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Abstract
Objective. The aimof this studywas tofind spectral differences of diagnostic interest in heart sound
recordings of patients with coronary artery disease (CAD) and healthy subjects.Approach. Heart
sound recordings from three studies were pooled, and patients with clear diagnostic outcomes
(positive: CAD and negative: Non-CAD)were selected for further analysis. Recordings from1146
patients (191CAD and 955Non-CAD)were analyzed for spectral differences between the two groups
usingWelch’s spectral density estimate. Frequency spectrawere estimated for systole and diastole
segments, and time-frequency spectra were estimated for first (S1) and second (S2)heart sound
segments. AnANCOVAmodel with terms for diagnosis, age, gender, and bodymass indexwas used to
evaluate statistical significance of the diagnosis term for each time-frequency component.Main
results. Diastole and systole segments of CADpatients showed increased energy at frequencies
20–120Hz; furthermore, this difference was statistically significant for the diastole. CADpatients
showed decreased energy for themid-S1 andmid-S2 segments and conversely increased energy before
and after the valve sounds. Both S1 and S2 segments showed regions of statistically significant
difference in the time-frequency spectra. Significance. Results from analysis of the diastole support
findings of increased low-frequency energy fromprevious studies. Time-frequency components of S1
and S2 sounds showed that these two segments likely contain heretofore untapped information for
risk assessment of CADusing phonocardiography; this should be considered in futureworks. Further
development of features that build on these findings could lead to improved acoustic detection
of CAD.

1. Introduction

Coronary artery disease (CAD) has been declining as a percentagewise cause of death in developed regions such
as EU andUSA.Nonetheless, it has been a growing cause of death globally and remains the primary cause of
deathworldwide. Approximately 9.4million people died fromCAD in 2016, accounting for 16.8%of all deaths
(WorldHealthOrganization 2018).

CADhas been decreasing as a cause of death in developed countries, but the number of patients referred for
further investigations remain high.Moreover, the prevalence of CAD among these referred patients is only at
6%–12% (Douglas et al 2015, Therming et al 2018,Winther et al 2018). Thismeans thatmanyNon-CAD
patients are exposed to risks associatedwith unnecessary and sometimes invasive testing that burdens the health
care systemwith additional costs.

Through analysis of heart sounds, phonocardiography (PCG) provides the possibility to do improved pre-
test likelihood estimation of CAD (a concept proposed by the ESC guidelines) using a fast, cheap, and non-
invasivemethod. Coupledwith clinical parameters such as age, gender, and blood pressure, thismethod has
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shown to be effective for preliminary investigation of patients suspected of havingCAD through ruling outNon-
CADpatients from further testing (Makaryus et al 2013, Azimpour et al 2016,Winther et al 2018, Schmidt et al
2019,Winther et al 2021).

Heart sounds have previously been investigated for spectral differences in attempts to detect CADusing
phonocardiography (Semmlow et al 1983, Akay et al 1990, 1993, Semmlow et al 1990, Gauthier et al 2007,
Schmidt et al 2007, 2010, 2011, 2015, Semmlow andRahalkar 2007,Dragomir et al 2016,Winther et al 2016).
Most studies have focused on analyzing the diastole and generalfindings have been that CADcauses an increase
in energy of some frequencies. However, there are varying reports regarding at which frequencies this increased
energy occurs. Semmlow et al reported in Semmlow et al (1983) an increase at 180–300Hz and later in Semmlow
et al (1990) for frequencies above 300Hz. This is in linewith findings fromAkay et al in (1990), (1993) of
increased energy at frequencies of 300–800Hz.Gauthier et al reported increased energy for frequencies above
130Hz inGauthier et al (2007), which ismore in line with the initialfindings from in Semmlow et al (1983).
Successfully developed features based on frequencies above 240Hz in Schmidt et al (2007). Later in Schmidt et al
(2010), (2015), they found that features extracted from the lower frequency band (25–250Hz) performed better
in noisy conditions.More recently, inWinther et al (2016) and in Schmidt et al (2011) found the primary
increase of energy occurring in the frequency range below 200Hz, whereas reported this increase in energy for
frequencies above 150Hz (Dragomir et al 2016).

Whatever the reported frequencies, this increased energy of the diastole heart sound is typically explained as
weakmurmurs resulting from turbulent blood flow following the occlusion of coronary arteries, and simulated
turbulencemodels (Jin-Zhao et al 1990) showing similar effects support this explanation.

Whereas previous studies show that some level of success for diagnosing CADcan be achieved through
analysis of diastole heart sounds, other parts of the heart sound have not seen the same level of investigation. The
focus on the diastole has existed, as Semmlow andRahalkar puts it in Semmlow andRahalkar (2007), because ‘it
is during this quiet period, that coronary blood flow ismaximal, so that acoustic signature associatedwith
turbulent bloodflow is likely to be loudest’.

Left ventricular coronary blood flow is phasic, with high blood flowduring diastole, and low (or even
reverse) blood flowduring systole.However, evidence suggests that thismay not be the case for the right
ventricular coronary blood flow,which could increase during systole rather than diminish (Goodwill et al 2017).
Furthermore, showed in deWaard et al (2019) how stenosis of the LAD can affect the diastole and systole blood
flow velocities. This suggests that theremight be valuable information gained in analysis of heart sounds from
the systole segment of the heartbeat in addition to the diastole for detection of stenoticmurmurs.

MMansour et al showed inMansour et al (2020) correlation between coronary artery calcium (CAC) score
and diastole dysfunction (DD). This relationshipmay indicate that CADpatients have different relaxation
patterns and valve-sounds. If this is the case, theremight be differences in the first (S1) and second (S2) heart
sounds that could be used for detection of CADwith S1 resulting from the closing of themitral and tricuspid
valves, and S2 resulting from the closing of the aortic and pulmonic valves. Other studies (Pathak et al 2020, Liu
et al 2021) showed an increased performance by including the entire PCG recording instead of only the diastole
segment, or by using simultaneous recordings atmultiple sites on the chest. This suggests that theremight be
spectral differences in the PCGofCADpatients other thanwhat can be observed in the diastole.

We hypothesize that there are spectral differences in heart sound recordings frompatients withCAD and
patients without CAD, andwewill investigate this hypothesis for the four previouslymentioned segments of the
heart sound: S1, S2, systole and diastole.With a large database available, it is possible to investigate absolute
spectral differences in heart sounds betweenCADandNon-CADpatients. A typical approach for spectral
analysis of heart sounds is to normalize the spectra to either a sub-frequency band of the spectrumor the total
power in order to lower the influence of large inter-subject variation.However, this normalization canmake it
more difficult to determine exactly which frequencies are affected.

The investigationmight reveal further unexploited components of the heart sound that can be used for
improvement of algorithms for risk stratification of CAD.

2.Methods

2.1.Data
Data from three studies AdoptCAD (Winther et al 2016) (ClinicalTrials.gov numberNCT01564628); Dan-
NICAD (Nissen et al 2016,Winther et al 2018) (ClinicalTrials.gov numberNCT02264717); and BIO-CAC
(Diederichsen et al 2017, Grønhøj et al 2018) (ClinicalTrials.gov numberNCT02913144)were pooled into one
dataset as shown in table 1.

AdoptCAD andDan-NICADwere approved by the Regional Committees onHealth Research Ethics for
Central Denmark, and BIO-CACwas approved by the Regional Committees onHealth Research Ethics for
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SouthernDenmark. All studies were conducted according to theHelsinki Declaration, andwritten informed
consent was obtained from all patients.

The procedure for recording heart soundswas the same for all studies. First, subjects rested in supine
position for 5 min prior to recording. Following this resting period, subjects continued to be in supine position
while heart soundswere recorded using anAcarix CADScor device at the fourth intercostal space during 4
breath-hold periods of 8 seconds each.

Only subjects where at least one heart sound recordingwas available were included in the dataset. Ifmultiple
heart sound recordings were available, the first was selected. Subjects were excluded if their heart sound
recordings failed pre-analysis qualification of the Acarix CADScor heart sound processing framework. In total,
453 subjects were excluded because either no recordingwas available or because the recording did not pass pre-
analysis qualification.

Patients were classified into one of three diagnostic categories: CAD,Non-CAD, andUnclassified. Patients
with a coronary angiographic identified stenosis with at least 50%diameter reductionwere classified asCAD.
Patients with aCAC score of 0 and no coronary artery stenosis discovered through coronary computed
tomography angiographywere classified asNon-CAD. The remaining patients, who could not be classified into
either of the two categories, were classified asUnclassified.Only patients with a clear diagnostic outcome of
either CADorNon-CADwere included for further analysis, whichmeant the exclusion of an additional 938
patients whowereUnclassified.

Finally, heartbeats where annotation of S1 failedwere discarded, and subjects with fewer than 5 remaining
annotated heartbeats were excluded from further analysis, resulting in the exclusion of 62 subjects (19CADand
43Non-CAD).

2.2. Preprocessing
An adaptive filter was used to reduce background noise using a simultaneous recording of roomnoise. Breath-
hold periods of phonocardiogramswere segmented into single heartbeats using a duration dependent hidden
Markovmodel (HMM) developed by in Schmidt et al (2010), and heart sounds (S1 (onset and offset), S2 (onset
and offset), S3, and S4)were annotated automatically by theHMM.

A fourth order Butterworth band-pass filter with cutoff frequencies of 5 and 1000Hzwas applied to
heartbeat signals. This was followed by awhitening filter designed to reduce the influence of spectral leakage and
to emphasize the diastole differences betweenCADandNon-CADheart sounds as described in Larsen et al
(2019). Finally, a second order Butterworth high-passfilter with a cutoff frequency of 20Hzwas applied.

2.3.Heartbeat alignment and heart sound segments
Before spectral analysis, heartbeats for the same subject were aligned to the onset of S1 and S2 respectively as
shown infigure 1. Analyses of S1 and systole segments were performedwith heartbeats aligned to onset of S1,
and analyses of S2 and diastole segments were performedwith heartbeats aligned to onset of S2.

The four heart sound segments analyzed in this article and shown infigure 1were defined as described in
table 2.

2.4. Frequency spectrumanalysis
Four segments were investigated for spectral differences related toCAD: S1, S2, systole, and diastole segments as
shown infigure 1. For all analyses, the frequency spectra were estimated usingWelch’s power spectral density
(PSD) estimatewith the function pwelch inMATLAB’s Signal Processing Toolbox.Hammingwindowswere
used in conjunctionwith pwelchwith lengths as described in table 2.

Table 1.Composition of pooled dataset. The dataset consists of pooled data from three studies: AdoptCAD,Dan-NICAD, andBIO-CAC.
The composition of gender is fairly even, but the number of CAD subjects is low relative to the number ofNon-CAD subjects. This is due to
the low prevalence of CAD in the patient group. The number for original subjects is the number that were included in the source dataset
before any exclusions. Statistics for number of CAD,Non-CAD,Gender, andAge are for patients included in the analysis. The category
unclassifiedwas not included in further analysis but is included in the table for completion.

Subjects Diagnosis Gender Age

Study Original Excluded Included CAD Non-CAD Unclassified Female Male Mean SD

AdoptCAD 255 144 111 53 58 82 49 62 59.8 12.0

Dan-NICAD 1675 862 813 137 676 592 458 355 55.0 8.7

BIO-CAC 661 439 222 1 221 264 147 75 58.9 4.9

Total 2591 1445 1146 191 955 938 654 492 56.2 8.7
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A single average frequency spectrumwas estimated for systole segments, whereas S1 and S2 segments were
investigated using time-frequency analysis with several smaller subsegments for each segment as noted in table 2.
The reason for this is that the S1 and S2 segments are highly dynamic.

The logarithmof the PSDwas used for comparison of frequency spectra of CAD andNon-CAD subjects, and
the spectrumdifference betweenCADandNon-CADpatients was calculated by subtracting the average
spectrumofNon-CADpatients from the average spectrumofCADpatients.

2.5. Statistical analysis
A four-wayANCOVAwas used to investigate statistical significance of observed average differences in the
frequency and time-frequency spectra. Tominimize the influence of demographic differences between the two
groups (CADandNon-CAD), independent variables for gender, age, and bodymass index (BMI)were included
in themodel. Previouswork (Larsen et al 2017) have shown some correlation between these parameters (in

Figure 1.Multiple heartbeats from aheart sound recording of the same subjects aligned to the onset of (a) S1 and (b) S2. Analyses of S1
and systole segments were performedwith alignment to S1 (a), whereas analyses of S2 and diastole segments were performedwith
alignment to S2 (b). Themotivation for two different alignments can be seen in the difference of the S1 and S2 segments for the two
alignments (a) and (b). (Recording: AC003–3005_001).

Table 2.Overview of the settings for the spectral analyses. Heartbeats for the same subject were segmented and aligned to the onset of either
S1 or S2. For systole and diastole segments, a single PSDwas calculated for each of the two segments. For S1 and S2 segments, several
subsegments were defined, and PSDswere calculated for each subsegment. AHammingwindowwas appliedwhen estimating the PSDswith
sizes as listed in the table. The square root of the PSDwas used for evaluating the statistical significance of the frequency and time-frequency
components.

Segment Alignment Window Analysis and segment definition

Systole S1 onset 64ms Single segment from16ms after the offset of S1 to 16ms before the onset of S2.

Diastole S2 onset 128ms Single segment from175ms to 450ms after the onset of S2. If S3 or S4 soundswere annotatedwithin

this period, the segment was reduced to avoid the influence of S3 and S4.

S1 S1 onset 64ms The S1 segment was divided into 13 sub-segments, each of 64ms length, with centers at [−64,−48,

−32,−16, 0, 16, 32, 48, 64, 80, 96, 112, 128]ms in relation to the onset of S1. The frequency

spectrumwas calculated for each of these segments.

S2 S2 onset 64ms The S2 segment was divided into 9 sub-segments, each of 64ms length, with centers at [−48,−32,

−16, 0, 16, 32, 48, 64, 80]ms in relation to the onset of S2. The frequency spectrumwas calculated

for each of these segments.
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particular BMI) and the amplitude of S1 and S2. Themodel included the following independent variables: CAD
Diagnosis (binary),MaleGender (binary), Age (continuous), andBMI (continuous).

The linear regressionmodel is written as follows:

( )b b b b b= + + + +PSD CAD Male Age BMI. 10 1 2 3 4

To investigate the statistical significance of frequency spectrum components in distinguishing betweenCAD
andNon-CADpatients, the p-value of theDiagnosis-part of themodel was evaluated. Each component of the
frequency and time-frequency domainswere evaluated separately usingMATLAB’s anovan function.
Components with p-values forβ1 (diagnostic category) below 0.05were considered statistically significant.

Lastly, the single-feature performance of each frequency and time-frequency component for classification of
CADandNon-CADpatients was evaluated for each of the four segments. For quantifying classification
potential, the area under the curve (AUC) of a receiver operating characteristics curvewas evaluated for each
frequency and time-frequency component for each segment usingMATLAB’s perfcurve function. The results of
these analyses were then collected in a plot for each segment showing the performance for each component as it
related to that segment. A two-sided 95% confidence interval is included in the plots andwere calculated using
themethod described byHanley andMcNeil in JA andBJ (1982).

3. Results

Heart sound recordings from a total of 1146 subjects were successfully analyzed (191CAD and 955Non-CAD).
Frequency plots were obtained for systole and diastole segments, and time-frequency plots were obtained for S1
and S2 segments. Frequency plots for systole and diastole included reporting of spectrawithmodeled statistical
significance, whereas separate plots formodeled statistical significanceweremade for S1 and S2. Results for each
segment also include a plot of themean power difference betweenCAD andNon-CADpatients, as well as a plot
showing the classificationAUCperformance of each frequency and time-frequency component.

This section contains the results from the four segments analyzed in this paper: systole, diastole, S1, and S2.

3.1. Analysis of systole
Analysis of systole segments of the heart sounds produced the three plots figures 2(a)–(c).

There are significant differences of the average energies betweenCAD andNon-CADpatients at frequencies
15–200Hzwith a 95% confidence interval and peak difference at frequencies 30–125Hz of roughly 2 dB.
However, when accounting for age, gender, and BMI, themodel only shows one of the tested frequencies (93.75
Hz) to be of statistical significance (p< 0.05).

Evaluation of the classification performance of the frequency components resulted in a plot which looks
similar to themean power difference. The performancewas significantly different from random (50%AUC)
performance between 15 and 200Hzwith a peak performance of 62.5%AUC for the frequency component
47Hz.

3.2. Analysis of diastole
Analysis of diastole segments of the heart sounds produced the two plots figures 2(d)–(f).

There are significant differences of the average energies betweenCAD andNon-CADpatients at frequencies
0–500Hzwith a 95% confidence interval and a peak difference at frequencies 45–120Hz of roughly 3 dB.When
accounting for age, gender, and BMI, themodel shows statistical significance (p< 0.05) for frequencies
40–95Hz.

Aswas the case for the systole, evaluation of the classification performance of the frequency components for
the diastole resulted in a plot which looks similar to themean power difference. The performancewas
significantly different from random (50%AUC)performance for frequencies 0–500Hzwith a peak
performance of 65%AUCat frequencies 47–63Hz.

3.3. Analysis of S1
Analysis of S1 heart sounds produced the four plots shown in figure 3.

Infigure 3(a), CAD subjects show on average higher energy of all frequencies before and after S1 and
especially at lower frequencies immediately before the S1 soundwith a positive difference at frequencies 20–160
Hz of 2–3 dB (CAD subjects have higher energy). The same frequency range can be seen after the S1 soundwith a
positive difference of 1–2 dB. The positive difference before S1 seems to be skewed towards higher frequencies
when approaching the S1 sound.Whereas there is a positive difference before and after the S1 sound, there is a
negative differencemid-S1 and in particular at frequencies 400–700Hzwhere there is a negative difference of
1–2 dB.
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As seen infigure 3(c), mainly frequencies above 400Hz immediately before S1 show statistical significance.
There seems to be a gradient where lower frequencies (near 400Hz) have significance immediately before the S1
heart sound. As the S1 sound progresses, increasingly higher frequencies have statistical significance.Mid-S1
and post-S1 areas did not show any components withmodeled statistical significance.

TheAUCperformance plot (figure 3(d)) looks similar to themean power difference plot. The best
performing areas do not overlapwith areas that are ofmodeled statistical significance (figure 3(c)).Whereas the
peakAUCare at around 63%AUCat low frequencies prior to the onset of S2 and 42% (inverse 58%)AUC at
mid frequenciesmid-S2, the performance of the areas showing statistical significancewhen accounting for age,
sex, and symptoms, is only around 55%AUC.

3.4. Analysis of S2
Analysis of S2 heart sounds produced the four plots shown in figure 4.

Infigure 4(a), CAD subjects show on average higher energy of all frequencies before and after S2, as well as
frequencies around 30Hz during S2. Frequencies 20–200Hz before S2 have a positive difference of 2–3 dB, and
frequencies 40–400Hz after S2 have a positive difference of 1–2 dB.Mid-S2 has a negative difference, which is
most pronounced for frequencies 300–600Hz (2–3.5 dB).

As seen infigure 3(c), there are two areas of note when evaluating the statistical significance of S2 time-
frequency components: the positive difference area prior to S2 at 50–90Hz and the negative difference area
early-S2 at 300–500Hz. The smaller positive difference areamid-S2 at around 30Hz also shows statistical
significance, howeverwith less significant p-values.

Aswas the case for S1, the AUCperformance plot (figure 4(d)) for S2 looks similar to themean power
difference plot.However, in the case of S2 there is an overlap of areas of peak performance (figure 4(d)) and
modeled statistically significance (figure 4(c)). The low frequency pre-S2 peak performance is at around 65%
AUC, and the early-S2mid-frequency peak performance is at around 37% (inverse 63%)AUC. The low-
frequency areamid-S2which also showedmodeled statistical significance (although at a higher p-value) had an
AUCperformance of around 57%.

Figure 2.Results from the systole and diastole analyses: averagewhitening filtered frequency spectra of (a) systole and (d) diastole for
CAD andNon-CAD subjects. Difference between the averageCAD andNon-CAD frequency spectra of the (b) systole and (e) diastole
segments including indication ofwhich frequencies are statistically significant according to themodel. AUCperformance of each
frequency component of the (c) systole and (f) diastole segments in classifyingCAD andNon-CADpatients.
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4.Discussion

Results from analysis of the diastolic segment associated an increase of absolute energy for low-frequency
components (<200Hz)with the presence of CAD, supporting similar findings in previous articles (Schmidt et al
2010, 2011, 2015,Winther et al 2016). However, this study did notfind any significant difference in energy for
higher frequencies, which contrasts thefindings of other studies (Akay et al 1990, 1993, Semmlow et al 1990,
Schmidt et al 2007). One explanation could be that previous studies—for themost part—have examined relative
energy, whereas the current study examined absolute energy.

Analysis of the systole yielded similar average differences of the frequency spectra as the diastole, however
with roughly 1 dB lower difference of low-frequency components. Furthermore, only a single tested frequency
showedmodeled statistical significance in the same range as the diastole. Likewise, the single-component
performance for the systole showed the same trend as for the diastole butwith the diastole having superior
performance at all frequencies. This indicates that the systole does not provide additional information to
diagnosing CADbeyondwhat is contained in the diastole segment. This finding supports the argument stated
among others by in Semmlow et al (1983), that coronary sounds are likely be loudest during diastole, as the
contraction of themyocardium exerts pressure on the coronary arteries and attenuates any sounds associated
with coronary narrowing. The confidence interval for the average energywas larger than that of the diastole, and
this uncertaintymay have been caused by the influence of S1 or S2 sounds in some heart beats. If this is the case,
reducing systole segment length by increasing the buffer after S1 and before S2 could help alleviate this problem.
However, this couldmean that several subjects would not be included in this analysis due to the systole segment
becoming too short. Furthermore, efforts to improving the annotation of the end of S1 could enhance the results
of the systole frequency spectrum and reduce the confidence interval. Finally, it is possible to include the systole
segment in the time-frequency analyses of S1 and S2 by expanding the segments after S1 and before S2.

Analyses of the S1 and S2 segments provided a novel comparison of spectral differences in these heart sounds
of CADandNon-CADpatients and yielded several new findings. S1 and S2 difference plots of the time-
frequency spectra have similarities: both have positive differences before and after the valve sounds, which are
pronounced for lower frequencies and negative differences during the valve sounds. The progression of the valve

Figure 3.Results from the S1 analysis. (a)Progression of the average frequency spectrum for the S1 heart sound of CADandNon-
CAD subjects. Average energies for CADandNon-CAD subjects have different progressions during the S1 heart sound.Whereas CAD
subjects generally have greater energy before and after the S1 sound, they have a lower average energy during the S1 sound. (b)
Difference of the average S1 time-frequency spectra betweenCADandNon-CAD subjects. Positive differencesmean that CAD
subjects have higher energy on average andnegative differencesmean thatNon-CAD subjects have higher energy on average. (c)
Modeled statistical significance (p-value) of S1 time-frequency components. (d)AUCperformance of S1 time-frequency components
in classifyingCAD andNon-CADpatients.
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sounds for CAD subjects are on average ‘more flat’, meaning they progress slower and are of lower amplitude for
CAD thanNon-CAD subjects. However, whereas the negative differencemid-valve sound showed statistical
significance for S2, this was not the case for S1. Likewise, the single component AUCperformance of themid-
valve soundwas better for S2 than for S1. It is possible that the alignment of the S1 sounds is not as precise as the
alignment of S2, and that improved annotation of S1will change thefindings for the S1 segment. The
physiological explanation for the significance of the S2 sound could be that the relaxation pattern for CAD
patients is different than forNon-CADpatients.

Similar to thefindings of the systole and diastole segments, the S1 and S2 segments showed positive
differences for frequencies below 200Hz before and after the valve sounds.However, only a small area before S2
showedmodeled statistical significance.

Results from analysis of S1 showed a large positive difference area before S1 for frequencies above 400Hz.
Although this difference is significant and could possibly contribute to new features for diagnosing CAD, the
cause of this difference remains unexplained.

5. Conclusion and futurework

Findings in this study show that additional information for improved pre-test likelihood estimation of CADcan
likely be gained through analysis the S1 and S2 heart sounds. Futureworkwill involve development of features
for classification of CADbased on results presented in this article.
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