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Abstract: The effect of friction on nonlinear dynamics and vibration of total knee arthroplasties
is yet to be investigated and understood. This research work aims at studying the influence of
friction on nonlinear dynamics, friction-induced vibration, and damage of tibiofemoral joints. For
this purpose, a spatial dynamic knee model is developed using an asymmetric nonlinear elastic
model accounting for knee joint ligaments and a penalty contact model to compute normal contact
stresses in the joint while contact detection is treated such that the associated computational time is
reduced. Several friction models are considered and embedded in the dynamic model to estimate
tangential friction forces in the knee joint. External loads and moments, due to the presence of all
soft tissues, e.g., muscles and hip-joint reaction forces, applied to the femoral bone are determined
using a musculoskeletal approach. In the post-processing stage, damage, i.e., wear and creep, are
estimated using three wear models and an empirical creep formulation, respectively. In addition, a
FFT analysis is performed to evaluate likely friction-induced vibration of tibiofemoral joints. Mesh
density analysis is performed and the methodology is assessed against outcomes available in the
literature. It can be concluded that friction influences not only the tribology, but also dynamics of the
knee joint, and friction-induced vibration is likely to take place when the friction coefficient increases.

Keywords: nonlinear dynamics; total knee arthroplasty; tribology; friction-induced vibration; fric-
tion models

1. Introduction

Friction acts as a resistance to relative motion, which can, for example, help human
beings walk and create desired sounds from instruments such as the violin [1]. How-
ever, friction can lead to energy dissipation and be harmful to machine elements and
biomedical implants due to, for example, material loss (wear) and degradation, affecting
their performance and lifetime [2]. Implant-bearing wear due to friction also is believed
to play a notable role in the failure of artificial human joints [3]. Moreover, friction can
contribute to aseptic loosening of implants due to wear, shear forces, and high frictional
torque, leading to bone fracture, instability and falls [4,5]. Friction also influences the
relative motion of knee components significantly, which has several important implications.
Excessive anterior-posterior displacements or internal-external rotations lead to the contact
occurrence at the edges of the plastic body [6], which can be especially damaging to the
knee prosthesis, as is reported in retrieval studies [7,8]. Inadequate sliding motion can also
impair human body function by increasing the likelihood of flexion contracture, reducing
the range of flexion-extension and internal-external rotations, and the over-tensing of the
soft tissues [9,10]. Furthermore, artificial human joints can undergo three-dimensional
vibration due to friction, leading to an oscillating movement on top of the gross motion
of joint components [11]. Such an oscillating phenomenon can influence both the sliding
distance and polyethylene wear, which can eventually cause prostheses to wear excessively,
consistent with clinical reports. Friction-induced vibration can also lead to squeaking
in biomedical joints [11]. In addition, when ultra-high molecular weight polyethylene
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(UHMWPE) slides against a metallic counterface, changes in the orientation of molecular
chains occur. They preferentially become oriented along a specific path, called principal
molecular orientation (PMO), owing to friction while resulting in an orientation softening in
the perpendicular direction of the PMO. They both contribute to a directional dependency
of wear resistance of the polyethylene while depending on the joint trajectory [12–15]. The
relative motion of the knee components can also influence the creep deformation as it is
dependent on the applied load and under-force duration, both of which can change due to
friction [16–18].

Friction is a force developing and acting against the relative motion of solid surfaces
and fluid layers that slides against one another. The origin of the word “friction” comes
from the Latin verb “fricare” meaning “to rub”. It is worth noting that friction is not
a fundamental force because it is reducible to underlying phenomena and forces such
as atomic force and electromagnetic attraction between particles of in-contact surfaces.
In addition, the friction coefficient is not a material property but a means of describing
a friction system. In general, the friction coefficient depends on contact stress, relative
tangential speed, surface roughness, the material property of contacting pair, surface con-
tamination, temperature, among others [19]. The scientific study of friction was pioneered
by Leonardo da Vinci (1452–1519) who developed the basic friction laws in 1493 but did not
document them [20]. The first two classical friction laws were rediscovered and recorded
in written form by Amontons (1663–1705) in 1699 [21,22]. He established that the friction
force is directly proportional to the applied load but independent of the apparent contact
area. Later, Leonhard Euler (1707–1783), through several experimental tests, clarified the
distinctions between static and kinematic frictions [23]. It is worth noting that the first who
used the Greek symbol mu (µ) for the friction coefficient was Euler. The first mathematical
relationship to computing friction force was formulated by a French engineer, Charles
Augustin Coulomb (1736–1806), stating that friction is independent of the magnitude of
relative velocity between sliding bodies [21]. In his formulation, the friction force is set
equal to the applied load multiplied by a coefficient that is the so-called Coulomb coeffi-
cient, still being used by both academia and industrial engineers. However, such a model
cannot address some underlying physics associated with the friction phenomenon.

In the last decades, a great deal of research has been devoted to advancing phe-
nomenological friction models. Such models have aimed at addressing the distinction
between the static and kinematic friction, friction phases (stick, stick-slip, and pure slip),
velocity-dependent property of friction, break-away force (pre-sliding displacement), and
frictional lag [24,25]. In addition to the variety of friction models that address the above
phenomena, the friction of UHMWPE, of which the tibial insert of total knee arthroplasty
is made, demonstrates a dependency on contact pressure. In 2001, Wang et al., performed a
series of experimental tests using a ball-and-socket test rig and found that friction decreases
with increasing contact stress [26]. Following their work, Saikko in 2006 reported the same
finding while performing pin-on-disc friction tests [27]. Both the above research studies
found a significant correlation of the friction coefficient to the maximum contact pressure
and reported associated empirical friction equations. In 2017, Barcenas-Sanchez et al.,
used a ball-on-disc test setup to obtain the friction coefficient of total knee arthroplasty
during a walking gait cycle. Subsequently, they proposed a regression model to repre-
sent experimental data mathematically [28]. In 2018, Garcia-Garcia et al., continued their
research work while conducting a series of experiments to develop prediction models
of the friction coefficient between the metallic ball and UHMWPE disk lubricated with
diluted bovine serum [29]. Regression parameters for a suggested model that fits well in
experimental data were determined for the stance and swing phases separately. They later
successfully proposed a formulation that represents the experimental data well to address
the behavior of the friction coefficient over the transition from the mixed to the full-film
lubrication regime during a walking gait cycle [30]. The fitted model relates the friction
coefficient to both contact stress and relative velocity. As the frictional events occur at the
atomic level and are of multi-physics nature owing to interactions of chemical, electromag-
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netic, and mechanical processes, some frictional phenomena are yet to be understood and
mathematically formulated despite great achievements so far [19,31].

Friction models are to be integrated into algorithms responsible for modeling dynam-
ics of the knee joint. Sathasivam and Walker (1997) investigated the dynamics of total
knee replacement under multiple friction coefficients while they used the Coulomb law
to compute friction forces [32]. Much of other research work studying the tribology of
TKA commonly assumed a fixed friction coefficient, i.e., 0.04, for the whole numerical
simulation. Fisher and Dowson reported that the friction coefficient in artificial human
joints is in the range of 0.03–0.10 [33]. However, other studies obtained higher ranges of
the friction coefficient for artificial human joints, for example, 0.05–0.33 [27], 0.06–0.25 [26],
and 0.06–0.17 [28,29]. Focusing on the dynamic modeling of total knee arthroplasty (TKA),
some investigations have aimed at developing anatomy-based dynamic models to consider
the kinetic and kinematic behavior of TKAs like quasi-static models [34–41], 2D dynamic
approaches [42–48], and sophisticated 3D mathematical dynamic solutions [49–51]. One
of the very first successful attempts to determine the 3D dynamic solution of the knee
joint was carried out by Abdel-Rahman and Hefzy [49]. Their model did not account for
the deformation of the articular surfaces and the real geometry of the tibial insert. Later,
Caruntu and Hefzy improved that model to include deformable contacts at the articular
surfaces [50]. Although much of the available knee joint dynamic models focused on
the joint itself rather than whole-body simulation, Piazza and Delp utilized a full-body
dynamic model [52]. The drawback of their approach was to employ the rigid-contact
theory to simulate the knee joint, incapable of calculating contact stresses. Recently, Askari
and Andersen developed a 3D anatomy-based dynamic approach that links an in-detail
forward dynamic methodology of the knee articulation with a deformable contact model
to a musculoskeletal system. The latter is responsible for determining physiological forces
and moments from surrounding tissues, like muscles and hip-joint reaction forces [40].

Given the state of the art in this field, the effects of friction on the TKA’s kinematics are
yet unclear and remain to be investigated. Therefore, this research work aims at studying
friction effects on the joint motion, friction-induced vibration, and the damage of TKAs.
Moreover, this research work carries out a comparative study on several phenomenological
and empirical friction models integrated into the algorithms accounting for the dynamics of
TKA. The computational framework developed in this study also is observable in Figure 1.

Figure 1. A diagram illustrating the workflow of the model developed throughout this study.
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2. An Overview on Friction Models

Friction is generally described as the resistance to motion when two surfaces slide
against each other. Friction between solid bodies is an extremely complicated physical
phenomenon encompassing elastic and plastic deformations of the articulating bodies,
chemical reactions, interactions with wear particles, micro-fractures and cracks, excitation
of electrons, and the transfer of particles from one body to another. However, it is possible
to represent this complex phenomenon using either simple friction laws with a couple
of friction parameters or more sophisticated friction models that commonly require de-
termining a larger number of parameters experimentally. One of the first and simplest
friction laws is the Coulomb friction law. Coulomb (1736–1806) determined that the fric-
tional force between two bodies pressed together with normal force ‖Fn‖ can be calculated
by multiplying the normal force and friction coefficient that can be computed empiri-
cally [21]. The relation between the applied load and relative velocity has the following
mathematical form:

F =

{
−µc‖Fn‖ vt

‖vt‖ ‖vt‖ > 0
−Fe : max(‖Fe‖) = µc‖Fn‖ ‖vt‖ = 0

(1)

where F is the friction force, vt the tangential sliding speed, µc is the Coulomb friction
coefficient, and finally Fe is external, tangential force. Using this model to deal with friction
in dynamic systems leads to a computational burden due to the discontinuity at zero
velocity. The friction force can reach any value between −µc‖Fn‖ and µc‖Fn‖ due to a
sudden alteration in the velocity direction at zero speed. From a physical viewpoint,
knowing the external force, imposed on the sliding bodies, can resolve this issue as the
friction load is set equal to the externally applied force according to Newton’s first law.
Although obtaining the external load is experimentally possible at zero velocity, this is not
straightforward to determine in numerical simulations. It is worth noting that the Coulomb
friction model only needs one input parameter, i.e., µc, which is why both academic and
industrial communities commonly use this model for systems that do not require very
precise quantifications.

Another issue with the Coulomb friction law is that it does not capture the distinction
between static and kinematic friction. It is well-known that the external force required to
make bodies in contact move from their rest status is higher than that when they are in
relative motion. Therefore, the Coulomb friction law is modified by replacing the Coulomb
coefficient in Equation (1) with a static friction coefficient, i.e., µs (µs > µc), which is
sometimes called Coulomb friction with stiction.

F =

{
−µc‖Fn‖ vt

‖vt‖ ‖vt‖ > 0
−Fe : max(‖Fe‖) = µs‖Fn‖ ‖vt‖ = 0

(2)

The discontinuity issue at zero velocity is still present in this model, making it hard
to detect stick and stick-slip phases of friction between bodies in contact. Moreover, the
transition from the stick friction phase to the slip one is not smooth and continuous. To
resolve these issues, smooth and continuous Coulomb friction models were developed
to prevent the computational burden caused by the force discontinuity by introducing a
smooth curve around zero velocity. To this end, several continuous functions have been
adopted in the literature, like linear, exponential, and trigonometric function types. One
such model is considered here that can be obtained by multiplying the hyperbolic tangent
function of velocity to the Coulomb friction model, Equation (1) [53]. This modification,
which lets the new model be valid for all vt from a computational viewpoint, is given by

F = −µc‖Fn‖
vt

‖vt‖
tanh(k‖vt‖) (3)
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in which k is a coefficient that determines how fast the hyperbolic tangent function changes
from near 0 to near +1, which can also be represented by ‖vt‖

v0
where v0 depicts a chosen

velocity at which one expects the tanh function to take a value close to its maximum.
Another model uses a linear friction−velocity relationship at the proximity of zero velocity
to smooth out the discontinuity, which can be expressed as follows [53]:

F = −µc‖Fn‖
vt

‖vt‖
min(ksat‖vt‖, 1) (4)

in which ksat is the slope of linear function between zero velocity and 1/‖vt‖ to eliminate
the difficulty in determining the friction force at zero sliding speed. Obviously, the friction
force at zero relative velocity between the interacting bodies is not zero and is equal to the
tangential applied force. Hence, the main drawback of the modified Coulomb friction laws
explained above is that they assume zero friction at zero relative velocity, which does not
make sense from a physics viewpoint.

With the study of lubrication by Rayleigh and Stokes, and the classical paper on
theoretical modeling of fluid-film lubrication, which Osborne Reynolds published [54], the
following expression for the viscous friction can be written

F = −kvvt (5)

in which kν is the viscous coefficient. In full-film contacts, the viscous model can be
assumed a good representation of behavior of the system. Moreover, the model can act
well enough in other contact conditions provided that the viscous coefficient is tuned.
Sometimes a better fit to experimental data can be achieved by assuming a nonlinear term
of velocity in Equation (5). As such, Equation (5) can be recast as follows [24]:

F = −kv‖vt‖δv
vt

‖vt‖
(6)

where the power δv depends on the geometry of bodies in relative motion. The viscous
friction term can be superimposed on the other friction models such as the Coulomb
friction [53], which results in, for example, the following formulation.

F =

{
−µc‖Fn‖ vt

‖vt‖ − kvvt ‖vt‖ > 0
−Fe : max(‖Fe‖) = µc‖Fn‖ ‖vt‖ = 0

(7)

The Coulomb friction law, and its modified versions, do not explain the negative
damping characteristic of friction [11], which was observed by Stribeck as a continuous
nonlinear velocity-dependent phenomenon called the Stribeck effect [55].This dependency
of friction on the relative sliding velocity was also observed by Panovko and Gubanova [56]
and Ibrahim [57] experimentally. The general form of the Stribeck friction model can be
written as follows:

F =

{
−µ(‖vt‖)‖Fn‖ vt

‖vt‖ ‖vt‖ > 0
−Fe : max(‖Fe‖) = µs‖Fn‖ ‖vt‖ = 0

(8)

where µ(‖vt‖) is a friction coefficient function for which multiple formulations are available
in the literature [58] and one of the common forms of which is given below.

µ(‖vt‖) = µc + (µs − µc)e
−( ‖vt‖

vQ
)

δQ

(9)

Here, vQ is the Stribeck velocity, and δQ is an exponent that depends on the geometry
of the application. It is worth noting that µc depicts both the Coulomb friction coefficient
and kinetic friction coefficient in this paper while being recognizable according to the
context. Friction parameters in Equation (9) can be obtained by performing the friction
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test for motions with constant velocity. Although the Stribeck friction model is velocity-
dependent, this model can be considered a steady friction model. Moreover, the reason for
decreasing friction with increasing speed in dry sliding metallic bodies was experimentally
investigated and was found to be due to the material softening as a result of high tem-
peratures generated at the contact surfaces [59,60]. Moreover, the friction in a lubricated
contact decreases with increasing the relative velocity due to a decrease in the number of
surface asperities being in contact until full-film lubrication is obtained. Afterward, the
friction can gain a value, and either be constant, increase, or decrease with increasing the
sliding speed due to viscous and thermal effects. In the case of an increase in friction when
full-film lubrication is built, one can add the viscous friction presented in Equation (5)
to the relationship Equation (9) to mimic the intuitive physics. The Stribeck model can
provide a good representation of the friction between sliding surfaces. The discontinuity
problem of the Coulomb friction model is a problem also observed in the Stribeck model.
To cope with this issue, the same procedures taken for the Coulomb friction, like using
a hyperbolic tangent function, are applicable here as well. Bengisu and Akay suggested
a formulation, Equation (10), which is quite different from that in Equation (9), while
resolving the aforementioned discontinuity issue [61].

µ(‖vt‖) =
{

− cs
v2

0
(‖vt‖ − v0)

2 + cs, ‖vt‖ < v0

µc + (µs − µc) exp(−ξ(‖vt‖ − v0)) ‖vt‖ ≥ v0
(10)

The first part of the above friction coefficient function uses a near-zero continuous
curve to avoid divergence of the numerical model. The second term is the Stribeck friction
relation. In addition, ξ > 0 is the negative slope of the sliding state [62]. After the friction
coefficient starts from zero, it increases to peak friction, which Bengisu and Akay [61]
referred to as the static friction coefficient, µs. The friction coefficient then reduces with
increasing tangential velocity until the friction finally reaches a steady state, i.e., µc.

As was discussed previously, the aforementioned models are not efficient to determine
friction magnitude when the velocity is zero nor to manage the stiction phenomenon.
Karnopp introduced a concept of the dead-velocity band of the zero proximity, i.e., ‖vt‖ <
vD, to cope with the difficulties encountered to detect zero velocity and prevent switching
between multi-state relationships to transit between stick, stick-slip and pure slip phases
of the friction [63]. Within the abovementioned velocity interval, the speed is assumed to
be null. The friction phase also is stiction, where the friction force can be equal to either
tangential external force or static friction. For the velocities outside of that dead band,
the friction force can get the form of Coulomb friction, Stibeck friction, and so forth. The
following equation can express this idea.

F =

{
−min(‖Fe‖, ‖Fs‖) Fe

‖Fe‖ ‖vt‖ < vD

F(vt), ‖vt‖ ≥ vD
(11)

However, the concept Karnopp used to introduce this friction model does not comply
with friction physics. Moreover, this model requires the external load as an input, which is
often not available explicitly and is an internal state of the dynamical system.

In addition to the phenomenological friction models, there are empirical friction
models proposed for UHMWPE in the literature. Wang et al. [26] reported the following
formula derived from experimental data, showing a significant correlation to the contact
stress. However, the Coulomb friction model and its modified versions cannot address
changes in friction coefficient due to contact stress:

µ = 0.18 σ−0.33 (12)
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in which µ stands for the friction coefficient and σ is the contact stress with a unit of MPa.
Furthermore, another empirical formulation was suggested by Saikko to relate the friction
coefficient to the contact stress as follows [27]:

µ = 0.32

(
σ

σre f

)−0.68

(13)

where σre f is a reference pressure (1.1 MPa). The above relationship is correct for σ ≥ 1.1 MPa
and below this pressure, the coefficient of friction increases with increasing the contact
pressure. Recently, several empirical friction models for tibiofemoral joints were developed
by a research group in Mexico [28,29]. Montes-Seguedo et al. [30] proposed a power-law
model from which the friction coefficient can be estimated in both mixed lubrication regime
and full-film lubrication regime as a function of the maximum pressure (σmax), entrainment
velocity (vm) in mm/s, and sliding-to-rolling ratio (SRR), which is written as follows.

µ = 0.54·σ−0.58
max ·SRR−0.1·|vm|−0.1 (14)

Models discussed above are not able to capture dynamic friction characteristics such
as pre-sliding and frictional lag. Dynamic friction models such as the Dahl approach and
LuGre model can address such phenomena. The discussion associated with the dynamic
friction models stands out of the scope of the present study. Interested readers are referred
to the following references [24,64–67] for further information

3. Contact Solver: Tangential Friction and Normal Contact Forces

As was discussed before, when two surfaces enter into a contact phase and tend to slide
against each other, friction develops and acts as a resistance to the relative motion. In this
study, the friction forces are taken into account employing several friction models, listed in
Table 1, that are: (A1) a modified Coulomb friction model with a constant friction coefficient;
(A2) a modified Coulomb friction model with a pressure-dependent friction coefficient
extracted from Wang et al.’s formulation; (A3) a modified Coulomb friction model with a
pressure-dependent friction coefficient extracted from Saikko’s formulation; (B1) a Stribeck
friction approach with constant friction coefficients; (B2) a Stribeck friction approach with
pressure-dependent friction coefficients extracted from Wang et al.’s formulation; (B3) a
Stribeck friction approach with pressure-dependent friction coefficients extracted from
Saikko’s formulation; and (C1) Montes-Seguedo et al.’s empirical friction model. The
tangential friction force at a node of the femoral part, e.g., Qk,j

F , is computed using the
following formulation:

Fk,j = −µ
(
‖uk,j

t ‖, σk,j

)
‖Fk,j

n ‖
uk,j

t

‖uk,j
t ‖

(15)

where uk,j
t is the tangential relative velocity of the node Qk,j

F in contact as the tibial insert

is assumed stationary, and µ
(
‖uk,j

t ‖, σk,j

)
is the friction coefficient at the contacting node,

which can be considered as a function of either relative velocity or contact pressure and can
be substituted from each of the modified Coulomb friction and Stribeck friction models,
outlined in Table 1. Moreover, static and dynamic friction coefficients can be dependent
upon the contact stress based on empirical models reported by Wang et al. [26] and
Saikko [27]. Eventually, seven case scenarios are defined in Table 1, each of which is
considered in this study to study kinematics and tribology of TKAs.
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Table 1. Friction models used in the dynamic modeling of TKA.

Main Friction Model Structure Friction Coefficient Model No.

A. Modified Coulomb friction model:

µ
(
‖uk,j

t ‖, σk,j

)
=

{
µc ‖uk,j

t ‖ ≥ v0
‖uk,j

t ‖
v0

µc ‖uk,j
t ‖ < v0

µc = constant A1

µc = µc

(
σk,j

)
={

0.18× σ−0.33
k,j σk,j ≥ 0.37 MPa

0.25 σk,j < 0.37 MPa

A2

µc = µc

(
σk,j

)
= 0.32

(
σk,j
σre f

)−0.68
σk,j ≥ 1.1

0.32− 0.0579
(

σk,j − 1.1
)2

σk,j < 1.1

A3

B. Stribeck friction model:
µ
(
‖uk,j

t ‖, σk,j

)
= − µs

v2
0

(
‖uk,j

t ‖ − v0

)2
+ µs, ‖uk,j

t ‖ < v0

µc + (µs − µc)e−ξ(‖uk,j
t ‖−v0) ‖uk,j

t ‖ ≥ v0

µc = constant and µs = constant B1

µc = µc

(
σk,j

)
={

0.18× σ−0.33
k,j σk,j ≥ 0.37 MPa

0.25 σk,j < 0.37 MPa

µs = µs

(
σk,j

)
= χ× µc

(
σk,j

) B2

µc = µc

(
σk,j

)
= 0.32×

(
σk,j
σre f

)−0.68
σk,j ≥ 1.1

0.32− 0.0579
(

σk,j − 1.1
)2

σk,j < 1.1

µs = µs

(
σk,j

)
= χ× µc

(
σk,j

)
B3

C. Montes-Seguedo et al.’s model
µ = 0.54·σ−0.58

max ·SRR−0.1·|vm|−0.1 SRR =
∣∣∣ vr

vm

∣∣∣; vr = vF − vT ; vm = (vF+vT)
2 ; C1

In Table 1, χ is a constant value that takes a value greater than one. Moreover, the
pressure-dependent friction coefficient is used in the models A2 and B2, illustrated in
Figure 2, to show the difference between such models. As can be seen, the friction coeffi-
cient is a function of both relative velocity and pressure when model B2 is employed, while
it varies merely with contact pressure in model A2. It is worth adding that both models use
the pressure-dependent friction relationship Wang et al., proposed in [26]. However, such a
relationship is integrated into the Coulomb friction formula for model A2 and the Stribeck
one for model B2. It is worth noting that the empirical model Wang et al. [26] suggested
does not address the friction coefficient once the contact stress approaches zero. Therefore,
the strategy considered here is to prevent the friction coefficient to exceed the value 0.25
that corresponds to the contact stress of 0.37 MPa. In addition, the models A3 and B3 are
written based on the relationship recommended by Saikko. His empirical mathematical
formulation is valid for the contact stress equal or greater than 1.1 MPa. According to the
plot that shows the relationship between the contact stress and friction coefficient in his
paper, it can be concluded that the friction coefficient decreases once the contact stress
diminishes below 1.1 MPa until it gains an average value of 0.25 once the contact stress
reaches zero value. Therefore, a quadratic function is fitted to the data while outliers are
removed to address the value of friction once the contact stress gains a value less than
1.1 MPa. The model C1 is the one developed by Montes-Seguedo et al. [30], in which vF is
the velocity of the femoral part at the contact point, which is calculated according to the
radius of the functional flexion-extension axis, multiplied by the respective angular velocity
and vT , the speed of the tibial insert at the tibial plateau surface. The latter is computed as
the summation of the anterior-posterior linear velocity and the multiplication of the radial
distance from the tibial axis to the bottom of the tibial plateau and the internal-external
angular velocity. For further information on how to determine these velocity terms, the
reader is referred to the reference [28].
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Figure 2. A representation of the friction model A2 on the right-hand side and B2 on the left-hand side.

At this stage, a short description of the joint kinematic is presented to determine the
velocity of master nodes, including their tangential speed. The relative velocity of a master
node like Qk,j

F with respect to its corresponding slave node Qk,j
T locating on body 2, i.e., the

tibial insert, can be determined as follows:

Uk,j =
.
X

tn
+ ΩF ×

(
Qk,j

F − Xtn
)

(16)

uk,j
n =

(
Uk,j·tnnk,j

F

)
tnnk,j

F (17)

uk,j
t = Uk,j − uk,j

n (18)

where Uk,j is the velocity vector of the point Qk,j
F with respect to Qk,j

T ,
.
X

tn
and ΩF depict

the translational velocity of the local coordinate system and the angular velocity of body
1, respectively, Qk,j

F depicts the coordinate vector of the point Qk,j
F , and Xtn is the location

of the origin of the local coordinate of body 1, i.e., the femoral body, at time tn. tnnk,j
F is

the vector normal to the femoral body at the point Qk,j
F at time tn. and uk,j

n and uk,j
t also

are the normal and tangential relative velocities of the point Qk,j
F . As body 2 is assumed

stationary, the components of the angular velocity vector resolved in the fixed basis could
be evaluated based on Euler angles as follows [68]:

ΩF = Hz−x−y


.
φ
.
θ
.
ψ

 (19)

where

Hz−x−y =

 0 cos φ − sin φ cos θ
0 sin φ cos φ cos θ
1 0 sin θ

 (20)

in which {φ, θ, ψ} are Euler angles and
{ .

φ,
.
θ,

.
ψ
}

depict their time derivatives.
Eventually, the friction force at each element on the femoral components is evaluated

knowing the tangential sliding velocities, Equation (18) at all element nodes, the normal
load applied to the element, and contact pressure, which are addressed later in this paper.
Finally, the resultant friction force tangentially applied to the femoral component can be
obtained from the following integration that is performed over the contact area:

Fµ =
x

Ω

F dA = ∑
k

∑
j

Fk,jdAk,j (21)
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where Ω depicts the contact area, Fk,j is friction force at each element and dAk,j depicts the
size of element area.

The present study implements a concept proposed in [69] to evaluate contact stresses,
but it is impossible to derive a closed-form mathematical formulation for the contact prob-
lem at hand. Askari obtained nonlinear and promising contact models while resolving the
discontinuity issue with the Kelvin-Voigt model at both the beginning and end of the con-
tact process [69]. To this end, he simulated the contact by using a set of independent springs
and dashpots, which represent the stiffness and viscous damping of the contact between
articulating bodies, respectively. Readers interested are referred to the reference [69–72] and
references therein for further information about the model employed in this study. Such a
contact model does not put any kinematic constraints on the dynamical system. It is well-
known that the Kelvin-Voigt model suffers from a discontinuity at both the beginning and
end of the contact process due to the form of the damping term in its formulation [73,74].
The concept proposed in the reference [69] showed that simulating a soft contact using a
set of independent Kelvin-Voigt elements spread all over the contact surfaces instead of
just one spring-damper element as is used in the Kelvin-Voigt contact model can resolve
the above discontinuity. The penetration depth at each node on the polyethylene surface,
Dk,j, is known from the minimum distance technique discussed later in the present paper

(see Section 5.3). Its time derivative
.

Dk,j is also obtained from the normal velocity term

given in Equation (17). Therefore, the normal contact pressure, i.e., σk,j, at any node of Qk,j
T

can be determined based on the following Kelvin−Voigt contact relationship:

σk,j = −KDk,j − Kτ
.

Dk,j (22)

in which K is the contact stiffness and τ the relaxation time, K is obtained from K = Λ/Ξ
where Λ = (1− υ)E/[(1 + υ)(1− 2υ)] and Ξ is the tibia thickness [40], E and υ are Young’s
modulus and Poisson’s ratio of the polyethylene that are, respectively, 463 MPa and 0.46
as are reported in [75–77]. Such a contact model belongs to the category of the penalty
non-adhesive contact approaches and penalizes the indentation of the master body into
the slave one. As independent Kelvin−Voigt elements are spread all over the contact
area, the normal contact force applied to the femoral components should be computed by
performing the following integration over the contact area:

Fcont =
x

A

σnF dA (23)

where nF is the normal unit vector of an element with the area dA on the femur-bearing
surface. It is worth noting that the following criterion is used to assess whether a node is in
contact or not. {

Di,j > 0 no contact
Di,j ≤ 0 contact

(24)

The resultant contact area can also be obtained according to the summation of the
area associated with all elements engaged in contact area having nodes with non-zero
contact pressure.

4. Patient-Specific Musculoskeletal Modeling

To estimate patient-specific TKA knee joint loads, an already validated, patient-specific
musculoskeletal model is applied [35]. This model is based on data for one male sub-
ject (age: 86, height: 1.80 m and mass: 75 kg) with an instrumented, posterior cruciate-
retaining TKA prosthesis from the 5th Grand Challenge Competition to Predict In Vivo
Knee Loads [78–80]. For more details of the implant shape and design, the reader is referred
to the Grand Challenge knee dataset [78]. Among others, the dataset contains pre- and
post-operative Computed Tomography (CT) scans, trajectories of skin markers and ground
reactions during standing reference trials and dynamic movement trials, including gait
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at a self-selected speed as well as measurements from the instrumented knee prosthesis.
Additionally, Stereolithography (STL) 3D geometries of the femoral component, tibial tray
and insert, patellar button, and segmentation of the post-operative CTs of the partial pelvis,
femur, patella, tibia, fibula, partial talus and partial calcaneus are also included in the
dataset [81]. For the dynamic analysis, the one gait trial of level walking at self-selected
speed (PS_ngait_og_ss1) is utilized [78]. The musculoskeletal model is developed using the
AnyBody Modeling System (AMS) v. 7.1 (AnyBody Technology A/S, Aalborg, Denmark)
and based on the human model from the AnyBody Managed Model Repository (AMMR)
v. 1.6. From this model, we extract all the knee flexion-extension angles as well as all
loads associated with muscle, hip joint, gravitational, inertial, etc., which are imposed on
the femur. The tibiofemoral joint reaction forces and knee ligament loads are included
in the joint model described below and, therefore, are not part of that model’s boundary
conditions.

5. Dynamics Solver

In this section, a forward dynamic model of the tibiofemoral joint is presented. We fo-
cus on an assembly consisting of the tibia and femur as the tibiofemoral joint’s components
along with its ligaments to develop the forward dynamic model to which damage predic-
tion approaches are later added. In the following, the development process of such a model
illustrated in Figure 1 is described in detail. A forward dynamics model is first derived,
which requires the evaluation of contact stresses and ligament forces and moments before
being solved. To determine contact stresses, triangulated surfaces of bearing components
are smoothed and contact detection is performed.

5.1. Dynamics Modeling

The governing equations of the system motion are derived based on the free body
diagram of the tibiofemoral joint represented in the second right-hand panel of Figure 1.
The resulting forces and moments applied to the femoral bone due to the existence of all
surrounding soft tissues such as muscles and hip-joint reactions are computed by means
of musculoskeletal modeling. Such loadings and moments are moved to the origin of the
femur coordinate system and written in the global coordinate system, illustrated in the
second right-hand panel of Figure 1, as Fext and Mext. The loads and moments owing to the
contact, friction, and ligaments are also determined and summed up to those external ones.
The governing equations of the translational motion of the femoral component, therefore,
can be formulated using Newton’s second law of motion as follows [69,82]:

M
..
X = FT , FT = Fext + Fcont + Fµ + Flig (25)

in which the mass of the femoral bone is designated by M. The translational accelera-
tion vector of the femur is also depicted by

..
X. Furthermore, FT stands for the vectorial

summation of forces imposed on the bone, which is mathematically formulated in Equa-
tion (25). In this equation, the external forces are depoicted by Fext, resultant contact
forces Fcont, friction force Fµ, and finally ligaments loads are designated by Flig. In this
solution setup, three coordinate systems are defined, one of which is the global coordinate
system (XYZ) attached to the underneath of the tibial insert and on the top of the tibial
tray. It is worth mentioning that the tibia is considered stationary, while the femur has six
degrees of freedom to translate and rotate. One degree of freedom of this dynamic system
is, later, constrained while knowing the flexion-extension angle of the knee joint over a
level walking gait. The other coordinate system is a local system (xyz) attached to the STL
center of the femoral component, rotating and translating with the femur. However, the
third coordinate system, ξηζ, is considered with the same origin as the femoral coordinate
system, although it does not rotate with the femur and it has bases aligned with those of
the global coordinate system. The angular-momentum equation can now be written in the



Appl. Sci. 2021, 11, 7516 12 of 29

body coordinate system of the femur, which governs the rotational motion of the femur as
follows [69]:

M∗C = IC∗ .
ω
∗
+

~
ω
∗
IC∗ω∗ (26)

where M∗C is the summation of not only external moments but also those resulted from
the contact, friction and ligaments, which are computed with respect to the body coordi-
nate system of the femoral part (xyz). Compared to the computation of moments in the
coordinate system xyz, it is much easier to obtain moments in the third coordinate system
discussed above. The summation of moments in the third coordinate system is designated
by MC and is related to M∗C by the following relationship:

M∗C = RTMC (27)

in which RT is the transpose of the rotation tensor of the femur, IC∗ and ω∗ appeared in
Equation (26) and stand for the tensor of inertia and the angular velocity vector of the
femoral component in the body coordinate system, respectively. In the dynamic model
developed in this study, the rotation tensor is defined based on the Euler angles of the z-x-y
sequence, given by the array of Euler angles qT = {φ, θ, ψ} to characterize the rotation of
the femur as well as the location of nodes on the femoral-bearing surface. The respective
rotation tensor can be cast by:

R ≡ Rz−x−y =

 cos φ cos ψ− sin φ sin θ sin ψ − sin φ cos θ cos φ sin ψ + sin φ sin θ cos ψ
sin φ cos ψ + cos φ sin θ sin ψ cos φ cos θ sin φ sin ψ− cos φ sin θ cos ψ

− cos θ sin ψ sin θ cos θ cos ψ

 (28)

where the flexion-extension angle, which is the amount of the planar rotation of the femur
around the axis z, is named by φ. From the time derivatives of Euler angles, the angular
velocity vector in the body coordinate system can be given by:

ω∗ = H∗z−x−y


.
φ
.
θ
.
ψ

 (29)

where

H∗z−x−y =

 − cos θ sin ψ cos ψ 0
sin θ 0 1

cos θ cos ψ sin ψ 0

 (30)

The tangent operator H∗z−x−y is tangent to the rotation manifold. There is a possibility
to simplify Equation (26) while setting the body coordinate system such that it coincides
with the principal axes of the mass moment of inertia tensor, i.e., IC∗. Hence, the moment
of inertia tensor is reduced to a diagonal form, and the governing equations turns to the
so-called Euler’s equations for the angular motion of the dynamic system as follows.

M∗Cx = IC∗
xx

.
ω
∗
x −

(
IC∗
yy − IC∗

zz

)
ω∗y ω∗z

M∗Cy = IC∗
yy

.
ω
∗
y −

(
IC∗
zz − IC∗

xx
)
ω∗xω∗z

M∗Cz = IC∗
zz

.
ω
∗
z −

(
IC∗
xx − IC∗

yy

)
ω∗y ω∗x

(31)

Characterizing of the femoral bone along with surrounding tissues of the male subject,
the femoral mass, i.e., M, is 7.5 kg and its moment of inertia tensor is obtained as (0.4516 0 0;
0 0.0213 0; 0 0 0.4516) [35,78]. The adaptive Runge−Kutta−Fehlberg approach is employed
to integrate Equations (25) and (31) over time of interest [83]. A maximum error is set and
the error magnitude at each time step of the numerical simulation is assessed while compar-
ing outcomes from the above method of different orders 4 and 5. Once the error acquired is
greater than the set maximum error, the time step is halved and the computational process
is done again until the accuracy and stability of outcomes become guaranteed. The present
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study also considers a minimum value of the integration time-step size 5 × 10−5s along
with an integration tolerance 5 × 10−6 [84].

5.2. Ligament Modeling: Ligament Forces and Moments

In this study, ligament forces are modeled using an asymmetric nonlinear elastic
model. The force, f (ε), each ligament, i.e., PCL, LCL, and MCL, imposed on the femur can
be evaluated from the following formula, which also includes a slack region [85].

f (ε) =


kl ε

2

4ε1
0 ≤ ε ≤ 2ε1

kl(ε− ε1) ε > 2ε1

0 ε < 0

(32)

Here, kl is the ligament stiffness and ε depicts the strain while ε1 is a constant with
value of 0.03, which is associated with the transition phase between linear and nonlinear
regions of the force-strain curve. In order to determine the ligament strain, the slack length,
l0, is obtained as below:

l0 =
lr

εr + 1
(33)

where εr is the reference strain and lr stands for the bundle length estimated when the leg is
fully extended. Finally, the strain, ε, at any time is computed from the following equation:

ε =
l − l0

l0
(34)

in which l is the instantaneous bundle length of the ligament, which is determined ac-
cording to the motion of the femur over the walking activity. Wrapping surfaces are also
employed to prevent ligaments from penetrating the bones and the implant. Stiffness and
reference strain assigned to each ligament bundle are extracted from [35,86], which are
adapted from the literature [85]. To compute ligament forces, the insertion points of every
single ligament are assigned before the numerical simulation starts. Since attachment sites
could not be determined from the dataset, they are estimated according to descriptions
found in the literature [35,87,88]. The motion of the femoral component at each time step is
acquired using motion equations, given by Equations (25) and (31), and the rotation tensor,
Equation (28). Therefore, we can now determine the current locations of insertion points in
the global coordinate system. Moreover, each ligament is discretized into several elements
to calculate their time-dependent length according to the femoral motion. The magnitude
of each force is, in turn, obtained while solving Equations (32)–(34) and the corresponding
vector direction is considered to be along the ligament tangent at its insertion point. The
resulting ligament force and moment imposed on the femur are computed by

Flig = FLCL + FPCL + FMCL, Mlig = MLCL + MPCL + MMCL (35)

5.3. Contact Detection

STL 3D geometry files of the knee components are available from the Grand Chal-
lenge knee dataset [78]. After removing facets and respective vertices that are not likely
to get into contact, the triangulated surfaces of the contacting pair are smoothed using
a Laplacian smoothing technique. As the tibial insert is assumed stationary, its bearing
surface is constructed using the Non-Uniform Rational B-Spline (NURBS) surface method-
ology [40,89,90] and, in turn, is meshed using a uniform mesh size in the first place. A
bounding box scheme is applied to the meshed surface of the tibia to reduce the compu-
tational time of searching spatial contact. All boxes, susceptible to the contact incident
while deemed based on a one-by-one surface function-based scheme, are retained. In
the next step, each box becomes open and each node inside is assessed for whether it
is in contact with the femoral component or not using the minimum distance technique
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described as follows. The minimum distance of a node such as Qk,j
T on the slave-bearing

surface with respect to the femoral body can be obtained as is described as follows. A facet
with number i, belonging to the triangulated surface of the body 1, is considered and a
vector is drawn from the first vertex of the facet i, i.e., i1, to the node of interest (see Figure
3). This vector is, in turn, projected on the vector normal to the facet under consideration,

which is designated by
→

i1Qk,j
T and its magnitude is equal to its `2 norm ‖

→
i1Qk,j

T ‖2. Then, the

projection of the node Qk,j
T on the plane of the facet i is obtained and called Qk.j

F . By this

time, the question is whether that projected point, i.e., Qk.j
F , places inside the domain of the

facet i. To check it out, the summation of angles between each two of the three following

vectors,
→

Qk,j
F i1,

→
Qk,j

F i2, and
→

Qk,j
F i3, as illustrated in Figure 3, is acquired. The `2 norm of

each of those three vectors is also computed. If either of the following cases takes place,
it is confirmed that the point Qk,j

F corresponds to the likely contact point on the master

body and the minimum distance of the node Qk,j
T with respect to the femoral surface is

then acquired, i.e., ‖
→

Qk,j
T Qk,j

F ‖2, and stored as the penetration depth Dk,j in the penetration
matrix D: (i) the summation of the above three angles is equal to 2π; (ii) the `2 norm of one
of those vectors is zero, so Qk,j

F and the respective vertex are coincident.

Figure 3. Determination of the minimum distance of a node, Qk,j
T , on the body 2, i.e., tibial insert, to

the body 1 that is the femoral body.

6. Damage Formulation

Now that the dynamic model is ready to be used, the tribology of TKA is formulated
to predict wear. Archard wear model is commonly used by the tribology community to
describe adhesive and abrasive wear mechanisms, although it is often adopted for a wide
range of applications as a result of its efficiency and simplicity [36]. Employing Archard
wear law, the linear wear rate can be computed using the following expression [91,92]:

dh
ds

= kwσ (36)

in which the wear depth and sliding distance are presented by h and s, respectively. The
parameter kW stands for the wear factor that has the following unit mm3N−1m−1. Although
the wear factor has been considered constant by several research studies, Equation (37),
Kang et al., observed from experimental data that the wear factor is dependent on the
contact pressure and cross-shear ratio. Therefore, they suggested a new formulation for the
wear factor that varies with not only the cross-shear ratio, =, but also the contact pressure.
They proposed a relationship to compute the wear factor of the UHMWPE tibial insert [93]
accounting for such dependencies given in Equation (38) in which the average contact
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stress, i.e., σ, for a given element is computed by averaging contact pressure over one
gait cycle, and the definition of the cross-shear ratio and the procedure to compute it is
well-described in [93].The described wear techniques listed in Table 2 are used in this study
to estimate wear in total knee arthroplasties

Table 2. Wear factors suggested to be used in Archard wear model for UHMWPE tibial insert.

Wear Model Formulations

Model i dh
ds = kwσ; kw = cons (37)

Model ii
dh
ds = kwσ;

kw(=, σ) = exp[−13.1 + 0.19 ln(=)− 0.29σ]
(38)

Model iii W = AC; C = (a + b× CS)−1/c (39)

Wear factor given in Equation (38) is dependent on the contact pressure and is not easily
implemented into computational wear modeling. Abdelgaied et al. [77] developed a wear
model based on the idea that volumetric wear (W) is proportional to the contact area (A) and
sliding distance (S) and a non-dimensional wear coefficient (C) determined experimentally to
complete the wear formulation, Equation (39). The cross-shear ratio is CS, and parameters a, b
and c are constant and determined from the experimental measurements of a multi-directional
pin-on-disk wear test [77] as a = 8.5173e-65, b = 9.3652e-60, and c = −6.7454.

6.1. Cross-Shear Ratio

Under the sliding motion of a metallic part on ultra-high molecular weight polyethy-
lene, the polymeric chains align in the direction of the maximum frictional work according
to the experimental findings [15,94], which is the so-called principal molecular orientation
(PMO) [12,15]. The cross-shear ratio can be quantified as the quotient of the frictional
work done perpendicular to the PMO direction (W f

cs) to the total frictional work (W f
T ) as is

formulated below [95–97].

= =
W f

cs

W f
T

(40)

The frictional work can be calculated based on W f =
n
∑

i=1
Fµ(vt, σ, ti)·∆s(ti) where

∆s(ti) is the incremental sliding distance that can be computed by ∆s(ti) = uk,j
t (ti)∆ti at

each element. The direction (ϕ f ) of incremental motion along the contact point trajectory is
calculated to determine the vector of the incremental sliding distance, ∆s (ti). Moreover,
considering a test PMO direction (axis) with an angle ϕ, frictional force and incremental
sliding distance components parallel to and perpendicular to that axis can be calculated for
each increment [12,95,96]. Assuming that the friction coefficient does not vary during a
cycle, the cross-shear can be formulated as follows.

= =
∑n

i=1 ‖Fµ(vt, σ, ti)‖‖∆s(ti)‖ sin2
(

ϕ f (ti)− ϕ
)

∑ Fµ(vt, σ, ti)·∆s(ti)
(41)

The dynamic model developed in the previous sections obtains the sliding distance
and contact force with time, which allows calculating Equation (41) for each angle ϕ, from
0 to π, until the principal molecular orientation, ϕPMO, is reached where the cross-shear
ratio is minimized.

6.2. Creep Estimation

In addition to the wear phenomenon, creep deformation contributes to the surface
damage of the UHMWPE tibial insert due to the viscoelasticity of UHMWPE, where
deformation under a constant load varies with time. Performing experimental creep tests,
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Lee and Pienkowski [16] presented a nice formulation to compute the creep deformation,
which is a function of both pressure and a logarithmic timescale as follows [92]:

δ
(k,j)
Creep =

[
3.491× 10−3 + 7.996× 10−4

(
log

(
N

n

∑
i=1

∆(k,j)tc(i)

)
− 4

)]
∑n

i=1 P(k,j)(ti)∆(k,j)tc(i)

∑n
i=1 ∆(k,j)tc(i)

Γ(k,j) (42)

where δ
(k,j)
Creep is the linear damage at an element (k, j) due to creep, N is the total number of

cycles in service, Γ(k,j) is the thickness of element (k, j) of the acetabular cup and ∆(k,j)tc(i)
associated with an element (k, j) of the cup surface is non-zero just when the corresponding
i is in the set of time values where the contact stress is non-zero. The unit of time and
pressure are minute and MPa, respectively, according to Lee and Pienkowski experiment.

7. Convergence and Mesh Analysis

To guarantee the accuracy and convergence of dynamics and contact simulations, a
mesh density analysis is performed [98]. Three different element sizes to discretize the
domain of the bearing components projected on the XZ plane are considered, i.e., 0.2, 0.4,
and 0.6 mm. Multiple system parameters that can be influenced by the mesh size are used
to assess the mesh density, such as contact forces and moments on both medial and lateral
condyles, and maximum contact pressures on both condyles. According to the outcomes
we obtained at different percentages of the gait cycle, it has been concluded that mesh
sizes 0.2 and 0.4 produce accurate results. The latter is used in this study to perform the
computational analysis. The respective outcomes corresponding to two pressure peaks in
a gait walking cycle, for example, are listed in Table 3. Moreover, a block size of 4 × 3 is
considered and a one-by-one surface function scheme is incorporated for contact detection
in order to accelerate the computational modeling. Finally, the total computational time
consumed to solve the motion equations and to acquire wear values for the present method
is less than 4 h while the dynamic model developed in this study has been implemented
in MATLAB (R2017a) and run on a 2.7 GHz personal computer with Intel® Core(TM)
i7-6820HQ CPU.

Table 3. Mesh density analysis at two peaks of a normal walking gait cycle.

Element Size
(mm) and
Number

Medial CF i Lateral CF i Medial CM
ii

Lateral CM
ii

Medial
Max. CP iii

Lateral
Max. CP iii

Gait
Percentage Peak No.

0.6/10,374 153.0 3.0 −0.024 3.53 × 10−4 23.20 5.97
0.4/23,200 152.8 3.4 −0.024 3.97 × 10−4 23.23 6.22 27.6% 1st
0.2/92,568 151.6 3.4 −0.024 3.98 × 10−4 23.19 6.21
0.6/10,374 201.5 80.6 −0.031 0.012 24.46 18.15
0.4/23,200 201.2 80.8 −0.031 0.012 23.17 18.06 52.21% 2nd
0.2/92,568 201.1 80.9 −0.032 0.013 23.15 18.05

i CF: contact force (%BW); ii CM: contact moment (%BW × BH); iii max. CP: maximum contact pressure (MPa).

8. Results and Discussion

The outcomes acquired using the developed methodology are compared to those
available in the literature as listed in Table 4 for comparison purposes. Maximum linear
wear rates five-year post-operation are reported on both medial and lateral condyles that
align with previous studies in terms of not only wear magnitudes but also approximately
similar values acquired on both condyles. The volumetric wear rates per year that the
developed model produces using both Method i and Method iii are comparable well with
those other researchers reported by either numerical, experimental, or retrieval studies.
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Table 4. Comparison of wear outcomes with those available in the literature.

Study Study Type Wear Depth mm/5 mc Volumetric Wear
mm3/mc

Damage Depth
(mm/5 mc)

Present study Numerical 0.50 1/0.43 2 8.8 3/6.8 4 0.8
Fregly et al. [36] Numerical 0.5 1/0.5 2 0.9
Zhang et al. [75] Exp./Numerical 0.44 1/0.43 2 7.8–8.5

Abdelgaed et al. [77] Numerical 5.7–6.0 */8.3–8.7 **
Gill et al. [99] Retrieval 0.50 (0.10 mm/mc)

Lavernia et al. [100] Retrievals 0.64 (0.13 mm/mc)
Zhao et al. [76] Numerical 0.37 1/0.35 2 7.0 0.9

Galvin et al. [101] Experimental 8.6 */15.9 **
Herman et al. [102] Retrievals 0.8

1 medial condyle; 2 lateral condyle; 3 Method i; 4 Method iii; * Intermediate kinematic input; ** High kinematic inputs.

8.1. Dynamics and Tribology of the Joint

The developed model is employed to compute linear and volumetric wear rates for
one million cycles while using three available wear techniques that are listed in Table 2.
The outcomes that are obtained for all seven friction models listed in Table 1 are reported in
Table 5. The highest values of both linear and volumetric wear rates are reported employing
Method i with a constant wear factor of 2.2 × 10−16 mm3N−1m [36]. Using the wear factor
suggested by Kang et al. [93], that is called Method ii, gives less wear depth on the medial
condyle than that on the lateral one, which opposes the outcomes associated with the other
two methodologies. The wear values resulted from Method iii, associated with the concept
presented by Abdelgaied et al. [77] in which wear coefficient is considered instead of wear
factor, stand between those from Method i and Method ii. As can be seen from Table 5, the
highest wear values are obtained using the friction models A1 and C1, while the lowest
amounts are related to those acquired from A3. Considerable variations in obtained wear
rates are observed while using these three models. Hence, it can be concluded that care
should be taken to estimate wear in terms of the wear model that one employs.

Table 5. A comparative study of the three wear techniques: wear depth (W.D) (mm/mc); volumetric wear (V.W.) (mm3/mc),
for the seven friction models presented in Table 1.

Model Method i 1 Method ii 2 Method iii 3

W.D. V.W. W.D. V.W. W.D. V.W.

A1 0.100 4/0.086 5 8.79 0.045 4/0.059 5 4.97 0.056 4/0.052 5 6.76
A2 0.098/0.095 9.21 0.034/0.052 4.54 0.047/0.043 6.62
A3 0.087/0.084 9.54 0.031/0.050 4.37 0.049/0.040 6.72
B1 0.092/0.090 9.07 0.035/0.055 4.97 0.050/0.044 6.86
B2 0.102/0.095 8.97 0.044/0.061 4.91 0.058/0.051 6.73
B3 0.111/0.098 8.99 0.052/0.055 4.09 0.057/0.050 6.59
C1 0.104/0.097 9.52 0.036/0.059 5.61 0.054/0.046 7.56

1 Method i, Equation (36); 2 Method ii, Equation (37); 3 Method iii, Equation (38); 4 medial condyle; 5 lateral condyle.

The wear map and distribution obtained from the following four friction models, i.e.,
A1, A3, B1, and C1, considered in this article are illustrated in Figure 4. It can be observed
that the maximum wear on the lateral condyle is shifted from the tibial plateau to the lateral
periphery of the joint when using model B1. Moreover, the area undergoing high material
losses on the medial condyle splits into two sub-areas in Figure 4b while lower linear wear
rates are observed when using the model B1 compared to the others. The maximum medial
condyle wear rates are obtained once model A1 is utilized as can be observed from the
intense red color of the wear map.
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Figure 4. The effect of choosing friction model on linear wear prediction (m) of TKA using friction models (a) A1; (b) A3;
(c) B1; (d) C1.

The loci of the motion of the femur center with respect to the tibia on the transverse
plane for the following five friction models, i.e., A1, B1, B2, B3, and C1, are illustrated
in Figure 5. Static and dynamic friction coefficients are 0.1 and 0.085 while v0 and ξ are
equal to 1 mm/s and 10, respectively. To estimate such friction coefficients for the sake
of computational analysis, the average magnitude of friction coefficient from empirical
models, i.e., Saikko model and Wang et al.’s, are obtained over the range of contact pressure
the knee joint undergoes over a walking gait cycle. The trajectories show the same trends
to some extent, although some variations are observed; for example, the one corresponding
to model A1 is more influenced by friction than that acquired from model C1 as can be
observed in the left-hand side plot of Figure 5. The external-internal rotation angle is also
plotted against the abduction-adduction angle over a gait cycle in Figure 5. The models
A1 and B1 lead to the very similar shapes of the rotational path, while the same can be
observed in the case of models B2 and C1. The ranges of variation of both angles when
using model B3 decrease.

Phase portrait diagrams of the dynamic motion of the tibiofemoral joint are also
presented in Figure 6 for the friction models A1, B1, and C1. It can be seen that the range
of velocity increases once model C1 is utilized, while model A1 produces the highest
acceleration magnitudes and the lowest maximum velocities among others. The norm of
position vector varies in the range of 44.26–46.30 mm. Moreover, the highest speed occurs
during the swing phase at around 70% of the walking gait cycle in Figure 6a,c,e. Phase
portrait diagrams can help one study the type of dynamic response observed in the knee
joint while employing different friction models. Figure 6b,d,f show chaotic behaviors of
the tibiofemoral motion, which can be considered sensitive to the used friction model,
and densely filled in the phase portrait diagram [103]. The chaotic response suggests
that the vibration can occur due to friction, the so-called friction-induced vibration, and
impact/contact between the femoral part and the tibial insert. This finding is in agreement
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with the acceleration level found for the frequency at which the joint is likely to vibrate, as
is shown in Figure 7, where the highest acceleration is obtained once the model A1 is used.

Figure 5. The effect of the used friction model on trajectory of TKA employing friction models (a) A1; (b) B1; (c) B2; (d) B3;
(e) C1.

Figure 6. Phase space portraits for different friction models: (a,b) A1; (c,d) B1; (e,f) C1, which present
the acceleration magnitude of the femoral part versus velocity and the femur velocity magnitude
versus its position vector norm.
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Figure 7. FFT analysis of tibiofemoral joint using different friction models and friction coefficients:
(a) Coulomb law: µc = 0.05; (b) Stribeck model: µs/µc = 0.05/0.0325; (c) model A1; (d) model B1;
(e) model A2; (f) model C1.

A FFT frequency analysis is performed to characterize the friction-induced vibration
of the tibiofemoral joint. It is found that the tibiofemoral joint does not vibrate when the
friction is below a critical value as the joint does not oscillate using Coulomb or Stribeck
friction models with friction coefficient 0.05. It has also tested that the frictionless joint does
not undergo oscillation. However, increasing the friction coefficient from 0.05 to 0.1, the
joint vibrates as can be observed from Figure 7c,d. The friction models A2 and C1 are also
evaluated and the vibration occurrence is likely around 12 kHz as can be seen in Figure 7e,f,
although the acceleration magnitude does not rise that much such as what is observed in
Figure 7c. Slight changes in vibrating frequency are observed from 11.8 to 12.4 kHz using
several friction models as are depicted in Figure 7.

8.2. Coulomb and Stribeck Friction Models

In this section, an in-detail comparison between the two well-known friction models,
Coulomb and Stribeck friction laws, is conducted. The effect of friction coefficient on
linear and volumetric wear rates is investigated while using Coulomb friction law and
acquired outcomes are listed in Table 6 using Method iii [77]. It can be observed that the
maximum linear wear rates are obtained in the case study with µc = 0.1. The lateral linear
wear with friction coefficient 0.2 is lower than the others, which means it is not a direct
relationship between the wear values and friction coefficient. The interesting outcome is
that the maximum volumetric wear rate occurs for the case study with µc = 0.05 while the
minimum volumetric and linear wear rates are associated with the frictionless joint and
the one with a friction coefficient of 0.2. When the friction is higher, greater linear wear can
be expected as the worn area decreases due to the changes in the trajectory of the femoral
part. However, there is another important contributing factor to wear occurrence, which
can prevent the wear to increase. When UHMWPE slides against a metallic counterface,
molecular chains preferentially become oriented and hardened along the direction of the
PMO, resulting in higher wear resistance of polyethylene [14,104].
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Table 6. Effects of static friction coefficient in Coulomb law on wear rates.

Friction Co. Medial Linear Wear
Rate (mm/mc)

Lateral Linear Wear
Rate (mm/mc)

Volumetric Wear
Rate (mm3/mc)

µc = 0.2 0.031 0.023 6.07
µc = 0.1 0.060 0.052 6.76

µc = 0.05 0.049 0.050 7.01
µc = 0 0.037 0.031 6.09

The effect of parameters in the Stribeck friction model on linear and volumetric wear
rates are also studied and presented in Table 7. It can be observed that the higher the
magnitude of υ0 is, the greater the linear wear rates are. Moreover, increasing the amount
of ξ leads to an increase in linear wear rates. The higher friction coefficients become, the
higher the linear wear rate on the medial condyle is, while the less the value of friction
coefficient, the greater the linear wear rate on the lateral condyle would be. The maximum
volumetric wear rate also takes place once the friction coefficients 0.2/0.13 are considered.

Table 7. Effects of friction parameters in Stribeck law on linear and volumetric wear rates.

ξ υ0 µs/µc

Linear Wear
Rate (Medial)

(mm/mc)

Linear Wear
Rate (Lateral)

(mm/mc)

Volumetric
Wear Rate
(mm3/mc)

10 0.005 0.2/0.13 0.059 0.03 7.74
10 0.005 0.1/0.065 0.0466 0.044 6.81
10 0.005 0.05/0.0325 0.04 0.046 7.3
5 0.005 0.1/0.065 0.052 0.046 6.79

15 0.005 0.1/0.065 0.050 0.043 6.92
10 0.0025 0.1/0.065 0.048 0.044 7.08
10 0.01 0.1/0.065 0.050 0.056 6.73

The effect of friction coefficients in the Coulomb and Stribeck friction models on the
loci of the tibiofemoral joint on the transverse plane is also investigated and illustrated in
Figure 8. It can be seen that increasing the friction coefficient leads to a significant change in
the trajectory of the femur center in the lateral-medial direction in particular. However, the
friction influence is smaller in the posterior-anterior direction, although some variations
have been observed for the case study with friction coefficient 0.05 and 0.2 for Coulomb
friction law and 0.2/0.125 for Stribeck model, in particular, compared to others. This is
also observed in that the trajectory loops of all case studies are closed. Although friction
and viscous contact lead to energy loss in the system, energy is continuously introduced in
the system due to the rheonomically constrained flexion-extension rotation and boundary
conditions, e.g., loads and moments imposed on the femoral bone from muscles, hip joints,
among others, which is why the femur center motion converges to a steady-state periodic
motion. It can be inferred that the trajectory obtained while using the Stribeck friction
model is less influenced by friction force due to the difference existing between the dynamic
and static friction coefficient and the velocity-dependent characteristic of friction once the
Stribeck model is utilized.

The damage map and distribution using the Coulomb friction model with four differ-
ent friction coefficients after five million cycles in service are considered and illustrated in
Figure 9. It can be observed that the distribution of damage in both condyles expands in
the anterior-posterior direction once the friction coefficient increases. Moreover, increasing
friction gives rise to damage values on both condyles as can be observed in Figure 9 and
the more intense color of the damage map becoming red. It is worth mentioning that the
damaged area on the lateral condyle of the knee joint is seen to increase significantly with
increasing the friction coefficient. The other finding is the maximum damage on the lateral
side of the joint occurs close to the middle plateau of the tibia when µc = 0.05, while it is
shifted to the anterior part of the lateral condyle with increasing friction as is observable in
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Figure 9b,d. The damaged area on the medial condyle with high damage increases in the
case study with µc = 0.2, as seen in Figure 9d. The same study is performed to assess the
effects of both static and dynamic friction coefficients used in the Stribeck friction model
on the damage of tibiofemoral joint five-year post-operation, illustrated in Figure 10. It can
be observed that increasing friction coefficients leads to a decrease in damage magnitude
on both condyles, while a greater area of lateral condyle gets engaged in wear occurrence
along the anterior-posterior direction, in particular. The highest damage magnitudes also
happen in the case of the frictionless joint as can be seen in Figure 10a.

Figure 8. Effects of friction coefficient in Coulomb friction law (left-hand side) and both static and dynamic friction
coefficients of Stribeck friction model on the trajectory of TKAs.

Figure 9. Effect of friction coefficient on the damage of TKA after five million cycles: (a) µc = 0;
(b) µc = 0.05; (c) µc = 0.1; (d) µc = 0.2.
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Figure 10. Effect of static and dynamic friction coefficients on the damage of tibiofemoral joints after
five million cycles: (a) µs/µc = 0/0; (b) µs/µc = 0.05/0.0325; (c) µs/µc = 0.1/0.065; (d) µs/µc = 0.2/0.13.

9. Conclusions and Future Research Directions

This study developed a spatial dynamic methodology to investigate the effect of
friction on nonlinear dynamics, vibration, wear, and creep of tibiofemoral joints. A mesh
density analysis was performed to end up with a fine mesh size that guarantees the
accuracy of obtained outcomes. Comparing acquired results to those available in the
literature also made it possible to evaluate the developed model. In conclusion, friction can
considerably influence the motion and damage of TKAs. From the phase portrait diagrams,
chaotic behaviors were observed in the tibiofemoral movement. It was also inferred that
friction-induced vibration takes place when the friction coefficient increases. Moreover,
using an empirical friction model resulted in vibration occurrence. Making any changes in
the magnitudes of parameters in the Stribeck friction model led to the alteration of wear
rates on both condyles. Furthermore, it cannot be expected that increasing the friction
coefficient can always cause wear to rise owing to the strong nonlinearities of the wear
mechanism. The three wear models employed in this study to predict the wear of TKAs
also produced outcomes with significant differences, which should be taken into account
by designers and engineers in their designing process. Eventually, it was illustrated that
friction models influenced both translational and rotational loci of tibiofemoral motion,
and consequently, the damage distribution.

As future research directions, the proposed model can be extended to account for
the dynamics of the patella-femoral joint in addition to the tibiofemoral joint as well as
to take fluid lubrication into account while handling fluid–structure interaction [105–107].
Moreover, the suggested approach can be utilized to optimize the design and material
properties of TKAs to improve their lifetime and tribology performance, using optimiza-
tion approaches such as genetic algorithm (GA) and particle swarm optimization (PSO)
algorithms [108]. The friction models considered in this article are not able to capture
dynamic characteristics of the friction phenomenon, e.g., pre-sliding and frictional lag. The
dynamic-based friction approaches like Dahl and LuGre are to be employed accounting for
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these characteristics, which can lead to much more precise outcomes than those obtained
in our study. As was illustrated, increasing friction leads to friction-induced vibration that
should be considered in more detail experimentally as well. In addition, the viscoelasticity
of polyethylene tibial insert can be considered using more sophisticated models, namely
the generalized Maxwell model, Wagner model, and Prony series [109].

The present study assumed that the geometry evolution of the polyethylene tibia
owing to material loss and creep deformation does not affect the contact stresses and knee
trajectory, whereby the wear magnitude varies linearly during the wear analysis. Surface
evolution leads to a reduction in contact stresses over time, resulting in decreasing wear
rates and creep deformation [36]. Therefore, it can be deduced that the present study
overestimated linear wear rates and creep deformation, both of which are dependent on
contact pressure. The presented methodology can be extended to include the surface
variations of the plastic tibial insert due to the wear and creep phenomena. The improved
model will address the effect of the geometry update on both contact stresses and contact
point trajectory, and eventually, wear and creep. Furthermore, damage distribution was
found to vary with changes in the friction coefficient of knee components. Therefore, a
greater area of the polyethylene tibia can get damaged when friction increases. A future
direction of this research is to consider how any alteration in the damage map can influence
the performance and lifetime of TKAs. The knowledge gained through such a study can
contribute to the design and material development of TKAs.
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Nomenclature

A Contact area tn Time (s) at the time step (n)

C Non-dimensional wear coefficient uk,j
t

Tangential relative velocity at a
node Qk,j

T

CS Cross-shear ratio (=) Uk,j The velocity vector of a point
Qk,j

F with respect to Qk,j
T

Dk,j,
.

Dk,j

Penetration depth at a node (k,j) and
its time derivative on the
polyethylene surface

uk,j
n

Normal relative velocity at a
node Qk,j

T

D Penetration matrix vF
The velocity of the femoral part
of the contact point

dA
The differential of femoral surface
area

vm Entrainment velocity in mm/s

E
Young’s modulus of the
polyethylene

vQ The Stribeck velocity



Appl. Sci. 2021, 11, 7516 25 of 29

F Friction force vT
The speed of the tibial insert
at the tibial plateau surface

Fµ Resultant friction force vt
Tangential sliding velocity
vector

Fe External tangential force v0 A chosen velocity
Fk,j Friction force at each element W f

T Total frictional work
Fn Normal contact force W Volumetric wear

f (ε) Ligament force W f
cs

Frictional work
perpendicular to the PMO
direction

Flig Resultant ligament load vector
..
X

Translational acceleration
vector of the femur

FT
The vectorial summation of
forces imposed on the bone

.
X

tn The translational velocity of
the local coordinate system

Fcont Resultant contact forces xyz
The local coordinate system
fixed to the STL center of the
femoral component

Fext The external forces XYZ The global coordinate system
H Linear wear rate ‖ ‖ L2 norm operator
Hz−x−y The tangent operator {φ, θ, ψ} Euler angles

IC∗ The tensor of inertia
{ .

φ,
.
θ,

.
ψ
} Time derivatives of Euler

angles

→
i1Qk,j

T

The vector from the first vertex
of the facet i to a node Qk,j

T on
the tibia

σ Contact stress

kl Ligament stiffness τ The relaxation time
ksat The slop of linear function Ξ Tibia thickness
kv Viscous coefficient δQ An exponent

K Contact stiffness ΩF
The angular velocity of the
femoral body

kw Wear factor = Cross-shear ratio

l
Instantaneous bundle length of
the ligament

σmax The maximum pressure

l0 The slack length ‖
→

Qk,j
T Qk,j

F ‖
The minimum distance of
node Qk,j

T with respect to the
femoral surface

lr The bundle length ε Ligament strain
M The femoral mass ε1 A constact with value of 0.03

M∗C
The summation vector of
moments computed in xyz

εr The reference strain

MC
The summation vector of
moments computed in ξηζ

ξηζ

The local coordinate system
attached to the STL center of
the femoral component but
does not rotate with the
femur

Mext The external moments ω∗
Angular velocity vector of
the femoral component in
xyz

N
The total number of cycles
in-service

σ Average contact stress
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nF
Normal unit vector on the
femur-bearing surface

υ Poisson’s ratio

tnnk,j
F

The vector normal to the femoral
body at the point Qk,j

T at time tn
δ
(k,j)
Creep

Linear creep at an element
(k,j)

→
Qk,j

F i1,
→

Qk,j
F i2,
→

Qk,j
F i3

Vectors from Qk,j
F to each vertex

of the facet i, i.e., i1, i2, and i3
Γ(k,j) Thickness of element (k,j)

R The rotation tensor of the femur ϕ f

The direction of incremental
motion along the contact
point trajectory

RT The transpose of the rotation
tensor of the femur

µc
The Coulomb friction
coefficient

r
Qk,j

T

The global coordinate vector of a
node, Qk,j

T , on the tibia
µs The static friction coefficient

r
Qk,j

F

The global coordinate vector of a
node, Qk,j

F , on the tibia
∆(k,j)tc(i)

The time duration that an
element (k,j) has been subject
to contact pressure

SRR Sliding-to-rolling ratio ϕ
The angle of a test PMO
direction

S
and s

Sliding distance ϕPMO
The principal molecular
orientation

t Time (s) δv A power

χ
A constant value greater than
one

References
1. Akay, A. Acoustics of friction. J. Acoust. Soc. Am. 2002, 111, 1525–1548. [CrossRef]
2. Askari, E.; Flores, P.; Dabirrahmani, D.; Appleyard, R. Dynamic modeling and analysis of wear in spatial hard-on-hard couple

hip replacements using multibody systems methodologies. Nonlinear Dyn. 2015, 82, 1039–1058. [CrossRef]
3. Ren, K.; Dusad, A.; Zhang, Y.; Wang, D. Therapeutic intervention for wear debris-induced aseptic implant loosening. Acta Pharm.

Sin. B 2013, 3, 76–85. [CrossRef]
4. Nassutt, R.; Wimmer, M.A.; Schneider, E.; Morlock, M.M. The influence of resting periods on friction in the artificial hip. Clin.

Orthop. Relat. Res. 2003, 407, 127–138. [CrossRef] [PubMed]
5. Simon, S.R.; Paul, I.L.; Rose, R.M.; Radin, E.L. “Stiction-frictio” of total hip prostheses and its relationship to loosening. J. Bone Jt.

Surg. Am. 1975, 57, 226–230. [CrossRef]
6. Sathasivam, S.; Walker, P. Optimization of the bearing surface geometry of total knees. J. Biomech. 1994, 27, 255–264. [CrossRef]
7. Blunn, G.W.; Lilley, P.A.; Walker, P.S. Variability of wear of ultra high molecular weight polyethylene in simulated. TKR Trans.

40th Annu. Meet Orthop. Res. Soc. 1994, 19, 177.
8. Collier, J.P.; Mayor, M.B.; McNamara, J.L.; Surprenant, V.A.; Jensen, R.E. Analysis of the failure of 122 polyethylene inserts from

uncemented tibial knee components. Clin. Orthop. 1991, 273, 232–242. [CrossRef]
9. Iversen, B.F.; Stürup, J.; Jacobsen, K.; Andersen, J. Implications of muscular defense in testing for the anterior drawer sign in the

knee. A stress radiographic investigation. Am. J. Sports Med. 1989, 17, 409–413. [CrossRef] [PubMed]
10. Warren, P.J.; Olanlokun, T.K.; Cobb, A.G.; Walker, P.S.; Iverson, B.F. Laxity and function in knee replacements. A comparative

study of three prosthetic designs. Clin. Orthop. Relat. Res. 1994, 305, 200–208. [CrossRef]
11. Askari, E.; Flores, P.; Dabirrahmani, D.; Appleyard, R. Nonlinear vibration and dynamics of ceramic on ceramic artificial hip

joints: A spatial multibody modelling. Nonlinear Dyn. 2014, 76, 1365–1377. [CrossRef]
12. Kang, L.; Galvin, A.L.; Brown, T.D.; Jin, Z.; Fisher, J. Quantification of the effect of cross-shear on the wear of conventional and

highly cross-linked UHMWPE. J. Biomech. 2008, 41, 340–346. [CrossRef]
13. Kang, L.; Galvin, A.L.; Brown, T.D.; Fisher, J.; Jin, Z. Wear simulation of ultra-high molecular weight polyethylene hip implants

by incorporating the effects of cross-shear and contact pressure. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2008, 222, 1049–1064.
[CrossRef] [PubMed]

14. Wang, A.; Sun, D.C.; Yau, S.S.; Edwards, B.; Sokol, M.; Essner, A.; Polineni, V.K.; Stark, C.; Dumbleton, J.H. Orientation softening
in the deformation and wear of ultra-high molecular weight polyethylene. Wear 1997, 203–204, 230–241. [CrossRef]

15. Wang, A.; Essner, A.; Polineni, V.K.; Stark, C.; Dumbleton, J.H. Lubrication and wear of ultrahigh molecular weight polyethylene
in total joint replacements. Tribol. Int. 1998, 31, 17–33. [CrossRef]

http://doi.org/10.1121/1.1456514
http://doi.org/10.1007/s11071-015-2216-9
http://doi.org/10.1016/j.apsb.2013.02.005
http://doi.org/10.1097/00003086-200302000-00020
http://www.ncbi.nlm.nih.gov/pubmed/12567139
http://doi.org/10.2106/00004623-197557020-00016
http://doi.org/10.1016/0021-9290(94)90002-7
http://doi.org/10.1097/00003086-199112000-00034
http://doi.org/10.1177/036354658901700316
http://www.ncbi.nlm.nih.gov/pubmed/2729492
http://doi.org/10.1097/00003086-199408000-00024
http://doi.org/10.1007/s11071-013-1215-y
http://doi.org/10.1016/j.jbiomech.2007.09.005
http://doi.org/10.1243/09544119JEIM431
http://www.ncbi.nlm.nih.gov/pubmed/19024153
http://doi.org/10.1016/S0043-1648(96)07362-0
http://doi.org/10.1016/S0301-679X(98)00005-X


Appl. Sci. 2021, 11, 7516 27 of 29

16. Lee, K.Y.; Pienkowski, D. Compressive creep characteristics of extruded ultrahigh-molecular-weight polyethylene. J. Biomed.
Mater. Res. 1998, 39, 261–265. [CrossRef]

17. Ramamurti, B.; Estok, D.M.; Bragdon, C.R.; Weinberg, E.A.; Jasty, M.; Harris, W.H. Dimensional changes in metal-backed
polyethylene acetabular cups under cyclic loading. In Proceedings of the 45th Annual Meeting of the Orthopedic Research
Society, Anaheim, CA, USA, 1–4 February 1999.

18. Davidson, J.A.; Schwartz, G. Wear, creep, and frictional heat of femoral implant articulating surfaces and the effect on long-term
performance—Part I, review. J. Biomed. Mater. Res. 1987, 21, 261–285. [PubMed]

19. Persson, B.N.J. Sliding Friction, Physical Principles and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY,
USA, 2000.

20. Dowson, D. History of Tribology, 2nd ed.; Wiley: Hoboken, NJ, USA, 1998; ISBN 978-1-86058-070-3.
21. Popova, E.; Popov, V.L. The research works of Coulomb and Amontons and generalized laws of friction. Friction 2015, 3, 183–190.

[CrossRef]
22. Amontons, G. De la resistance cause’e dans les machines. Mémoires de l’Academie Royale des Sciences 1699, 2, 206–226.
23. Euler, L. Sur le frottement des corps solides (On the Friction of Solid Bodies). Mémoires de l’académie des sciences de Berlin 1750, 4,

122–132.
24. Olsson, H.; Åström, K.J.; Canudas de Wit, C.; Gäfvert, M.; Lischinsky, P. Friction Models and Friction Compensation. Eur. J.

Control 1998, 4, 176–195. [CrossRef]
25. Marques, F.; Flores, P.; Claro, J.C.P.; Lankarani, H.M. A survey and comparison of several friction force models for dynamic

analysis of multibody mechanical systems. Nonlinear Dyn. 2016, 86, 1407–1443. [CrossRef]
26. Wang, A.; Essner, A.; Klein, R. Effect of contact stress on friction and wear of ultra-high molecular weight polyethylene in total

hip replacement. Proc. Instn. Mech. Engrs. Part H 2001, 215, 133–139. [CrossRef]
27. Saikko, V. Effect of contact pressure on wear and friction of ultra-high molecular weight polyethylene in multidirectional sliding.

Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2006, 220, 723–731. [CrossRef] [PubMed]
28. Barceinas-Sanchez, J.D.O.; Alvarez-Vera, M.; Montoya-Santiyanes, L.A.; Dominguez-Lopez, I.; Garcia-Garcia, A.L. The coefficient

of friction of UHMWPE along an entire walking cycle using a ball-on-disc tribometer under arthrokinematics and loading
conditions prescribed by ISO 14243-3:2014. J. Mech. Behav. Biomed. Mater. 2017, 65, 274–280. [CrossRef]

29. Garcia-Garcia, A.L.; Alvarez-Vera, M.; Montoya-Santiyanes, L.A.; Dominguez-Lopez, I.; Montes-Seguedo, J.L.; Sosa-Savedra, J.C.;
Barceinas-Sanchez, J.D.O. Regression models to predict the behavior of the coefficient of friction of AISI 316L on UHMWPE
under ISO 14243-3 conditions. J. Mech. Behav. Biomed. Mater. 2018, 82, 248–256. [CrossRef]

30. Montes-Seguedo, J.L.; Garcia-Garcia, A.L.; Barceinas-Sanchez, J.D.O.; Sosa-Savedra, J.C.; Morales-Garcia, M.R.J.; Gonzalez-
Jasso, E.; Dominguez-Lopez, I. Mapping the friction coefficient of AISI 316L on UHMWPE lubricated with bovine serum to study
the effect of loading and entrainment at high values of sliding-to-rolling ratio. Health Technol. 2020, 10, 385–390. [CrossRef]

31. Wriggers, O. Computational Contact Mechanics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006.
32. Sathasivam, S.; Walker, P.S. A computer model with surface friction for the prediction of total knee kinematics. J. Biomech. 1997,

30, 177–184. [CrossRef]
33. Fisher, J.; Dowson, D. Tribology of totai artificial joints. Proc. Insr. Mech. Engrs. 1991, 205, 73–79. [CrossRef]
34. Wismans, J.; Veldpaus, F.; Janssen, J.; Huson, A.; Strulen, P. A threedimensional mathematical model of the knee joint. J. Biomech.

1980, 13, 677–686. [CrossRef]
35. Marra, M.A.; Vanheule, V.; Fluit, R.; Koopman, B.; Ramussen, J.; Verdonschot, N.; Andersen, M.S. A Subject-Specific Muscu-

loskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty. J. Biomech. Eng. 2015, 137, 020904.
[CrossRef]

36. Fregly, B.J.; Sawyera, W.G.; Harmand, M.K.; Banks, S.A. Computational wear prediction of a total knee replacement from in vivo
kinematics. J. Biomech. 2005, 38, 305–314. [CrossRef]

37. Beynnon, B.; Yu, J.; Huston, D.; Fleming, B.; Johnson, R.; Haugh, L.; Pope, M.H. A sagittal plane model of the knee and cruciate
ligaments with application of a sensitivity analysis. J. Biomech. Eng. 1996, 118, 227–239. [CrossRef] [PubMed]

38. Koh, Y.G.; Lee, J.A.; Lee, H.Y.; Kim, H.J.; Kang, K.T. Computational wear prediction of insert conformity and material on
mobile-bearing unicompartmental knee arthroplasty. Bone Jt. Res. 2019, 8, 563–569. [CrossRef]

39. Andriacchi, T.P. Dynamics of knee malalignment. Orthop. Clin. N. Am. 1994, 25, 395–403. [CrossRef]
40. Bei, Y.; Fregly, B.J. Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 2004, 26, 777–789. [CrossRef]
41. Pandy, M.G.; Sasaki, K.; Kim, S. A Three-dimensional musculoskeletal model of the human knee joint. Part 1: Theoretical

construction. Comput. Methods Biomech. Biomed. Eng. 1997, 1, 87–108. [CrossRef]
42. Moeinzadeh, M.H.; Engin, A.E.; Akkas, N. Two-dimensional dynamic modeling of human knee joint. J. Biomech. 1983, 16, 253–264.

[CrossRef]
43. Engin, A.E.; Moeinzadeh, M.H. Dynamic modelling of human articulating joints. Math. Model. 1983, 4, 117–141. [CrossRef]
44. Wongchaisuwat, C.; Hemami, H.; Buchner, H.J. Control of sliding and rolling at natural joints. ASME J. Biomech. Eng. 1984, 106,

368–375. [CrossRef]
45. Tumer, S.T.; Wang, X.; Akkas, N. A planar dynamic anatomical model of the human lower limb. Biomed. Eng. Appl. Basis Commun.

1995, 7, 365–378.

http://doi.org/10.1002/(SICI)1097-4636(199802)39:2&lt;261::AID-JBM13&gt;3.0.CO;2-G
http://www.ncbi.nlm.nih.gov/pubmed/3323203
http://doi.org/10.1007/s40544-015-0074-6
http://doi.org/10.1016/S0947-3580(98)70113-X
http://doi.org/10.1007/s11071-016-2999-3
http://doi.org/10.1243/0954411011533698
http://doi.org/10.1243/09544119JEIM146
http://www.ncbi.nlm.nih.gov/pubmed/17117762
http://doi.org/10.1016/j.jmbbm.2016.08.032
http://doi.org/10.1016/j.jmbbm.2018.03.028
http://doi.org/10.1007/s12553-019-00355-y
http://doi.org/10.1016/S0021-9290(96)00114-5
http://doi.org/10.1243/PIME_PROC_1991_205_271_02
http://doi.org/10.1016/0021-9290(80)90354-1
http://doi.org/10.1115/1.4029258
http://doi.org/10.1016/j.jbiomech.2004.02.013
http://doi.org/10.1115/1.2795965
http://www.ncbi.nlm.nih.gov/pubmed/8738789
http://doi.org/10.1302/2046-3758.811.BJR-2019-0036.R1
http://doi.org/10.1016/S0030-5898(20)31924-6
http://doi.org/10.1016/j.medengphy.2004.07.004
http://doi.org/10.1080/01495739708936697
http://doi.org/10.1016/0021-9290(83)90133-1
http://doi.org/10.1016/0270-0255(83)90024-6
http://doi.org/10.1115/1.3138508


Appl. Sci. 2021, 11, 7516 28 of 29

46. Abdel-Rahman, E.; Hefzy, M.S. A two-dimensional dynamic anatomical model of the human knee joint. ASME J. Biomech. Eng.
1993, 115, 357–365. [CrossRef]

47. Ling, Z.K.; Guo, H.Q.; Boersma, S. Analytical study on the kinematic and dynamic behaviors of a knee joint. Med. Eng. Phys.
1997, 19, 29–36. [CrossRef]

48. Tumer, S.T.; Engin, A.E. Three-body segment dynamic model of the human knee. ASME J. Biomech. Eng. 1993, 115, 350–356.
[CrossRef]

49. Abdel-Rahman, E.M.; Hefzy, M.S. Three-dimensional dynamic behavior of the human knee joint under impact loading. Med. Eng.
Phys. 1998, 20, 276–290. [CrossRef]

50. Caruntu, D.I.; Hefzy, M.S. 3-D Anatomically based dynamic modeling of the human knee to include tibio-femoral and patello-
femoral joints. J. Biomech. Eng. 2004, 126, 44–53. [CrossRef] [PubMed]

51. Askari, E.; Andersen, M.S. Effect of ligament properties on nonlinear dynamics and wear prediction of knee prostheses. J. Biomech.
Eng. 2021, 143, 021014. [CrossRef]

52. Piazza, S.J.; Delp, S.L. Three-dimensional simulation of total knee replacement motion during a step-up task. J. Biomech. Eng.
2001, 123, 599–606. [CrossRef]

53. Andersson, S.; Söderberg, A.; Björklund, S. Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol. Int.
2007, 40, 580–587. [CrossRef]

54. Reynolds, O. On the Theory of Lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental
determination of the viscosity of olive oil. Philos. Trans. R. Soc. Lond. 1886, 177, 157–234.

55. Stribeck, R. Die wesentlichen Eigenschaften der Gleitund Rollenlager: (The key qualities of sliding and roller bearings). Z. Vereines
Deutsch. Ingen. 1902, 46, 1342–1348.

56. Panovko, Y.G.; Gubanova, I.I. Stability and Oscillations of Elastic Systems, Paradoxes, Fallacies, and New Concepts; Consultants Bureau
Enterprises: New York, NY, USA, 1965.

57. Ibrahim, R.A. Friction-induced vibration, chatter, squeal, and chaos. Part I: Mechanics of contact and friction. Appl. Mech. Rev.
1994, 47, 209–226. [CrossRef]

58. Armstrong-Hélouvry, B. Control of Machines with Friction; Kluwer: Boston, MA, USA, 1991.
59. Kragel’skii, I.V. Friction and Wear; Butterworths: London, UK, 1965.
60. Kragel’skii, I.V.; Dobychin, M.N.; Kombalov, V.S. Friction and Wear: Calculation Methods; Pergamon Press: Oxford, UK, 1982.
61. Bengisu, M.T.; Akay, A. Stability of friction-induced vibrations in multi-degree-of-freedom systems. J. Sound Vib. 1994, 171,

557–570. [CrossRef]
62. Kanga, J.; Krousgrilla, C.M.; Sadeghi, F. Oscillation pattern of stick-slip vibrations. Int. J. Non-Linear Mech. 2009, 44, 820–828.

[CrossRef]
63. Karnopp, D. Computer simulation of slip-stick friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control. 1985, 107,

100–103. [CrossRef]
64. Gaul, L.; Nitsche, R. The role of friction in mechanical joints. Appl. Mech. Rev. 2001, 54, 93–106. [CrossRef]
65. Canudas de Wit, C.; Olsson, H.; Astrom, K.J.; Lischinsky, P. New model for control of systems with friction. IEEE Trans. Autom.

Control. 1995, 40, 419–425. [CrossRef]
66. Dahl, P.R. A Solid Friction Model; Technical Report TOR-0158(3107-18)-1; The Aerospace Corporation: El Segundo, CA, USA, 1968.
67. Dankowicz, H. On the modeling of dynamic friction phenomena. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 1999, 79,

399–409. [CrossRef]
68. Bauchau, O.A. Flexible Multibody Dynamics; Springer: Berlin/Heidelberg, Germany, 2011.
69. Askari, E. Mathematical models for characterizing non-Hertzian contacts. Appl. Math. Model. 2021, 90, 432–447. [CrossRef]
70. Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985.
71. Kerr, A.D. Elastic and viscoelastic foundation models. J. Appl. Mech. 1964, 31, 491–498. [CrossRef]
72. Younesian, D.; Hosseinkhani, A.; Askari, H.; Esmailzadeh, E. Elastic and viscoelastic foundations: A review on linear and

nonlinear vibration modeling and applications. Nonlinear Dyn. 2019, 97, 853–895. [CrossRef]
73. Gilardi, G.; Sharf, I. Literature survey of contact dynamics modelling. Mech. Mach. Theory 2002, 37, 1213–1239. [CrossRef]
74. Põdra, P.; Andersson, S. Wear simulation with the Winkler surface model. Wear 1997, 207, 79–85. [CrossRef]
75. Zhang, J.; Chena, Z.; Wang, L.; Lia, D.; Jin, Z. A patient-specific wear prediction framework for an artificial knee joint with

coupled musculoskeletal multibody-dynamics and finite element analysis. Tribol. Int. 2017, 109, 382–389. [CrossRef]
76. Zhao, D.; Sakoda, H.; Sawyer, W.G.; Banks, S.A.; Fregly, B.J. Predicting knee replacement damage in a simulator machine using a

computational model with a consistent wear factor. J. Biomech. Eng. 2008, 130, 011004. [CrossRef]
77. Abdelgaied, A.; Liu, F.; Brockett, C.; Jennings, L.; Fisher, J.; Jin, Z. Computational wear prediction of artificial knee joints based on

a new wear law and formulation. J. Biomech. 2011, 44, 1108–1116. [CrossRef] [PubMed]
78. Fregly, B.J.; Besier, T.F.; Lloyd, D.G.; Delp, S.L.; Banks, S.A.; Pandy, M.G.; D’Lima, D.D. Grand challenge competition to predict

in vivo knee loads. J. Orthop. Res. 2012, 30, 503–513. [CrossRef] [PubMed]
79. Kirking, B.; Krevolin, J.; Townsend, C.; Colwell, C.W.; D’Lima, D.D. A Multiaxial Force-Sensing Implantable Tibial Prosthesis. J.

Biomech. 2006, 39, 1744–1751. [CrossRef]
80. D’Lima, D.D.; Townsend, C.P.; Arms, S.W.; Morris, B.A.; Colwell, C.W. An Implantable Telemetry Device to Measure Intra-

Articular Tibial Forces. J. Biomech. 2005, 38, 299–304. [CrossRef]

http://doi.org/10.1115/1.2895498
http://doi.org/10.1016/S1350-4533(96)00031-8
http://doi.org/10.1115/1.2895497
http://doi.org/10.1016/S1350-4533(98)00010-1
http://doi.org/10.1115/1.1644565
http://www.ncbi.nlm.nih.gov/pubmed/15171128
http://doi.org/10.1115/1.4048707
http://doi.org/10.1115/1.1406950
http://doi.org/10.1016/j.triboint.2005.11.014
http://doi.org/10.1115/1.3111079
http://doi.org/10.1006/jsvi.1994.1140
http://doi.org/10.1016/j.ijnonlinmec.2009.05.002
http://doi.org/10.1115/1.3140698
http://doi.org/10.1115/1.3097294
http://doi.org/10.1109/9.376053
http://doi.org/10.1002/(SICI)1521-4001(199906)79:6&lt;399::AID-ZAMM399&gt;3.0.CO;2-K
http://doi.org/10.1016/j.apm.2020.08.048
http://doi.org/10.1115/1.3629667
http://doi.org/10.1007/s11071-019-04977-9
http://doi.org/10.1016/S0094-114X(02)00045-9
http://doi.org/10.1016/S0043-1648(96)07468-6
http://doi.org/10.1016/j.triboint.2016.10.050
http://doi.org/10.1115/1.2838030
http://doi.org/10.1016/j.jbiomech.2011.01.027
http://www.ncbi.nlm.nih.gov/pubmed/21329928
http://doi.org/10.1002/jor.22023
http://www.ncbi.nlm.nih.gov/pubmed/22161745
http://doi.org/10.1016/j.jbiomech.2005.05.023
http://doi.org/10.1016/j.jbiomech.2004.02.011


Appl. Sci. 2021, 11, 7516 29 of 29

81. Askari, E.; Cengiz, I.F.; Alves, J.L.; Henriques, B.; Flores, P.; Fredel, M.C.; Reis, R.L.; Oliveira, J.M.; Silva, F.S.; Mesquita-
Guimarães, J. Micro-CT based finite element modelling and experimental characterization of the compressive mechanical
properties of 3-D zirconia scaffolds for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2020, 102, 103516. [CrossRef]

82. Askari, E.; Andersen, M.S. A modification on velocity terms of Reynolds equation in a spherical coordinate system. Tribol. Int.
2019, 131, 15–23. [CrossRef]

83. Askari, E.; Andersen, M.S. A closed-form formulation for the conformal articulation of metal-on-polyethylene hip prostheses:
Contact mechanics and sliding distance. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2018, 232, 1196–1208. [CrossRef] [PubMed]

84. Askari, E.; Flores, P.; Dabirrahmani, D.; Appleyard, R. A computational analysis of squeaking hip prostheses. ASME J. Comput.
Nonlinear Dyn. 2015, 10, 024502. [CrossRef]

85. Blankevoort, L.; Kuiper, J.H.; Huiskes, R.; Grootenboer, H.J. Articular Contact in a Three-Dimensional Model of the Knee. J.
Biomech. 1991, 24, 1019–1031. [CrossRef]

86. Butler, D.L.; Kay, M.D.; Stouffer, D.C. Comparison of material properties in fascicle-bone units from human patellar tendon and
knee ligaments. J. Biomech. 1986, 19, 425–432. [CrossRef]

87. Bowman, K.F.; Sekiya, J.K. Anatomy and Biomechanics of the Posterior Cruciate Ligament, Medial and Lateral Sides of the Knee.
Sports Med. Arthrosc. 2010, 18, 222–229. [CrossRef] [PubMed]

88. Chwaluk, A.; Ciszek, B. Anatomy of the Posterior Cruciate Ligament. Folia Morphol. 2009, 68, 8–12.
89. Dimas, E.; Briassoulis, D. 3D geometric modelling based on NURBS: A review. Adv. Eng. Softw. 1999, 30, 741–751. [CrossRef]
90. Landon, R.L.; Hast, M.W.; Piazza, S.J. Robust contact modeling using trimmed NURBS surfaces for dynamic simulations of

articular contact. Comput. Methods Appl. Mech. Engrg. 2009, 198, 2339–2346. [CrossRef]
91. Archard, J.F. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988. [CrossRef]
92. Askari, E.; Andersen, M.S. A dynamic model of polyethylene damage in dry total hip arthroplasties: Wear and creep. Multibody

Syst. Dyn. 2019, 45, 403–429. [CrossRef]
93. Kang, L.; Galvin, A.L.; Fisher, J.; Jin, Z. Enhanced computational prediction of polyethylene wear in hip joints by incorporating

cross-shear and contact pressure in additional to load and sliding distance: Effect of head diameter. J. Biomech. 2009, 42, 912–918.
[CrossRef] [PubMed]

94. Turell, M.; Wang, A.; Bellare, A. Quantification of the effect of cross-path motion on the wear rate of ultra-high molecular weight
polyethylene. Wear 2003, 255, 1034–1039. [CrossRef]

95. Goreham-Voss, C.M.; Hyde, P.J.; Hall, R.M.; Fisher, J.; Brown, T.D. Cross shear implementation in sliding-distance coupled finite
element analysis of wear in metal-on-polyethylene total joint arthroplasty: Intervertebral total disc replacement as an illustrative
application. J. Biomech. 2010, 43, 1674–1681. [CrossRef]

96. Mattei, L.; Di Puccio, F.; Ciulli, E. A comparative study of wear laws for soft-on-hard hip implants using a mathematical wear
model. Tribol. Int. 2013, 63, 66–77. [CrossRef]

97. Hamilton, M.A.; Sucec, M.C.; Fregly, B.J.; Banks, S.A.; Sawyer, W.G. Quantifying multidirectional sliding motions in total knee
replacements. J. Tribol. 2005, 127, 280–286. [CrossRef]

98. Askari, E.; Jeong, K.H.; Amabili, M. Hydroelastic vibration of circular plates immersed in a liquid-filled container with free
surface. J. Sound Vib. 2013, 332, 3064–3085. [CrossRef]

99. Gill, H.S.; Waite, J.C.; Short, A.; Kellert, C.F.; Price, A.J.; Murray, D.W. In vivo measurement of volumetric wear of a total knee
replacement. Knee 2006, 13, 312–317. [CrossRef]

100. Lavernia, C.J.; Sierra, R.J.; Hungerford, D.S.; Krackow, K. Activity level and wear in total knee arthroplasty. A study of autopsy
retrieval specimens. J. Arthroplast. 2001, 16, 446–453. [CrossRef]

101. Galvin, A.L.; Kang, L.; Udofia, I.; Jennings, L.M.; McEwen, H.M.; Jin, Z.; Fisher, J. Effect of conformity and contact stress on wear
in fixed-bearing total knee prostheses. J. Biomech. 2009, 42, 1898–1902. [CrossRef] [PubMed]

102. Harman, M.K.; Banks, S.A.; Hodge, W.A. Polyethylene Damage and Knee Kinematics After Total Knee Arthroplasty. Clin. Orthop.
Relat. Res. 2001, 392, 383–393. [CrossRef] [PubMed]

103. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos; Springer: New York, NY, USA, 1990.
104. Wang, A. A unified theory of wear for ultra-high molecular weight polyethylene in multi-directional sliding. Wear 2001, 248,

38–47. [CrossRef]
105. Askari, E.; Daneshmand, F. Coupled vibration of cantilever cylindrical shells partially submerged in fluids with continuous,

simply connected and non-convex domain. J. Sound Vib. 2010, 329, 3520–3536. [CrossRef]
106. Askari, E.; Jeong, K.H.; Ahn, K.H.; Amabili, M. A mathematical approach to study fluid-coupled vibration of eccentric annular

plates. J. Fluids Struct. 2020, 98, 103129. [CrossRef]
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