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Derivation, Design and Simulation of the Zeta converter
Asger Bjørn Jørgensen (abj@energy.aau.dk)

Abstract—The purpose of this paper is to guide electrical
engineering students from analysing basic DC-DC converter
topologies to more advanced topologies. Textbooks and free online
papers include the derivation of second order DC-DC topologies
such as buck, boost and buck-boost, while fourth order such as
the Zeta converter are not as readily available as open knowledge
online. This paper provides a detailed derivation of the Zeta
converter topology in continuous conduction mode (CCM), it
presents an example of component sizing and verifies the design
by simulation in LTspice.

I. INTRODUCTION

ELECTRICAL engineering students are typically intro-
duced to the topic of switch mode power supplies through

the analysis of basic second order DC-DC converter topologies
such as the buck, boost and buck-boost converters. Derivation
of these topologies are derived in detail available as online
open-access sources [1]. However, generally for the fourth
order DC-DC converter types Ćuk, Zeta and Single-Ended
Primary-Inductor Converter (SEPIC) the detailed derivation
of their operation is not as freely available. Fourth order DC-
DC converters are mentioned in the most popular textbooks
by Muhammad Rashid [2], Robert W. Erickson & Dragan
Maksimovic [3] and Ned Mohan et al. [4], however they are
not open access and derivations are not presented in detail
either. Most of free online sources describing these fourth
order DC-DC converter topologies most often focus on more
advanced topics, such as state space control [5], comparison
of total harmonic distortion [6] or design guidelines are given
without much description on how to derive them [7]–[9].
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Fig. 1: Diagram of the Zeta converter.

This paper provides a detailed derivation of the Zeta con-
verter, shown in Fig. 1, when operated in CCM. A design
example is given and it is verified by simulation.

II. DERIVATION OF THE ZETA CONVERTER

In the following section instantaneous values of voltages and
currents are denoted with lower case letters v and i, respectively,
while capital letters V and I are used for average voltage and
currents. The switch is turned on at t = 0 until t = DTs where
Ts is the switching period and D is the duty cycle. The voltage
and current waveforms of inductor L1 are shown in Fig. 2.
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Fig. 2: Voltage and current waveforms of inductor L1.

For the converter operating in steady state and CCM, it is
assumed that the current through the inductor begins and ends
at the same value after an entire switching period. This is also
known as the volt-second balance, meaning that the average
of applied voltage on the inductor is equal to zero during a
switching period, as given by

1

Ts

∫ Ts

0

vL1dt = 0

Splitting the total switching period, Ts, into two segments at
which the switch is turned on and off

1

Ts

(∫ DTs

0

vL1dt+

∫ Ts

DTs

vL1dt

)
= 0

During the time from t = 0 to t = DTs the voltage is vL1 =
Vd, while from t = DTs to t = Ts it is vL1 = −VC1. Thus,
the integral equals

1

Ts
(Vd ·DTs − VC1(1−D)Ts) = 0

Vd ·D − VC1(1−D) = 0

Rearranging to get an expression for VC1 equals

VC1 = Vd ·
D

1−D
(1)

Similarly, the voltage and current waveforms of inductor L2

are shown in Fig. 3.
The volt-second balance of L2 is calculated as

1

Ts

∫ Ts

0

vL1dt = 0

D(VC1 + Vd − Vo)− Vo(1−D) = 0

D · VC1 +D · Vd −D · Vo − Vo +D · Vo = 0

By collecting terms this equals

Vo = D · VC1 +D · Vd
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Fig. 3: Voltage and current waveforms of inductor L2.

Again, this is rearranged for VC1 to equal

VC1 =
Vo

D
− Vd (2)

By combining (1) and (2)

Vd ·
D

1−D
=

Vo

D
− Vd

This expression is then solved for the conversion ratio,M = Vo

Vd

Vo

D
= Vd ·

D

1−D
+ Vd

Vo

Vd
=

D2

1−D
+D

Vo

Vd
=

D2 +D(1−D)

1−D

And by combining all terms

M =
Vo

Vd
=

D

1−D
(3)

Alternatively, it may be solved for the duty cycle, D

D =
Vo

Vd + Vo
(4)

Thus for D in the range of 0 to 1, the Zeta converter is capable
of both stepping the voltage up and down. If compared with
the buck-boost or Ćuk converter, the voltage output is non-
inverting, meaning that it has the same polarity as the input
voltage, where the buck-boost and Ćuk converters are inverting.

Now (3) is rearranged to

Vd = Vo
1−D

D
(5)

When inserting (5) to (1) we obtain an expression for the
average voltage across the capacitor C1

VC1 = Vd
D

1−D
= Vo

1−D

D

D

1−D

By cancelling terms we obtain

VC1 = Vo

This information could also have been obtained by assessing
the diagram in Fig. 1. When the converter is operating in steady
state, the volt-second balance means that the average voltage

across the inductors are zero. Thus, by applying Kirchoffs
voltage law to the loop of L1, C1, L2 and output Vo, then
the average voltage across the capacitor must be equal to the
output Vo.

Similarly, simply from assessing Fig. 1 and using the steady
state assumption that the output capacitor Co is large enough
to maintain a stable voltage, we may also conclude that

VC2 = Vo

As we are now reading information from the diagram, we can
also conclude that in steady state the average current in the
capacitors are zero, thus if we apply Kirchoffs current law, we
obtain

IL1 = Id (6)

and
IL2 = Io (7)

For an ideal lossless DC-DC converter, all power, P , is trans-
ferred from the input to the output.

P = Vd · Id = Vo · Io
Thus, if we use (5), we obtain that

Id =
D

1−D
Io (8)

However, we are not only concerned with the average values
of the inductor current in L1 and L2. It is just as important to
choose a large enough inductance, to ensure that the inductor
current ripple is adequately low. From Fig. 2 we may see that
the inductor current ripple, ∆iL1, can be expressed as.

∆iL1 =
VdDTs

L1

By inserting (5) and using that fs = 1/Ts, where fs is the
switching frequency, we obtain that

∆iL1 =
Vo(1−D)

L1fs
(9)

From this equation we can see that to keep a low inductor
current ripple, we may choose a large inductance or high
switching frequency. The expression for inductor current ripple
is also used to ensure that the converter operates in CCM. For
the Zeta converter to always operate in CCM, it is required that
the current is always above zero. The limit is when the inductor
current just reaches zero at the very end of the switching period,
t = Ts, as shown in Fig. 4.

Fig. 4: Inductor L1 current at its CCM limit.

At the CCM limit, from geometrical considerations, we may
read that the DC-value of the inductor current is IL1 = ∆iL1

2 .
Thus, to ensure CCM we need that

IL1 ≥ ∆iL1

2
(10)
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Inserting both (6), (8) and (9) to (10) we obtain

D

1−D
Io ≥ Vo(1−D)

2L1fs

This expression is rearranged to isolate L1

L1 ≥ (1−D)2

2Dfs

Vo

Io

Substituting Ro = Vo/Io we get the following expression for
the minimum size of inductance L1 to ensure that it is operating
in CCM.

L1 ≥ (1−D)2Ro

2Dfs
(11)

Similarly for sizing of L2, we need an expression for the
inductor current ripple of L2, denoted as ∆iL2. Geometrically
from Fig. 3, we see that

∆iL2 =
Vo(1−D)Ts

L2
(12)

The limit to ensure CCM for the current in inductor L2 is
shown Fig. 5.

Fig. 5: Inductor L2 current at its CCM limit.

Geometrically, the following equation must be fulfilled

IL2 ≥ ∆iL2

2
(13)

Inserting (7) and (12) to (13) equals

Io ≥ Vo(1−D)Ts

2L2

Rearranging the equation to isolate L2, once again using that
Ts = 1/fs and Ro = Vo/Io gives the following equation for
the minimum required inductance to ensure CCM operation.

L2 ≥ (1−D)Ro

2fs
(14)

In addition to the sizing of inductors and maximum allowable
current ripple, it is also important to size the capacitors C1

and C2 for a maximum allowable voltage ripple, ∆V . To size
the capacitors, we will utilize that the capacitance is defined
as C = dQ

dV , where Q is the electric charge. By rewriting to
an average rate of change, we get ∆V = ∆Q

C . The amount of
charge is given as the integral of current ∆Q =

∫
i(t)dt. Now,

for C1 if we assume negligible current ripple, it is discharged
by IL2 = Io during the switch on time, as shown in Fig. 6.

From the following observations we obtain the following
equation

∆VC1 =

∫DTs

0
Iodt

C1

which equals

∆VC1 =
IoDTs

C1

t

iC1

t

DTS TS

−iL2
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vC1

Vo

iL1

Fig. 6: Current and voltage waveforms of capacitor C1

By rearranging for the value of C1, we get that

C1 =
IoD

∆VC1fs

Typically, we will assign a requirement that the ripple of the
capacitor voltage may not exceed some predetermined level,
i.e. 1 or 5 % of its DC-value. Thus, the equation should be
written as

C1 ≥ IoD

∆VC1fs
(15)

For sizing of C2 we use geometrical approximations, as shown
in Fig. 7. Similarly to the sizing of C1, we are interested in
the change in charge, which is also the integration of current.
The voltage and current waveforms of C2 are shown in Fig. 7.
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Fig. 7: Current and voltage waveforms of capacitor C2

Now, the charge which determines the voltage change of
C2, is shown as the area AC2. Geometrically we obtain that

AC2 =
1

2

Ts

2

∆iL2

2
Collecting the terms and using (12) for ∆iL2, we get that

AC2 =
Ts

8
· Vo(1−D)Ts

L2

However, this only represents the charge. To size the capacitor
we utilize C = ∆Q

∆V , where ∆Q = AC2. For C2 this gives

C2 ≥ AC2

∆VC2
=

Vo(1−D)

8 · L2f2
s∆VC2

(16)

This concludes the section, as we now have equations for the
sizing of all passive components, L1, L2, C1 and C2.
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III. COMPONENT SIZING

The following section presents a simple Zeta converter de-
sign example. The input voltage of the converter is Vd = 20V,
while its output must be maintained at Vo = 60V. The load
resistance can be in a range of 50 to 100Ω. Since P =

V 2
o

Ro
,

we calculate the output power is in the range of 36 to 72 W.
As a design engineer, we have chosen that the switching

frequency is fs = 50kHz, and that the maximum voltage
ripple of both capacitors should be maximum 1% of the output
voltage, thus ∆VC1 = ∆VC2 = 0.01 · Vo = 0.6V. The
converter must be operating in CCM.

First we calculate the duty cycle, D using (4)

D =
Vo

Vd + Vo
=

60V

20V + 60V
= 0.75

To size the inductor L1 we use (11) as shown

L1 ≥ (1−D)2Ro

2Dfs

The worst case condition is when Ro = 100Ω, which is
equivalent to a low output current. Inserting numbers we obtain
that L1 must have a minimum value of

L1 ≥ (1− 0.75)2 · 100Ω
2 · 0.75 · 50kHz

= 83.33µH

Next is the sizing of inductor L2, given by (14)

L2 ≥ (1−D)Ro

2fs

Once again, the worst case for this inductor, is when the output
current is low i.e. closer to zero, which is the CCM limit. Thus,
L2 should have a minimum size of

L2 ≥ (1− 0.75) · 100Ω
2 · 50kHz

= 250µH

Now for the sizing of the capacitor C1 we use (15)

C1 ≥ IoD

∆VC1fs

The worst condition for the capacitor voltage ripple is when the
output current, Io, is high. For a fixed output voltage of Vo =
60V, the highest output current occurs when the resistance is
Ro = 50Ω. This equals an output current of Io = Vo

Ro
= 60V

50Ω =
1.2A. Thus, the minimum capacitance of C1 required, which
ensures a voltage ripple of less than 0.6V, is calculated

C1 ≥ 1.2A · 0.75
0.6V · 50kHz

= 30µF

Similarly, using (16) for C2 the minimum required capacitance

C2 ≥ Vo(1−D)

8 · L2f2
s∆VC2

Inserting values

C2 ≥ 60V · (1− 0.75)

8 · 250µH · (50kHz)2 · 0.6V
= 5µF

This concludes the section, as all four passive components
have been sized for operation in CCM. Note, that this example
of a Zeta converter design procedure only had a single varying
parameter. If necessary, see [10] for an example of a SEPIC
converter with multiple design parameters being in a range.

IV. SIMULATION

In the following section, the circuit simulation software
LTspice [11] is used to verify the converter design values
calculated in Section III. The LTspice circuit schematic and
the required SPICE directives used to specify the models for
the switch and diode are shown in Fig. 8 The SPICE directives

Fig. 8: LTspice schematic of Zeta converter.

from Fig. 8 are also given below for ease of copying:

.model ASW SW(Ron=1m Roff=10Meg Vt=.5)

.model AD D(Ron=1m Roff=10Meg Vfwd=0.01)

.tran 100m uic

The devices in LTspice cannot be ideal, and thus they do not
turn on/off instantly and they are neither perfect conductors or
have infinite resistance in their on and off state, respectively.
The switch and diode models are given in line 1 and 2. The
on-resistance of both devices is defined as 1 mΩ and an off-
resistance of 10 MΩ. The gate threshold voltage of the switch is
set at 0.5V, while the forward voltage of the diode is defined at
0.01V. Line 3 specifies a transient non-linear analysis stopping
after 100ms, and that the circuit is solved without calculating
initial conditions for any of the inductive or capacitive elements,
meaning that all voltages and current start at zero.

The gate signal is defined as a voltage source pulse train,
having a time period of Ts = 1/fs = 1/50kHz = 20µs. For
a duty cycle of D = 0.75, this means that the turn-on period
is Ton = Ts · D = 15µs. This signal is then supplied to the
switch.

The circuit is now ready for simulation. First we want to
validate that the converter is operating on the limit of CCM,
when the output current is at its lowest limit, equivalent to
an output resistance of Ro = 100Ω. Shown in Fig. 9 is the
inductor current of both L1 and L2. It is seen that the inductor
currents reach zero just at the end of the switching period, as
predicted by the design equations (11) and (14). Next, we want
to verify that the voltage ripple of capacitors C1 and C2 is
below the requirement of 0.6V, when the converter is operating
at its maximum power output, which occurs at a power output of
72 W. Thus, the output load resistance is changed to Ro = 50Ω
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Fig. 9: Simulated iL1(t) and iL2(t) at Ro = 100Ω.

in LTspice, and the simulation is run again. The voltage across
the capacitors C1 and C2 are shown in Fig. 10. For both of

Fig. 10: Simulated vC1(t) and vC2(t) at Ro = 50Ω.

the capacitors it is read that the voltage ripple is at the limit
of the specified 0.6 V. Secondly, the approximated triangular
waveform shape of vC1(t) and sinusoidal-like shape of vC2(t),
which was shown in Fig. 6 and 7, are justified. This verifies
the design equations of Section III and concludes this section.

V. CONCLUSION

A thorough derivation of fourth order DC-DC converter
topologies is generally lacking in open access literature. This
creates a knowledge gap for engineering students in moving
from simple DC-DC topologies like buck, boost or buck-
boost to Ćuk, SEPIC or Zeta. This paper provides a detailed
derivation of the required equations to design a Zeta DC-
DC converter topology for operation in CCM. Following the
derivation, a simple design example is given for a case with
variable load resistance. The converter design is verified by
simulation in LTspice. The analytical equations show good
compliance with the simulated waveforms.
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