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a b s t r a c t

In recent years, the photovoltaic generation installed capacity has been steadily growing thanks to its
inexhaustible and non-polluting characteristics. However, solar generators are strongly dependent on
intermittent weather parameters, increasing power systems' uncertainty level. Forecasting models have
arisen as a feasible solution to decreasing photovoltaic generators' uncertainty level, as they can produce
accurate predictions. Traditionally, the vast majority of research studies have focused on the develop-
ment of accurate prediction point forecasters. However, in recent years some researchers have suggested
the concept of prediction interval forecasting, where not only an accurate prediction point but also the
confidence level of a given prediction are computed to provide further information. This paper develops a
newmodel for predicting photovoltaic generators' output power confidence interval 10 min ahead, based
on deep learning, mathematical probability density functions and meteorological parameters. The
model's accuracy has been validated with a real data series collected from Spanish meteorological sta-
tions. In addition, two error metrics, prediction interval coverage percentage and Skill score, are
computed at a 95% confidence level to examine the model's accuracy. The prediction interval coverage
percentage values are greater than the chosen confidence level, which means, as stated in the literature,
the proposed model is well-founded.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Renewable energies have arisen as feasible alternatives to
exhaustible fossil energies and a way to reduce greenhouse emis-
sions such as CO2 and NOX [1]. For instance, the German govern-
ment, following European goals for energy transition, has fixed
short and long term milestones in order to replace fossil resources
with renewable ones. Thus, the share of renewables in the German
electric generation matrix must be 20%, 30% and 63% by the end of
years 2020, 2025 and 2050, respectively [2]. In order to achieve the
stated milestones and support the introduction of renewable gen-
erators into the traditional grid, laws were adopted to guarantee
renewable plants' profits. Hence, between 2002 and 2017, the
Technology Alliance (BRTA),
, Spain.
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installed renewable energy capacity increased 516.67%, i.e. from
18 GW to 111 GW in Germany [3]. This positive trend in installed
renewable capacity is also found in other countries, and it is ex-
pected to continue in upcoming years [4,5]. However, not all
renewable energies have had the same evolution, with solar
photovoltaic (PV) and wind technologies being the most widely
installed, not only for large scale generators [6] but also in the
residential sector, in case of PV generators [7].

Although renewable technologies, and particularly PV genera-
tors, are essential for energy transition, it must also be kept in mind
that they will be connected to traditional grids. Such networks
were linearly structured in that different stakeholders, i.e. genera-
tors, transmission system operators, distribution system operators
and customers, hadwell-defined tasks and operating requirements.
However, small-scale PV systems are strongly dependent on
intermittent, volatile and random meteorological parameters, such
as solar irradiation intensity or the cloud effect, making them
generators with high levels of uncertainty [8,9]. Large-scale PV
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
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List of abbreviations

Notation Description
ANN Artificial Neural Network
ARMA Autoregressive Moving Average
ARIMA Autoregressive Integrated Moving Average
bn Bias value of the n-th neuron
DL Deep Learning
DPI Direct Prediction Interval
I Hidden Neurons
IPI Indirect Prediction Interval
JðbgÞ Jacobian Matrix
L Recent past deviations
LBa Lower Bound for a chosen a

ML Machine Learning
NPPI Non-Parametric Prediction Interval
P Input Parameters
PDF Probability Distribution Function
PI Prediction Interval
PICP Prediction Interval Coverage Percentage

PP Prediction Point
PPI Parametric Prediction Interval
PV Photovoltaic

Gradient vector
SSN Skill Score Normalized
STFFNN Spatiotemporal Feedforward Neural Network
u2 Unbiased estimator
UBa Upper Bound for a chosen a

wp;i Weights of the n-th neuron
xi Input vector of the n-th neuron
y Actual valueby Predicted value
a Error rate chosen by the user
ε Approximation error
g Set of parameters that model the ANN
g* Optimal set of parametersbg Least squares estimator of f*

s2 Variance
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generators are less affected by punctual effects such as clouds
movement and have a more stable behaviour. This uncertainty
generates unexpected and sudden changes in PV systems' output
power, thereby hindering power system operation, and as a result
the spread of renewable generators in traditional grids is limited
[10]. Therefore, it must be ensured that increasing renewable ca-
pacity will not negatively affect power system security and stability
in operating conditions [11].

Historically, reversible hydropower plants aside, electric storage
devices were not developed for accumulating too much energy.
Therefore, electric power systems' decisionmakers guaranteed grid
stability through real-time balancing actions with regard to energy
demand and energy generation, along with some energy demand
forecasts for different prediction horizons [12,13]. Some of the most
relevant tasks that power system decision makers perform are:
real-time control, unit commitment or economic dispatch, as well
as maintenance scheduling [13,14]. When large and small scale PV
generators were introduced into the traditional grid, the uncer-
tainty level of whole power systems increased due to the above
explained characteristics of renewable energies. To address this
situation, renewable energy generation forecasters emerged as a
feasible and effective solution [15].

Due to the wide variety of activities realized by power system
decision makers, researchers developed different forecasters,
attending to each activity's prediction horizon requirements. In
terms of prediction horizon, renewable forecasters are classified
into the following main groups [16]:

� Intra-hour prediction horizon forecasters: also called now-
casting in the literature [17,18], compute predictions for the
desired parameters, going from 1 min to an hour ahead [19].
These forecasters are commonly used in real-time dispatch ac-
tivities by power system decision makers to keep traditional
grids within safe operating requirements [20].

� Intra-day prediction horizon forecaster: the literature agrees
on fixing a horizon range from one to 6 h ahead [21,22]. Thus,
forecast values are used by power system decision makers in
intra-day energy markets for load trading proposes in order to
ensure grid stability [23].
2

� Day-ahead prediction horizon forecasters: the literature
agrees on classifying in this group forecasters whose prediction
horizon is between six and 72 h or beyond [24,25]. Forecasters
with day-ahead or longer prediction horizons are usually char-
acterized by an hourly resolution to increase the quality of the
information provided [26]. Decision makers use the information
provided by these forecasters for economic dispatch and unit
commitment optimization activities [27,28].

Some studies from the available literature [29e31] state that
renewable generators' control strategies must be improved by
developing accurate forecasters in all the described prediction
horizons, making them more reliable for decision makers. In
addition, although up to this moment renewable generators only
provide power to the main grid, the European Commission and the
International Renewable Energy Agency have started suggesting
that renewable generators also provide ancillary services to the
main grid [32,33]. Ancillary services can be defined as a set of ac-
tivities that other stakeholders require from power systems' deci-
sion makers in order to keep the traditional grid within stable
operating boundary conditions, such as frequency and voltage level
boundaries [34]. These services are currently provided by tradi-
tional generators due to their relevance to power system operation,
as well as their quicker capacity to change to the set up point
required by power system decision makers. Therefore, highly ac-
curate intra-hour forecasters will need to be developed in order to
allow renewable generators to provide these services [29].

Related to PV energy, the literature agrees that solar irradiation,
outdoor temperature and wind speed are the most relevant
meteorological parameters involved in power production [35e37].
These parameters not only affect the power PVs generate but also
the generators' control parameters such as open voltage circuit,
short circuit current and cell temperature [35]. However, of the
above listed meteorological parameters, several research studies
have demonstrated that solar irradiation has the strongest effect on
PV generators' output power [22,35,36]. This is the reason why
historically the vast majority of research studies have been focused
on predicting the meteorological parameter of solar irradiation for
all prediction horizons [3,8,14,19,29,31].

The first solar irradiation forecasters developed to address the
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high uncertainty level of PV generators output power were point
prediction (PP) forecasters, which were classified as physical or
statistical forecasters [38]. Physical forecasters are characterized by
the application of weather phenomenon equations [39] and
sometimes combined with sky imagery [40] or satellite devices
[41], whereas statistical forecasters are based on the combination of
historical databases and machine learning (ML) algorithms for
regression and feature selection proposes, such as lasso [42,43]
algorithms. Physical forecasters are usually less studied due to the
expensive equipment and complex mathematical models required.
ML statistical forecasters, also noted in the literature as autore-
gressive models, are based on iterative correlation analyses to fix
optimal relationships between forecasters' input and output pa-
rameters. Although autoregressive forecasters were acceptable in
the first steps in solar irradiation forecasting, their main drawback
was their weak capacity to make accurate predictions when
commonly unexpected changes occur in solar irradiation values
[44e46]. Autoregressive moving average (ARMA) [45] and autore-
gressive integrated moving average (ARIMA) [46] forecasters are
some examples of the first ML forecasters.

To solve the ML forecasters' lack of capacity to predict sudden
changes, deep learning (DL) PP forecasters, which are also cata-
logued as statistical forecasters, arose as a feasible solution. DL
forecasters can be either combined with ML to overcome last ones'
weakness or constitute as forecasters by themselves [44]. DL fore-
casters try to emulate through mathematical approximations the
human brain's capacity to learn from databases and produce pre-
dictions based on previously unseen values [47]. Thus, DL fore-
casters are commonly referred to as artificial neural networks
(ANN) in the literature, and they have been used for various pur-
poses, such as predicting parameters in different research areas
[48,49], classification/pattern recognition studies [50] or serving as
a baseline for new forecasters to improve forecaster accuracy
[51,52].

Although the vast majority of researchers still focus on
improving the accuracy PP forecasters, some researchers such as Li
et al. [53] and Liu et al. [54] have recently claimed that PP fore-
casters do not provide complete information because they do not
give information about the deviation between actual and fore-
casted values. In addition, both research studies [53,54] argued that
the knowledge of boundaries around forecasted values will provide
relevant information to power system decision makers to improve
grid stability and operating cost. Thus, prediction interval (PI)
forecasters are starting to be developed not only to reduce
renewable generator uncertainty [53,55] but also to provide more
information related to energy demand forecasting [36].

A literature review on PI forecasters suggests that these fore-
casters can be classified according to two dimensions. The first
dimension examines whether the interval has been calculated
through a prediction made by a PP forecaster. Hence, indirect
prediction interval (IPI) forecasters use values computed through
PP forecasters as a baseline [26,56], whereas direct prediction in-
terval (DPI) forecasters do not use any baseline to compute the
interval [55,57]. Although there are few DPI forecasters, recently
researchers have examined them more widely. However, the vast
majority of researchers still prefer developing accurate PP fore-
casters in order to develop through them IPI forecasters.

The second dimension examines whether researchers have
approximated any parameters of the forecaster through a proba-
bility density function (PDF). Forecasters which are based on this
PDF approximation are called parametric prediction interval (PPI)
forecasters, whereas forecasters that are not based on PDF ap-
proximations are known as non-parametric prediction interval
3

(NPPI) forecasters. PPI forecasters usually applied Normal, Gaussian
or Laplacian [58,59] PDFs to describe the deviation between actual
and forecasted values; these PDFs are then used to compute the
interval. However, recent NPPI research studies try to avoid this
approximation, arguing that the assumption of describing param-
eters through single or combined PDFs is speculative, inappropriate
and not realistic [3,54,55]. Among all current NPPI forecaster
techniques, quantile [54] and bootstrap [60] are the most widely
applied ones.

This research paper presents a photovoltaic generator's output
power intra-hour PI forecaster through meteorological parameters,
specifically for 10 min ahead. Based on the classifications described
above, the developed forecaster is catalogued as an indirect para-
metric PI forecaster. It is indirect because the predicted solar irra-
diation values obtained through a PP forecaster are used as a
baseline to compute the PV generator's output power intervals, and
it is parametric because the t-Student PDF has been used to
compute the error rate probability chosen by the user. The key
contributions of this research study are explained below:

1) A new intra-hour indirect parametric PI forecaster is proposed
to estimate PV generator power output 10 min ahead. The
developed model combines a DL model, specifically a feedfor-
ward spatiotemporal neural network model (used as a baseline
model), mathematical theorems and PDFs to compute the in-
terval. The proposed PI forecaster's reliability has been tested
with real data series collected from meteorological stations in
Vitoria-Gasteiz, Spain.

2) PI forecaster accuracy is commonly studied through reliability
and sharpness indexes. Different indexes, namely the prediction
interval coverage percentage (PICP) to examine the proposed
forecaster's reliability and the Skill score to analyse the
computed intervals width, were computed for 95% confidence
level under sunny, partially cloudy and cloudy meteorological
situations. For the chosen confidence level, with the final fixed
forecaster and under the different meteorological situations
examined, the computed PICP value is higher than the selected
confidence level. The literature agrees [36,59,61] that the PI
forecaster model is valid when this situation occurs, and thus
the proposed forecaster is considered valid.
2. Methodology

To develop the PI forecaster proposed in this research study, a PP
forecaster studied in a previous work is applied as a baseline [62].
Both forecasters i.e. PI and PP forecasters, were developed with
same solar irradiation database. Table 1 describes the main char-
acteristics of the PP forecaster, which is based on a DL spatiotem-
poral feedfordward neural network (STFFNN), whereas Fig. 1
presents the PP forecaster's layout. The STFFNN relies on the
combination of a DL feedforward neural network structure and the
meteorological databases that contain information from the target
and surrounding meteorological stations.

As shown in Fig. 1, DL STFFNN forecasters are ANN structures,
which rely on the combination of several parameters that are
chosen through sensitivity analyses in order to obtain the best ac-
curacy. Thus, some of the most relevant examined parameters are:
the network's layers, each layer's number of neurons, each layer's
neuron activation function and learning algorithm.

For the STFFNN PP forecaster used as baseline, the output
computed at the hidden layer's i-th neuron is mathematically
described as a linear combination of inputs, weights and biases



Table 1
STFFNN PP baseline forecaster's main characteristics.

Input parameters (P) 1168 ¼ season (1), time (1) and solar irradiation data from target (144) and surrounding stations (1022)
Output parameter solar irradiation
Network structure Input e hidden e output layers
Hidden Neurons (I) 5
Total amount of Weights (W) 5845
Total amount of Biases (b) 6

Fig. 1. SPFFNN PP forecaster's layout.
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applied in a sigmoidal activation function g:

gðxÞ¼ 1
1þ e�x (1)

xi ¼ f

0@ XP¼1168

p¼1

½w�p;i½j�p;1 þ bi

1A ; i2f1;2;…;5g (2)

where j2RP¼1168 is the input vector with 1168 dimensions, wp;i

refers to i-th neuron's weights with p2f1;2; …; 1168g, and bi
represents i-th neuron's bias threshold value. In the same way, the
output layer's neuron is mathematically described as a linear
combination of inputs, i.e. the hidden layer's neuron's output
values, weights and biases applied in a linear activation function:

by¼ XI¼5

i¼1

�
wi;Iþ1

�½gðxiÞ� þ bIþ1: (3)

where by is not only the output value of the output layer's neuron
but also the STFFNN forecaster's predicted point value, which is
used as a baseline to build up the PI forecaster.
2.1. Proposed PI methodology

Considering that solar PV generation mainly depends on solar
irradiation, let's assume that this meteorological parameter's
behaviour ðyÞ can be mathematically expressed as a combination of
an unknown scalar function ðzÞ and the parameters involved as

y¼ zðxÞ: (4)

Due to the complexity of developing an accurate physical fore-
caster which describes solar irradiation behaviour ðzÞ, the aim is to
use the STFFNN PP as an approximation of Eq. (4) in such away that
4

y¼hðx;g*Þ þ e: (5)

Where is defined as the difference between forecasted and actual
values and ðg*Þ represents the most representative real set (R) of
parameters ðgÞ that better describe solar irradiation behaviour. In
addition, selected real ðg*Þ parameters can be computed through
the Levenberg-Marquardt algorithm, which is based on a least
squares problem [63]. Thus, the STFFNN PP forecaster's predicted
value ðbyÞ can be expressed as

by¼ hðx; bgÞ: (6)

Where ðbgÞ represents the computed ðg*Þ parameters computed
through the Levenberg-Marquardt algorithm and function ðhÞ is the
analytical expression of the STFFNN PP forecaster described in Eq.
(3).

Moreover, ðeÞ can also be mathematically described through
Taylor's first-order polynomial approximation combined with the
two previously defined equations in such way that

e¼ y�hðx;g*Þz y�hðx; bgÞ� ðQðbgÞÞTðg*� bgÞ¼ y� by
� ðg* � bgÞTQðbgÞ: (7)

Where QðbgÞ is h’s gradient, which is mathematically expressed as

QðbgÞ¼�
vhðx; bgÞ
vbg1

;…;
vhðx; bgÞ
vbgR

�T

(8)

Notice that terms in Eq. (7) can be rewritten in such way that

y� by¼ e� ðg* � bgÞTQðbgÞ: (9)

We assume that ðyÞ, ðbyÞ and ðeÞ behave as random variables and
that ðeÞ follows Nð0; s2Þ PDF and is independent from ðg* � bgÞ.
Hence, Eq. (9) can bemathematically rewritten in root mean square
error terms in such way that
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E
h
ðy� byÞ2i¼ E

h
e2
i
þ ðQðbgÞÞTEhðbg�g*Þðbg � g*ÞT

i
QðbgÞ: (10)

Where E is mathematically defined as expectation and the next
property can be used based on the previously explained
assumptions,

E
h
ðbg � g*ÞT ðbg�g*Þ

i
¼s2

h
JðbgÞT JðbgÞi�1

: (11)

Where JRxKðbgÞ is the Jacobian matrix where R is the number of
columns in the J matrix whose values are defined by g* number of
parameters and K is the number of rows in the J matrix whose
values are defined by a set of samples of the database used in the
forecaster's training step to compute bg. Combining the two equa-
tions described above yields the following expression,

E
h
ðy� byÞ2i¼ s2

�
1þðQðbgÞÞThJðbgÞT JðbgÞi�1

QðbgÞ�
¼u2

�
1þðQðbgÞÞThJðbgÞT JðbgÞi�1

QðbgÞ�
¼ u2

�
1þðQðbgÞÞTD�1QðbgÞ�

(12)

where u2 is defined as the s2 parameter's unbiased estimator,
whose value is defined as,

u2 ¼ 1
K � R

XK
k¼1

ðyk � hðxk; bgÞÞ2: (13)

Observe that the unbiased estimator parameter, u2, can just be
computed if K >R; otherwise, the forecaster will not predict the
interval properly. This condition must also be taken into account
when the J matrix's dimensions are chosen. Finally, for sufficient
number of K samples from the training database used to develop
the baselinemodel, the random parameter T can bemathematically
defined in such way that

T ¼ y� by
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðQðbgÞÞTD�1QðbgÞq (14)

and whose behavior can be described by a Student's t-distribution
PDF with K � R degrees of freedom [64]. Thus, the PI for estimationby obtained through the PP forecaster with confidence 100ð1�aÞ% is
computed by

PI¼ by±ta=2R�Ku
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðQðbgÞÞTD�1QðbgÞq

: (15)

Where a2½0;1� represent the user's selected error rate, ta=2R�K ¼
P
�
T < a

2

�
and P refers to probability.

2.2. Benchmark model

To compare the results obtained by proposed PI forecaster in the
above section, the methodology proposed by Yan et al. [65] with
some modification has been computed as benchmark. In Ref. [65],
Yan et al. proposed to compute the interval forecasting based on
recent deviations between actual and forecasted values combined
with an ANN to predict future deviations. In a second step, future
deviations are approximated through a Normal PDF to compute the
intervals. Attending to the two criterion explained in Section 1, Yan
et al.‘s methodology can be classified as indirect and parametric PI
5

forecaster; indirect because it applies a PP forecaster to compute
the interval and parametric because Yan et al. approximated future
deviations between actual and predicted values through a Normal
PDF. Therefore, in Yan et al.‘s forecaster two parameters need to be
selected: the error rate chosen by the end user a and the number of
recent past deviations (L) that will be taken into account for
computing the intervals. In this study, Yan et al. forecaster's second
step was omitted, and the Normal PDF approximation was directly
done with previous deviations. Fig. 2 shows a layout about how
computed benchmark model works.
2.3. PI forecasters error metrics

A literature review on PI forecaster accuracy error metrics sug-
gests that these indexes are catalogued in two dimensions, reli-
ability and sharpness metrics [26,36,53,58]. Reliability metrics
examine PI forecasters' accuracy, i.e., howmany of the actual values
fall into forecasted intervals. Among all reliability metrics, predic-
tion interval coverage percentage (PICP) is the most widely
computed error metric [54,66]. Sharpness metrics analyse pre-
dicted interval width, i.e., how close predicted interval's bounds
are. In this study, a Skill score (SS) is computed to examine the
proposed forecaster's sharpness.

By combining equations (6) and (15), the PI's lower bound (LB)
and upper bound (UB) for a time instancem, ym can be expressed in
such way that,

LBaðxmÞ¼hðxm; bgÞ � ta=2R�Ku
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðQðbgÞÞTD�1QðbgÞq

; (16)

UBaðxmÞ¼hðxm; bgÞ þ ta=2R�Ku
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðQðbgÞÞTD�1QðbgÞq

: (17)

Once the PI's bounds are mathematically defined, PICP can be
described as,

PICPa ¼ 1
M

XM
m¼1

dam dam ¼
(
1; ym2PIam
0; ym;PIam

: (18)

Where dam is a Boolean parameter which takes the value 1 if the
actual value ym falls into the forecasted interval and the value 0 if it
does not. M represents the number of samples examined. More-
over, the condition PICPa >1� a must be met to consider the pro-
posed PI forecaster as being suitable [54,66], otherwise the
proposed forecaster needs to be examined until this condition is
met; 1� a value is also known as confidence level CLa.

To examine the predicted intervals for M actual values, the SS
error metric can be computed in such way that

SSa ¼ 1
M

XM
m¼1

		dam �ð1�aÞ		maxðjLBaðxmÞ� ymj; jym �UBaðxmÞjÞ

(19)

Eq. (19) demonstrates that in the SSa metric, the actual values ym
that fall into the PI have a lower penalty than when ym values fall
out. In addition, SSa must always be positive and the closest the SSa
value is from zero, the better sharpness the PI has. Usually, the SSa
value is normalized through parameter N to make facilitate com-
parison with other research studies in the literature,

SSNa ¼ 1
N
SSa: (20)



Fig. 2. Benchmark PI forecaster's layout.
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3. Results

In this section, the proposed DL PI forecaster's accuracy is
examined. Our model predicts photovoltaic generators' output
power interval through meteorological parameters, specifically
through solar irradiation, for 10 min ahead. In order to make a real
assessment, a solar irradiation database provided by Euskalmet, the
Basque Government's Meteorological Agency (http://www.
euskalmet.euskadi.eus/), is used. The selected solar irradiation
database has 10 min resolution and had to be the same as the one
used in the development of STFFNN forecaster. While the whole
database for years 2015e16 was used in the STFFNN forecaster's
training step, the entire database for year 2017 was used in the
STFFNN forecaster's validation [62]. Thus, in this study it was also
mandatory to use same databases, but for different purposes; the
2015-16 database was applied to compute the Jacobian matrix JðbgÞ;
whereas the 2017 database was applied to calculate the gradient
vector QðbgÞ in (‘C040 Vitoria-Gasteiz, Spain’). Attending to K€oppen-
Geiger climate classification, Vitoria-Gasteiz, Spain has an oceanic
climate, but at the same time is 60 km inland with yearly average
temperature and precipitations of 11.4 �C and 782.3 mm,
respectively.
3.1. Results of proposed solar irradiation PI forecaster

As explained above, the JðbgÞmatrix has R x K dimension and the
condition K >R must be satisfied to properly compute the u2 esti-
mator (see Eq. (13)). Therefore, it is mandatory to first calculate R
parameter, which represents the set of parameters that describe the
STFFNN PP forecaster. Parameter R can be computed in such a way
that

R¼ IxðPþ2Þþ1¼W þ b¼5851: (21)

The second step consists of computing dimension K for matrix
JðbgÞ in such a way that the proposed PI forecaster's accuracy is
6

maximized for solar irradiation forecasting 10 min ahead. For this
purpose, a sensitivity analysis was run, where in order to consider
the proposed PI forecaster acceptable, parameter K is varied until
the condition PICPa > ð1�aÞ is achieved. Thus, dimension K of the
JðbgÞ matrix must satisfy the following condition,
105264>K >R ¼ 5851 where 105264 is the length of the training
database used to develop the PP baseline forecaster. Moreover,
remember that, for the proposed algorithm for each examined K
set, parameters described in Eqs. (13)e(15) need to be calculated.
To better examine the proposed solar irradiation PI forecaster,
whole 2017 year was analysed, consisting of 72 sunny days, 47
partially cloudy days and 246 cloudy days whose results are re-
ported in Table 2. Noted that for each K set different analyses were
done; while “Global” makes reference to the error metrics for
whole days of 2017, there are also provided same error metric by
each type of day, i.e. sunny, partially cloudy or cloudy. Concerning
the error metrics presented in Table 2, %ðPICP>95Þ, gives in % for each
set of data the number of days that satisfied the condition
PICP>0:95; then for those days that satisfied the condition, PICP,
sPICP, PICPMAX and PICPMIN indicate the mean average, the standard
deviation and the maximum and minimum values, respectively.
M ¼ 144 represents the number of predicted values during each
day.

The results in Table 2 demonstrate that no matter which type of
day is being analysed (sunny, partially cloudy or cloudy), the lower
dimension K is, the higher the PICPa value is. This fact is related to
DL overfitting phenomena, which is based on the fact that if too
much similar data is used, the forecaster is not able to learn and
instead memorizes values, reducing its generalization capacity.

However, it can also be seen in Table 2 how there are some
accuracy differences depending on the type of day examined. For
instance, for K ¼ 5974 and sunny days, 95.77% fulfil the condition
PICPa > ð1 � aÞ, whereas for the same K dimension and cloudy
days, only 38.26% of the days fulfil the condition. In addition, it is
also necessary to examine the sharpness of the predicted intervals.

http://www.euskalmet.euskadi.eus/
http://www.euskalmet.euskadi.eus/


Table 2
PICP0:05 results for solar irradiation PI forecasting.

Error metric K Analysis %ðPICP>95Þ PICP sPICP PICPMAX PICPMIN

100 � PICP (M ¼ 144) 6000 Global 43.48 97.54 1.52 100.00 95.14
Sunny 95.77 98.35 1.33 100.00 95.14
Partially Cloudy 77.27 97.06 1.22 99.31 95.14
Cloudy 20.87 96.85 1.52 100.00 95.14

5974 Global 55.07 97.71 1.57 100.00 95.14
Sunny 95.77 98.58 1.44 100.00 95.14
Partially Cloudy 77.27 97.66 1.25 100.00 95.83
Cloudy 38.26 97.91 1.46 100.00 95.14

5953 Global 73.33 97.88 1.58 100.00 95.14
Sunny 98.59 99.09 1.10 100.00 95.14
Partially Cloudy 90.91 98.09 1.33 100.00 95.14
Cloudy 62.17 97.22 1.47 100.00 95.14

5943 Global 82.32 98.19 1.49 100.00 95.14
Sunny 100.00 99.39 0.97 100.00 95.14
Partially Cloudy 100.00 98.20 1.44 100.00 95.14
Cloudy 73.48 97.67 1.39 100.00 95.14

5937 Global 85.22 98.25 1.54 100.00 95.14
Sunny 100.00 99.47 0.88 100.00 95.14
Partially Cloudy 100.00 98.45 1.41 100.00 95.14
Cloudy 77.83 97.79 1.45 100.00 95.14

Table 3
SSN0:05 results for solar irradiation PI forecasting for sunny days.

Error metric K Analysis SSN sSSN SSNMAX SSNMIN

100 � SSN (M ¼ 144) 6000 Global 2.29 1.70 7.93 0.45
Sunny 1.28 0.64 2.98 0.45
Partially Cloudy 2.09 1.04 4.00 0.70
Cloudy 3.53 2.00 7.93 0.70

5974 Global 2.86 2.14 11.23 0.51
Sunny 1.43 0.73 3.53 0.51
Partially Cloudy 2.27 1.12 4.78 0.73
Cloudy 4.16 2.14 11.23 0.79

5953 Global 3.36 2.33 11.13 0.58
Sunny 1.63 0.87 4.22 0.58
Partially Cloudy 2.50 1.34 6.20 0.86
Cloudy 4.44 2.43 11.13 0.67

5943 Global 3.66 2.47 11.60 0.63
Sunny 1.80 0.98 4.83 0.63
Partially Cloudy 2.67 1.50 6.51 0.97
Cloudy 4.70 2.54 11.60 0.63

5937 Global 3.74 2.50 11.27 0.63
Sunny 1.88 1.04 5.10 0.66
Partially Cloudy 2.74 1.58 6.92 0.98
Cloudy 4.71 2.58 11.27 0.63

Fig. 3. Forecasted intervals and actual solar irradiation evolution for April 8, 2017
(sunny day, PICP0:05 ¼ 100 and SSN0:05 ¼ 0:69).
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Table 3 shows the SSN0.05 error metrics results for sunny, partially
cloudy and cloudy days. In addition, it must be taken into account
that the N value for normalizing the SSN0:05 value is computed as
the average of solar irradiation per day per year, 158.02 W/m2. For
those days that satisfied the condition PICPa > ð1 � aÞ, SSN, sSSN,
SSNMAX and SSNMIN indicate the mean average, the standard de-
viation and the maximum and minimum values. M ¼ 144 repre-
sents the number of predicted values during each day.

After examining the results of Table 2, it is concluded that the
lower the K parameter is, the higher the SSN0:05 index. Therefore, if
results of sunny, partially cloudy and cloudy days are simulta-
neously examined, it can be observed that there is a relationship
between interval width and forecasters accuracy, and thus the
reliability (PICP0:05) and sharpness (SSN0:05) indexes must be
balanced. Although in this study we have chosen K ¼ 5937, this
parameter, as well as a error metric, can be modified by the end
user. Figs. 3e5 show the forecasted solar irradiation intervals for a
7

sunny, partially cloudy and cloud day, respectively.
3.2. Results of computed solar irradiation PI benchmark forecaster

As explained above, in computed benchmark two parameters
need to be selected: the error rate chosen by the end user a and the
number of recent past deviations L that will be taken into account
for computing the intervals. Predictions in the above section were
done with a ¼ 0:05 so, this value will be the same to ensure a
proper comparison between both methods. Therefore, L is the only
parameter that must be selected. For this purpose, a sensitivity
analysis was run, where in order to consider the computed
benchmark acceptable, parameter L is varied until the condition
PICPa > ð1�aÞ is met. Same criteria followed in above section to
construct Tables 2 and 3 has been used to construct Tables 4 and 5
that summarizes the results of the benchmark model.



Fig. 4. Forecasted intervals and actual solar irradiation evolution for January 4, 2017
(partially cloudy day,PICP0:05 ¼ 97:22 and SSN0:05 ¼ 1:07).

Fig. 5. Forecasted intervals and actual solar irradiation evolution for June 15, 2017
(cloudy day, PICP0:05 ¼ 95:83 and SSN0:05 ¼ 2:56).

F. Rodríguez, A. Galarza, J.C. Vasquez et al. Energy 239 (2022) 122116
After examining the results of Tables 4 and 5, it is concluded that
only when the last two recent deviations, L ¼ 2, are taken into
account to forecast the intervals, the computed benchmark works.
Figs. 6e8 show the forecasted solar irradiation intervals for same
sunny, partially cloudy and cloud day presented in Figs. 3e5.
3.3. Comparison between proposed and benchmark models

In order to ensure a proper comparison between both methods
remind that the predictions of both forecasters were computed for
the same error rate, a ¼ 0:05. While proposed PI forecaster's best
accuracy is obtained for K ¼ 5937, computed PI benchmark's best
accuracy is obtained for L ¼ 2: To make it easier the comparison
between both methods, Tables 6 and 7 summarizes the results of
both methods. While Table 6 summarizes PICP0:05 results, Table 7
8

summarizes SSN0:05 results. In addition, to make a deeper com-
parison among two methods in Table 6 the error metrics were also
computed for those days that did not satisfied the con-
ditionPICP>95. Concerning to Table 7, error metric SSN0:05 was
only computed for those cases were the condition PICP>95 was
satisfied.

Based on the results presented in Table 6, it can be concluded
that proposed methodology has better accuracy in every analysis
due to the fact that the %ðPICP>95Þ is higher in thismethodology than
in the benchmark. In addition, in the vast majority of the computed
metrics the proposed methodology obtained better results than the
benchmark. The only case where the benchmark model obtains
better results than proposed model is in “Cloudy” analysis for the
PICPMIN error metric. Concerning the results summarized in Table 7,
it is shown that the proposed model performs better than bench-
mark model owing to the fact that the proposed model produces
narrower intervals. Therefore, this model has been used to compute
PV generators output power in the following section.

3.4. Results of PI for photovoltaic generator output power

Once the solar irradiation DL PI forecaster's accuracy has been
examined, the forecasted solar irradiation interval values (see Eqs.
(16) and (17)) and a mathematical expression that describes the
solar PV's output power production [36,47] are combined to
calculate a PV power generation interval,

PVPLBaðxmÞ¼ h *A * SILBaðxmÞ*ð1�0:005 * ðCm �25ÞÞ: (22)

PVPUBaðxmÞ¼ h *A * SIUBaðxmÞ*ð1�0:005 * ðCm �25ÞÞ: (23)

Where PVPLBaðxmÞ and PVPUBaðxmÞ represent the lower and upper
interval bounds of the PV generators' output power at m instance
for the user's chosen a error rate, respectively; h is defined as the
generator's conversion efficiency rate; A represents the surface of
the PV (m2); SILBaðxmÞ and SIUBaðxmÞ represent the solar irradia-
tion lower and upper interval bounds obtained through the
developed DL STFFNN PI forecaster at m instance for the user's
chosen a error rate, respectively; and Cm is the ambient tempera-
ture in (�C). To be able to calculate power generated, a commercial
panel with the following characteristics was selected: h ¼ 17:59%
and S ¼ 1:6767 m2. Table 8 shows the computed PICP0:05 and
SSN0:05 indexes with K ¼ 5937 for the PV generator's output power
on sunny, partially cloudy and cloudy days.

The results in Table 8 show that the developed PI forecaster is
able to predict with sufficient accuracy the examined PV genera-
tor's output power under different meteorological conditions
(sunny, partially cloudy and cloudy days) for error rate. As is the
case for solar irradiation PI forecasters, indexes for sunny meteo-
rological conditions are better than for partially cloudy and cloudy
conditions, so it can be concluded that when there are fewer sud-
den changes the proposed PI forecaster has higher reliability. In
addition, Figs. 9e11 show the forecasted PV generator's output
power intervals for the solar irradiation on sunny, partially cloudy
and cloud days examined in Figs. 3e5.

Once the PV output power PI STFFNN forecaster's architecture
has been fixed, and its reliability has been examined under
different meteorological conditions, the next step consists of
examining similar research studies [54,67] available in the litera-
ture and comparing published results against those computed by
the proposed PI STFFNN forecaster.

Pedro et al. [67] examined the accuracy of analysing different DL



Table 4
PICP0:05 results for solar irradiation PI benchmark forecasting.

Error metric L Analysis %ðPICP>95Þ PICP sPICP PICPMAX PICPMIN

100 � PICP (M ¼ 144) 144 Global 0.00 0.00 0.00 0.00 0.00
Sunny 0.00 0.00 0.00 0.00 0.00
Partially Cloudy 0.00 0.00 0.00 0.00 0.00
Cloudy 0.00 0.00 0.00 0.00 0.00

36 Global 0.00 0.00 0.00 0.00 0.00
Sunny 0.00 0.00 0.00 0.00 0.00
Partially Cloudy 0.00 0.00 0.00 0.00 0.00
Cloudy 0.00 0.00 0.00 0.00 0.00

6 Global 0.00 0.00 0.00 0.00 0.00
Sunny 0.00 0.00 0.00 0.00 0.00
Partially Cloudy 0.00 0.00 0.00 0.00 0.00
Cloudy 0.00 0.00 0.00 0.00 0.00

3 Global 0.00 0.00 0.00 0.00 0.00
Sunny 0.00 0.00 0.00 0.00 0.00
Partially Cloudy 0.00 0.00 0.00 0.00 0.00
Cloudy 0.00 0.00 0.00 0.00 0.00

2 Global 68.41 96.33 0.96 98.61 95.14
Sunny 67.61 96.24 0.93 98.61 95.14
Partially Cloudy 68.18 96.04 0.86 97.92 95.14
Cloudy 68.70 96.42 0.97 98.61 95.14

Table 5
SSN0:05 results for solar irradiation PI benchmark forecasting.

Error metric L Analysis SSN sSSN SSNMAX SSNMIN

100 � SSN (M ¼ 144) 2 Global 10.18 8.84 42.27 0.70
Sunny 2.24 1.46 7.92 0.70
Partially Cloudy 6.24 3.43 17.67 1.59
Cloudy 13.50 9.06 42.27 0.70

Fig. 6. Forecasted intervals and actual solar irradiation evolution for April 8, 2017
(sunny day, PICP0:05 ¼ 96:53 and SSN0:05 ¼ 0:75).

Fig. 7. Forecasted intervals and actual solar irradiation evolution for January 4, 2017
(partially cloudy day, PICP0:05 ¼ 95:14 and SSN0:05 ¼ 2:96).
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methods such as k-nearest-neighbours and gradient-boosting and
combining them with quantile generation techniques to predict
solar irradiation intervals for different intra-hour prediction hori-
zons. Pedro et al.‘s proposed PI forecaster also took as baseline the
value produced by a PP forecaster that used solar irradiation data as
well as sky-imagery to produce the point prediction value. After the
point value has been computed, the probabilistic quantile genera-
tion technique is applied to compute the prediction interval. Note
that each DL PP forecaster examined in Ref. [67] has its own way of
computing the quantiles to predict the intervals based on the fact
that each method has its own characteristics. For the 10-min-ahead
9

prediction horizon, Pedro et al. obtained PICP indexes whose ac-
curacywere between 39.8% and 84.7%. In that study, Pedro et al. did
not differentiate between sunny, partially cloudy and cloudy days,
which makes it more difficult to compare both studies. However,
based on the fact that our solar irradiation PI forecaster has accu-
racy greater than 95%, it seems that ours could slightly improve the
PI forecaster proposed in Ref. [67].

Liu et al. [54] combined generalized regression, extreme ma-
chine learning and Elman neural networks through the use of ge-
netic and back-propagation learning algorithms to compute a
weight-varying combination forecast mode PP forecaster. Then,
the point values obtained by their proposed model are used as a
baseline and combined with a nonparametric kernel density esti-
mation, which takes into account the statistical distribution of the
PP forecaster's errors to predict the PV generator's output power
interval for 5 min ahead. In this case, Liu et al. classified days into:
rainy, partially cloud, cloudy and sunny weather conditions,
obtaining 95.05%, 95.62%, 96.05% and 97.08% PICP0:05 values,
respectively. Our PI PV generator's output power forecaster for



Fig. 8. Forecasted intervals and actual solar irradiation evolution for June 15, 2017
(cloudy day, PICP0:05 ¼ 95:83 and SSN0:05 ¼ 4:15).

Table 6
PICP0:05 results comparison between proposed and benchmark models for solar irradiat

Model Analysis %ðPICP>95Þ %ðPICP<95

Proposed Global 85.22 e

e 14.78

Sunny 100.00 e

e 0.00

Partially Cloudy 100.00 e

e 0.00

Cloudy 77.83 e

e 22.17

Benchmark Global 68.41 e

e 31.59

Sunny 67.61 e

e 32.39

Partially Cloudy 68.18 e

e 31.82

Cloudy 68.70 e

e 31.30

Table 7
SSN0:05 results comparison between proposed and benchmark models for solar
irradiation PI forecasting.

Model Analysis SSN sSSN SSNMAX SSNMIN

Proposed Global 3.74 2.50 11.27 0.63
Sunny 1.88 1.04 5.10 0.66
Partially Cloudy 2.74 1.58 6.92 0.98
Cloudy 4.71 2.58 11.27 0.63

Benchmark Global 10.18 8.84 42.27 0.70
Sunny 2.24 1.46 7.92 0.70
Partially Cloudy 6.24 3.43 17.67 1.59
Cloudy 13.50 9.06 42.27 0.70

Table 8
SSN0:05 and PICP0:05 results for the predicted PV generator's output power.

Analysis %ðPICP>95Þ PICP sPICP SSN sSSN

Global 84.93 98.25 1.54 1.16 0.81
Sunny 100.00 99.47 0.88 0.57 0.31
Partially Cloudy 100.00 98.45 1.41 0.84 0.47
Cloudy 77.39 97.78 1.45 1.47 0.85
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10
10 min ahead under sunny, partially cloudy and cloudy days has
obtained 99.47%, 98.45% and 97.78% averaged PICP0:05 values.
Therefore, it can be demonstrated how our forecaster slightly im-
proves Liu et al.‘s under partially cloud, cloudy and sunny meteo-
rological conditions.
4. Conclusions

This research study proposes an indirect parametric PI PV gen-
erator's output power for 10 min ahead using meteorological
parameter information. These are the conclusions from this study:

1) The developed model combines a DL model, specifically a
feedforward spatiotemporal neural network model that is used
as a baseline model, mathematical theorems and a t-Student
PDF to compute the interval. In addition, the forecaster predicts
the interval based on the error rate chosen by the end user, and
the developed forecaster's reliability and interval width was
examined by using a real solar irradiation database fromVitoria-
Gasteiz, Spain and different error metrics.
ion PI forecasting.

Þ PICP sPICP PICPMAX PICPMIN

98.25 1.54 100.00 95.14
92.06 1.77 94.44 86.81

99.47 0.88 100.00 95.14
e e e e

98.45 1.41 100.00 95.14
e e e e

97.79 1.45 100.00 95.14
92.09 1.77 94.44 86.81

96.33 0.96 98.61 95.14
93.48 1.03 94.44 90.28

96.24 0.93 98.61 95.14
93.45 0.89 94.44 90.97

96.04 0.86 97.92 95.14
93.86 0.85 94.44 90.36

96.42 0.97 98.61 95.14
93.41 1.08 94.44 90.28

Fig. 9. Forecasted intervals and actual PV generator's output power evolution for April
8, 2017 (sunny day, PICP0:05 ¼ 100:00 and SSN0:05 ¼ 0:23).



Fig. 10. Forecasted intervals and actual PV generator's output power evolution for
January 4, 2017 (partially cloudy day, PICP0:05 ¼ 97:22 and SSN0:05 ¼ 0:35).

Fig. 11. Forecasted intervals and actual PV generator's output power evolution for June
15, 2017 (cloudy day, PICP0:05 ¼ 95:14 and SSN0:05 ¼ 0:78).
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2) The solar irradiation PI forecaster has been validated with the
entire data of 2017. Attending to the accuracy results shown in
Table 6, proposed forecaster satisfied required condition of
PICP0:05 >0:95 in the 85.22% days of 2017. While for those days
which met the condition PICP0:05 is 98.25, the PICP0:05 value for
those days that did notmeet the condition is 92.06. If these error
metrics results are contrasted against those provided by
computed benchmark, only the 68.41% of the days of 2017 met
the condition of PICP0:05 >0:95. While for those days which met
the condition PICP0:05 is 96.33, the PICP0:05 value for those days
that did not meet the condition is 93.48. Therefore, it was
demonstrated that proposed forecaster performs better than
computed benchmark PI forecaster. The reason why PICP0:05
values is higher in the benchmark model than in proposed one
for those days that did not meet the condition, relies on the fact
that is that there were some days close to meet the condition.
11
Therefore, the value of the PICP0:05 error metric rises up in the
benchmark model.

3) Attending to the sharpness error metrics results shown in
Table 7, for those days where the condition PICP0:05 >0:95 was
met, proposed prediction model obtained a SSN0:05 error metric
of 3.74, whereas computed benchmark model got 10.18. This
error metric was computed for each subset data of sunny,
partially cloudy and cloudy days; while the obtained SSN0:05 for
proposed model is 1.88, 2.74 and 4.71, respectively, for
computed benchmark is 2.24, 6.24 and 13.50. Therefore, it is
concluded that proposed forecaster does not only have higher
accuracy, but also produces narrower intervals.

4) Through the predictions done by proposed solar irradiation PI
forecaster, PV output power generator's intervals were
computed. For entire 2017 year's data, the 84.93% of computed
days satisfied the condition PICP0:05 >0:95, with a global PICP of
98.25 and SSN of 1.16. If each type of days subsets are examined
sunny and partially cloudy days obtained remarkable results sue
to the fact that in both cases the 100.00% of computed days
satisfied the condition PICP0:05 >0:95, this value reduces to the
77.39% in cloudy days. PICP and SSN error metrics were
computed for each subset data of sunny, partially cloudy and
cloudy days; while the obtained PICP for proposed model are
99.47, 98.45 and 97.78, respectively, for SSNare 0.57, 0.84 and
1.47. Therefore, developed forecaster makes it possible to pro-
vide further information to power systems' decision makers,
doing possible in near future not only to provide power gener-
ation but also ancillary services, maximizing PV generators'
profits

5) The computed numerical results of this research activity and the
sensitivity analyses were done using meteorological data from
the location of Vitoria-Gasteiz, Spain. While the database for the
years 2015e16 was applied for computing JðbgÞ, the 2017 data-
base was applied to calculate QðbgÞ. Therefore, the examined
mathematical methodology for PV generator output power PI
forecasting can be easily applied in other locations. However,
the biggest disadvantage of the presentmethodology is the need
to have a database from the target station to fit the model's
parameters.
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