a TCP server program, the destination runs a TCP client

program, and the Network Emulator runs the netem utility. The client

initiates the TCP connection with the server. Then, the server continuously

generates fixed-sized packets spaced evenly in time, and sends them to the

client. netem is used to introduce artificial propagation delays between the

source and the destination. The buffering delay is obtained by measuring for

each packet the two time instants: when the packet is first generated at the

application layer, and when it is actually sent at the physical network

Data source location Institution: Jordan University of Science and Technology

City/Town/Region: Irbid

Country: Jordan

Latitude and longitude (and GPS coordinates) for collected samples/data:

32.4913 ◦ N, 35.9875 ◦ E

Data accessibility Repository name: Mendeley Data

Data identification number: 10.17632/zhbpyvt4g9.1

Direct URL to data: https://data.mendeley.com/datasets/zhbpyvt4g9/1

alue of the Data

• The data provide the amount of extra delays that real-time systems suffer when using TCP.

The extra delay is due to the buffering that happens at the sender side, which in turn is due

to the interaction between the two algorithms: Nagle and Delayed Acknowledgement. These

two algorithms are turned on (enabled) by default in most operating systems. The data are

obtained for various real-life operating systems and for various network settings.

http://creativecommons.org/licenses/by/4.0/
https://data.mendeley.com/datasets/zhbpyvt4g9/1

A.T. Al-Hammouri and R.L. Olsen / Data in Brief 39 (2021) 107530 3

• Different stakeholders working in the field of CPSs and IoT can benefit from the data, includ-

ing vendors manufacturing such devices, commercial and open-source software developers

developing relevant software packages, committee and working group members working on

new supporting protocols and standards, and finally academic and industry researchers in-

vestigating CPS and IoT applications.

• These data can be used to study to what degree the buffering delays affect the performance

of CPSs and IoT applications. Also, they can be used to investigate different control algorithms

to compensate for the delays or to mask the effect of delays.

• We hope these data would stimulate further investigation into the fine-grain tuning of the

several configuration parameters of the network protocols at the lower layers (i.e., IP, MAC,

and physical layers) to better suite the real-time requirements of CPSs and IoT.

1. Data Description

In the main directory, Data , there are 40 sub-directories. Each sub-directory is named in the

format: ReceiverOS-NagleAlgorithm-RTTms , where

• ReceiverOS is the operating system running on the receiver machine, and is one of four:

QNX Neutrino, Windows, Ubuntu Linux, or FreeBSD,

• NagleAlgorithm is either NagleOff when the Nagle algorithm is disabled, or NagleOn
when the Nagle algorithm is enabled, and finally

• RTTms is the round-trip propagation delay introduced between the sender and the receiver

machines, in milliseconds. It is one of five values: 10 ms, 30 ms, 100 ms, 500 ms, and 10 0 0

ms.

For example, the directory Windows-NagleOff-30ms is for the Windows operating system

when the Nagle algorithm is disabled and when the round-trip propagation delay between the

source and the destination is 30 ms.

Each sub-directory contains 42 data files in ASCII format as follows:

• Sender-out-i.txt , where i = 0 , 1 , 2 , . . . , 9 (10 files). Each file corresponds to a single

run/replication, and gives the timestamp (in seconds) when the application layer generated

the given packet. The format of the file is as follows

ID Ts
where ID is the packet number (starting at 1), and Ts is the timestamp.

• Sniffer-i.txt , where i = 0 , 1 , 2 , . . . , 9 (10 files). Each file corresponds to a single

run/replication. The format of the file is as follows

Ts SrcIPAddr.SrcPortNo DstIPAddr.DstPortNo [Flags] length yyy
where

- Ts is the timestamp (in seconds) when a TCP segment is sent out on the wire,

- SrcIPAddr , SrcPortNo , DstIPAddr , DstPortNo are the source IP address, source

port number, destination IP address, and destination port number, respectively,

- Flags is the TCP flags, A, F, S, P, U, etc., and

- yyy is the length/size of the TCP segment being sent in bytes.

• SnifferTimestamp-i.txt , where i = 0 , 1 , 2 , . . . , 9 (10 files). Each file corresponds to a

single Sniffer-i.txt file. For example, SnifferTimestamp-5.txt corresponds to

Sniffer-5.txt . Whereas each Sniffer-i.txt file gives the timestamp when each

TCP segment is sent out on the wire, the file SnifferTimestamp-i.txt gives the

timestamp when each application-level message/packet is sent out on the wire. There-

fore, SnifferTimestamp-i.txt is an expansion of Sniffer-i.txt because several

application-layer packets may get sent out in the same TCP segment. The format of the file

is as follows

Ts Len
where Ts is the timestamp when the application-level packet is sent on the network, and

Len is the size of the packet in bytes.

4 A.T. Al-Hammouri and R.L. Olsen / Data in Brief 39 (2021) 107530

2

t

w

O

a

i

S

v

t

i

a

• App-Net-Delay-Sniffer-i.txt , where i = 0 , 1 , 2 , . . . , 9 (10 files). The format of the file

is as follows

ID Ts Ts Len Delay
where

- The first two columns in each App-Net-Delay-Sniffer-i.txt are the same two

columns in the corresponding Sender-out-i.txt file,

- The third and the fourth columns in each App-Net-Delay-Sniffer-i.txt are the

same two columns in the corresponding SnifferTimestamp-i.txt file, and

- The last column (Delay) in each App-Net-Delay-Sniffer-i.txt file is the buffer-

ing delay at the sender side measured in microseconds. That is, each entry in the

fifth column, i.e., Delay , is the difference between the entry in the same row of

the third column and the entry in the same row of the second column in the same

App-Net-Delay-Sniffer-i.txt file, converted into microseconds.

• App-Net-Delay-ALL.txt (one file). The file combines all delay samples from all

runs/replications in a single file. The format of the file is as follows

ID Delay
where ID is the same ID from each Sender-out-i.txt file, and Delay is the corre-

sponding buffering delay at the sender side, in microseconds.

• CDF.txt (one file). The file gives the distribution of all delay samples across all runs in

terms of the cumulative distribution function (CDF), which is expressed mathematically by

F X (x) = P (X ≤ x) ,

where x is the delay measured in milliseconds, and P is the probability operator.

The format of the file is as follows

Delay CDF
where Delay is the buffering delay measured in milliseconds, and CDF is the CDF value.

For example,

• Fig. 1 shows the CDF plots of the four different operating systems when the Nagle algorithm

is enabled and when the round-trip propagation delay between the sender and the receiver

is 30 ms.

• Fig. 2 shows the CDF plots of the Windows operating systems when the Nagle algorithm is

enabled and for different round-trip propagation delay between the sender and the receiver.

• Fig. 3 shows the CDF plots of the QNX operating systems when the Nagle algorithm is both

enabled and disabled, and when the round-trip propagation delay between the sender and

the receiver is 10 msec.

. Experimental Design, Materials and Methods

Here, we preset the experimental environment that we used to collect the buffering delay at

he sender side in various real-life operating systems.

The setup comprises three virtual machines running on the same virtualization software,

hich is VMware ESXi hypervisor. The VMware ESXi hypervisor runs over a server hardware.

ne of the virtual machines is the data source (sender); another is the destination (receiver);

nd the third is a network emulator (NetEm). Fig. 4 depicts the experimental setup.

Logically, the source that sends data in a CPSs is usually an embedded device (a special-

zed hardware and a specialized software). Examples for data sources include Plant Control in a

CADA system and Phasor Measurement Units (PMUs) in power systems. Since embedded de-

ices run a real-time operating system, we choose for the virtual machine VM1 the QNX Neu-

rino 7.0 real-time operating system [1] . The QNX operating system is a highly dependable,

ndustry-grade operating system that is utilized in more than 175 million cars worldwide [2] ,

nd in different industrial Programmable Logic Controllers (PLCs) and control systems [3] .

A.T. Al-Hammouri and R.L. Olsen / Data in Brief 39 (2021) 107530 5

Fig. 1. The CDF values of the sender-side buffering delays for the four different operating systems when the Nagle

algorithm is enabled and when the round-trip propagation delay between the sender and the receiver is 30 ms.

Fig. 2. The CDF values of the sender-side buffering delays for the Windows operating systems when the Nagle algorithm

is enabled and for different round-trip propagation delay between the sender and the receiver.

6 A.T. Al-Hammouri and R.L. Olsen / Data in Brief 39 (2021) 107530

Fig. 3. The CDF values of the sender-side buffering delays for the QNX operating systems when the Nagle algorithm is

both enabled and disabled, and when the round-trip propagation delay between the sender and the receiver is 10 ms.

Fig. 4. Experimental Setup: VM1, VM2, and VM3 are virtual machines running on the physical machine and are con-

nected via a software router inside the hypervisor.

b

l

d

u

f

U

T

fi

i

t

p

On the other hand, the data destination or sink can be an embedded device, or it can also

e offered as a software package to be installed on a computer system, e.g., a regular PC. In the

atter case, the software package is installed on commonly used operating systems, such as Win-

ows, Linux, and Mac OS; see for example [4–6] . Examples of data destinations include Dispatch

nits in a SCADA system and Phasor Data Concentrators (PDCs) in power systems. Therefore,

or VM2, we choose to experiment with four operating systems: QNX Neutrino 7.0, Windows 7,

buntu Linux 18.04, and FreeBSD 12.1 Unix (macOS borrows heavily from FreeBSD [7]).

The source runs a TCP server program while the destination runs a TCP client program.

he client initiates the TCP connection with the server. Then, the server continuously generates

xed-sized packets spaced evenly in time, and sends them to the client. Each packet exchanged

s of size 100B and the interval between the generated data packets is 100 ms.

Finally, VM3 runs Ubuntu Linux 18.04 and is equipped with the netem (Network Emula-

or) utility [8] , which is used to emulate different network conditions by introducing artificial

ropagation delays between the source and the destination.

A.T. Al-Hammouri and R.L. Olsen / Data in Brief 39 (2021) 107530 7

Fig. 5. The Layering Model of Network Protocols with example protocols in each layer.

To measure extra buffering delay at the sender side, we record for each packet the two time

instants: when the packet is first generated at the application layer, and when it is actually sent

at the physical network. The first time instant is obtained by invoking the clock_gettime
system call just before the sender process writes the data to the TCP socket. The second time

instant is obtained via a packet capturing/sniffing program. The difference between the two time

instants gives the time that each packet incurs at the transport layer (i.e., the time each packet

is held in the TCP send buffer before being forwarded); see Fig. 5 .

Finally, to eliminate the random noise and the inherent stochastic variability in the output

data, 10 different independent experiment replications/runs are executed for each case. Each run

lasts until 1005 packets are successfully sent out.

We emphasize that the used experimental setup is sufficient to the studied facets of TCP be-

cause we are not studying any interaction and contention between traffic of different sources;

rather, we are studying the delay caused by the buffering of packets at sender side. This buffer-

ing is due only to the mechanisms implemented by the end nodes themselves. As such, there

is no need to involve more nodes (e.g., more senders, and routers or switches), more links, or

cross (background) traffic.

Ethics Statement

This work involved no human subjects and no animal experiments.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal rela-

tionships which have, or could be perceived to have, influenced the work reported in this article.

CRediT Author Statement

Ahmad T. Al-Hammouri: Conceptualization, Methodology, Software, Validation, Investigation,

Data curation, Writing – original draft; Rasmus L. Olsen: Conceptualization, Writing – review &

editing.

8 A.T. Al-Hammouri and R.L. Olsen / Data in Brief 39 (2021) 107530

A

J

(

R

[

[

[

[

[

[

[

[

cknowledgment

This work was supported by a research-grant program from the Deanship of Research at the

ordan University of Science and Technology (Project #20190147) that enabled the first author

A.T. Al-Hammouri) to visit Aalborg University.

eferences

1] BlackBerry, QNX, (2021b). QNX Neutrino RTOS. http://blackberry.qnx.com/en/products/neutrino-rtos/neutrino-rtos .

Accessed September 10, 2021.

2] BlackBerry QNX, (2021a). BlackBerry QNX software now embedded in more than 175 million vehicles. https:
//www.blackberry.com/us/en/company/newsroom/press-releases/2020/blackberry- qnx- software- now- embedded-in-

more- than- 175- million- vehicles . Accessed September 10, 2021.
3] A. Abbasi , J. Wetzels , Dissecting QNX, in: Proceedings of the REcon Brussels (REconBRX), 2018, pp. 1–22 .

4] ABB (2021). PDC600 and SMT600 — wide area monitoring system enabler. https://usermanual.wiki/m/
0a9e988acf8f827c7988113489e09a91fec080975ca27930a421f26b10f1ac50.pdf . Accessed September 10, 2021.

5] Grid Protection Alliance (2021). openPDC. https://www.gridprotectionalliance.org/simplepages/HostingReq/openPDC _

HR.asp . Accessed September 10, 2021.
6] Kalki Communication Technologies Pvt. Ltd. (2021). SYNC 40 0 0 – phasor data concentrator. https://www.ase-systems.

com/wp-content/uploads/2015/12/ASE _ SYNC40 0 0.pdf . Accessed September 10, 2021.
7] Apple Inc. (2021). Overview of OS X. https://developer.apple.com/library/archive/documentation/Porting/Conceptual/

PortingUnix/background/background.html . Accessed September 10, 2021.
8] The Linux Foundation (2021). netem (network emulation). https://wiki.linuxfoundation.org/networking/netem .

Accessed September 10, 2021.

http://blackberry.qnx.com/en/products/neutrino-rtos/neutrino-rtos
https://www.blackberry.com/us/en/company/newsroom/press-releases/2020/blackberry-qnx-software-now-embedded-in-more-than-175-million-vehicles
http://refhub.elsevier.com/S2352-3409(21)00806-4/sbref0003
http://refhub.elsevier.com/S2352-3409(21)00806-4/sbref0003
http://refhub.elsevier.com/S2352-3409(21)00806-4/sbref0003
https://usermanual.wiki/m/0a9e988acf8f827c7988113489e09a91fec080975ca27930a421f26b10f1ac50.pdf
https://www.gridprotectionalliance.org/simplepages/HostingReq/openPDC_HR.asp
https://www.ase-systems.com/wp-content/uploads/2015/12/ASE_SYNC4000.pdf
https://developer.apple.com/library/archive/documentation/Porting/Conceptual/PortingUnix/background/background.html
https://wiki.linuxfoundation.org/networking/netem

	A dataset for buffering delays due to the interaction between the Nagle algorithm and the delayed acknowledgement algorithm in cyber-physical systems communication
	Specifications Table
	Value of the Data
	1 Data Description
	2 Experimental Design, Materials and Methods
	Ethics Statement
	Declaration of Competing Interest
	CRediT Author Statement
	Acknowledgment
	References

