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SVM-assisted Adaptive Kernel Power Density
Clustering Algorithm for Millimeter Wave Channels

Fei Du, Xiongwen Zhao, Senior Member, IEEE, Yu Zhang, Yang Wen, Zihao Fu, Suiyan Geng, Peng Qin,
Zhenyu Zhou, Senior Member, IEEE, Chen Xu,Yongsheng Liu and Wei Fan, Senior Member, IEEE

Abstract—Cluster based channel modeling has gradually be-
come a trend in the development of channel model, since it is
a good compromise between accuracy and complexity. However,
most of the existing clustering algorithms require prior knowl-
edge of clusters, initialization and threshold choices. An accurate
and automatic cluster identification algorithm is therefore highly
desirable for channel modeling. In this paper, an adaptive kernel-
power-density (AKPD) and support vector machine assisted
AKPD (SVM-AKPD) algorithms are proposed. Firstly, a new
distance-based metric is proposed to calculate an adaptive-K for
each multipath component (MPC), in which the AKPD can be
used in scenarios where we have complex distribution of MPCs,
especially for the cluster with small MPCs. Furthermore, the
SVM is applied in clustering by the full partition of MPCs
feature space to overcome the limitation of the AKPD, where
the MPCs lying at a large distance from the cluster centroids
will be clustered into surrounding clusters when the clusters
are closely-spaced in the AKPD. Finally, the performance of the
proposed AKPD and SVM-AKPD is validated with measured and
simulated channels data at millimeter wave band, respectively.
Both numerical simulations and experimental validation results
are provided to demonstrate the effectiveness and robustness
of the proposed algorithm. The proposed algorithms enable
applications in multiple-input–multiple-output (MIMO) channels
with no prior knowledge about the clusters, such as number and
initial locations. It also does not need to adjust cluster parameters
manually and can be implemented for cluster based channel
modeling with a fairly low complexity.

Index Terms—Channel measurement and modeling, SVM,
MIMO, cluster, kernel density, multipath component, wireless
channel

I. INTRODUCTION

IT is of great importance to understand the radio channel of
a wireless communication system for system development

and performance evaluation. The concept of clustering, where
multipath components (MPCs) with similar parameters are
grouped, has been widely adopted in the standard channel
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models for the fourth generation (4G) radio systems. Due to
the high resolution in the delay and space domain introduced
by the high system bandwidth and massive antenna configu-
ration in the fifth generation (5G) millimeter wave commu-
nications, it is expected that MPCs can be better observed.
The MPCs are not independent to each other but rather dis-
tributed in groups, i.e., clusters, which has been demonstrated
by extensive multiple-input-multiple-output (MIMO) channel
sounding campaigns in real deployments [1] [2]. Especially,
the mmWave wireless channels exhibit a sparse structure,
when measuring the channel using large antenna arrays and
large bandwidths [3] [4]. Therefore, clustering has also been
an important research topic in 5G research [5]. The concept
of cluster has gained popularity mainly due to its simplicity
(i.e., reduction of MIMO channel model parameters) and
flexibility for the multi-link scenario simulations. In addition,
it has been investigated that channel models that do not take
the cluster into consideration might overestimate the channel
capacity [6]. However, the accuracy of cluster based channel
model is directly affected by the clustering algorithm [7].
An accurate and automatic cluster identification algorithm is
therefore highly desirable for channel modeling.

The main challenges of MPC clustering are how to in-
corporate different MPC attributes in clustering and how to
reduce the dependence on prior knowledge of cluster. The
MPC has several attributes, i.e., power, delay and angle,
and each of the above attributes usually has an independent
characteristic (i.e., MPCs exhibit different statistical charac-
teristics in each domain). Moreover, the existing clustering
algorithms generally need to specify the number of clustering
in advance, which, however, is difficult to obtain in the prac-
tical application. The state-of-the-art clustering and tracking
algorithms that are used for cluster-based channel modeling
were reviewed in [8]. Several algorithms have been proposed
to cluster MPCs by considering the power, delay, and angular
information of MPCs, e.g., K-means algorithm [9] and K-
power-means (KPM) [10], where the cluster centroids are
identified using the MPC power. The multipath component
distance (MCD) calculated with MPC delay and angle is used
as a measure to quantify the similarity between the MPCs.
However, due to the unsupervised learning property of the
KPM, its initialization must be known as a priori. In other
words, we need to manually adjust parameters according to
different channel dataset, which makes the KPM somehow
subjective. The conventional fuzzy c-means (FCM) method
was proposed in [11], which was shown to outperform the
KPM with random initialization. However, the knowledge of
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the number of clusters is required for the FCM algorithm and it
is typically unknown in practice. In [12] and [13], the model-
based validation is proposed to find out the desired number
of clusters, in which several clustering validity indices are
employed to address the problem of the unknown number
of clusters. In [14], a new initialization step and balanced
MPC distance for the KPM were proposed, which was based
on MPC density estimation to calculate the cluster centroids.
The proposed initialization step can reduce the computational
effort caused by performing the clustering for different number
of clusters. In [15], the density-based spatial clustering for
application with noise algorithm [16] was proposed to identify
local MPCs without knowing the number of clusters as a priori.
However, the clusters cannot be distinguished by the presented
method with high cluster density. In [17], an improved MCD
algorithm was proposed by only considering the distances
between the MPCs as clustering basis without taking into
account cluster delay and angular spread. In [18], a kernel-
power-density-based (KPD) algorithm was proposed without
a-priori information, such as the number of clusters. However,
it is required that the number of MPCs inside a cluster should
be fixed, and the cluster density is calculated based on its
fixed nearest MPCs. Therefore, the KPD cannot distinguish a
cluster accurately when the number of MPCs inside the cluster
is small. In our previous work of [19], we briefly introduce
the basic idea of the AKPD algorithm to cluster MPCs. In
this paper, we extend our previous work by introducing the
measured, simulated channel data and clustering evaluation
indices to analyze the performance of the algorithm, and
further propose a novel clustering framework by using the
support vector machine (SVM) learning model.

In this paper, we firstly propose an adaptive kernel-power-
density (AKPD) based clustering algorithm, where an adaptive
number of nearest MPCs are chosen to calculate cluster
densities. Compared with the classical clustering algorithms
as aforementioned, our proposed AKPD algorithm does not
need to adjust cluster parameters manually, yet it can dis-
tinguish clusters accurately with similar cluster densities and
small MPCs within a cluster. In the AKPD algorithms, the
MPCs lying at a large distance from the cluster centroids
will be clustered into surrounding clusters when the clusters
are closely-spaced. To address this problem with the AKPD
algorithm, a novel SVM assisted AKPD strategy (SVM-
AKPD) is proposed in this paper. The SVM, which is a
popular supervised machine learning model that analyzes
data for classification and regression analysis, is applied to
further improve the clustering algorithm performance in the
work. Compared with the traditional algorithm, the proposed
SVM-AKPD does not need any prior knowledge and offers
automatic cluster identification with excellent performance.
Furthermore, the idea of full partition of feature space by the
optimal hyperplane in the SVM makes it hard to be affected
by irregular MPC distribution. To validate the proposed AKPD
and SVM-AKPD algorithms, channel sounding data at 28 GHz
mmWave band and simulated channel data generated by the
quasi-deterministic radio channel generator (QuaDRiGa) [20]
simulation platform is utilized. The proposed algorithms are
demonstrated to outperform the reported KPD, KPM and MCD

algorithms without prior knowledge of the clusters.
The rest of the paper is organized as follows. Section II

describes the double-directional multipath channel and related
conventional clustering algorithms. In section III, the proposed
AKPD and SVM-AKPD clustering algorithms are introduced.
Section IV presents algorithm analysis. Section V is the
performance evaluation of the proposed algorithms. Finally,
conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

In this section, firstly, we introduce the double-directional
radio channel model and the cluster concept. Then, the KPD,
KPM and MCD algorithms are briefly summarized, which are
widely used in MPC clustering and will be used in this paper
as reference methods.

A. Channel Description

The double-directional channel model [21], which has been
widely used for MIMO system design, has been considered
in this work. For a channel snapshot, the original ray-based
channel impulse response (CIR) can be expressed as (1)

h(τ,ΩT ,ΩR,ΘT ,ΘR)

=

L∑
l=1

αle
jφlδ(τ − τl)× δ(ΩT − ΩT,l)

× δ(ΩR − ΩR,l)× δ(ΘT −ΘT,l)× δ(ΘR −ΘR,l)

(1)

where

• τ,ΩT ,ΩR,ΘT ,ΘR are the delay, azimuth angle of depar-
ture (AoD), elevation angle of departure (EoD), azimuth
angle of arrival (AoA), and elevation angle of arrival
(EoA) of the MPCs, respectively, and the subscripts T
and R represent transmitter and receiver, respectively,

• L is the total number of MPCs,
• αle

jφl is the complex amplitude (gain) of the l-th MPC,
where αl is the absolute amplitude and φl is the phase
in the range [0, 2π],

• δ(·) is the Dirac delta function,
• τl,ΩT,l,ΩR,l,ΘT,l,ΘR,l are the excess delay, excess

AoD, excess EoD, excess AoA and excess EoA of the
l-th MPC.

Hence the parameter set for the l-th MPC is

xl = {αl, τl,ΩT,l,ΩR,l,ΘT,l,ΘR,l}. (2)

The set of all the MPCs for one snapshot can be
denoted by Φ = {xl|l = 1, 2, · · · , L}. The multi-
path parameters in a snapshot can be obtained e.g., by
using space-alternating-generalized expectation-maximization
(SAGE) [22], RiMAX [23] or other multipath estimation
algorithms [24] [25].

The objective of clustering is to group MPCs with similar
channel parameters into clusters in the joint space and delay
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domain according to their parameters. After clustering, the
CIR can be expressed as (3),

h(τ,ΩT ,ΩR,ΘT ,ΘR)

=

M∑
m=1

{
Lm∑
l=1

αm,le
jφm,lδ(τ − τm − τm,l)

× δ(ΩT − ΩT,m − ΩT,m,l)× δ(ΩR − ΩR,m − ΩR,m,l)

× δ(ΘT −ΘT,m −ΘT,m,l)× δ(ΘR −ΘR,m −ΘR,m,l)}
(3)

where
• M is the number of clusters,
• Lm is the number of MPCs in the m-th cluster, and the

subscript {m, l} means the l-th MPC in the m-th cluster.

B. The KPD Algorithm [18]

The KPD is a density based clustering algorithm, which
incorporates the modeled behavior of MPCs by considering
MPCs power. The detailed description of the KPD can be
found in [18]. A fixed K =

√
L/2 is set for all MPCs as

suggested in the KPD, the main steps are as follows:
1) Calculating Density of MPCs: For each MPC sample xi,

use the K nearest MPCs (i.e., set Ii) to calculate the density
ρ as follows [18]:

ρxi =
∑
xj∈Ii

exp(αxj )× exp

(
−
|τxi
− τxj

|2

(στ )2

)

× exp

(
−
|ΩT,xi

− ΩT,xj
|

(σΩT
)

)
× exp

(
−
|ΩR,xi

− ΩR,xj
|

(σΩR
)

)
× exp

(
−
|ΘT,xi

−ΘT,xj
|

(σΘT
)

)
× exp

(
−
|ΘR,xi

−ΘR,xj
|

(σΘR
)

)
(4)

where σ(·) is the standard deviation of the MPCs in (·) domain.
2) Calculating Relative Density: For each MPC sample xi,

use the K nearest MPCs’ density to calculate the relative
density ρ∗ as follows [18]:

ρ∗xi
=

ρxi

max
xj∈Ii∪{xi}

ρxj

. (5)

3) Searching Initial Cluster Centroids: For each MPC
sample xi, satisfying ρ∗xi

= 1, label it as the key MPC which
is the initial cluster centroid, then the set of initial centroids
is

Φ̂ := {xi|xi ∈ Φ, ρ∗xi
= 1}. (6)

4) Clustering: For those non-key MPCs of xi, its high-
density-neighboring [26] MPC x̃i is defined as

x̃i := arg min
xj∈Φ,ρ∗j>ρ

∗
i

d(xi, xj) (7)

where d represents the Euclidean distance. With the high-
density-neighboring MPC, the non-key MPCs will reach the
key MPC and be grouped as one cluster based on the concepts
and properties of graph theory [27]. It should be noted that
the cluster will only include the key MPC if the corresponding
key MPCs cannot be reached.

5) Cluster Merging: Any two clusters can be merged and
they are considered as one cluster if the there exist a path
where the density of the MPCs are larger than a specific
density threshold.

The KPD incorporates the modeled behavior of MPCs and
considers the MPCs power [18], and it does not need the prior
knowledge about the clusters. However,it is difficult for the
KPD algorithm to distinguish the cluster with small number
of MPCs, since only fixed K nearest MPCs is considered to
estimate density. Moreover, too many cluster centriods will be
estimated, as natural clusters have small scale fading and intra-
cluster power variation [18], which need to merge the clusters
close to each other. The additional step of cluster merging will
increase the complexity of the algorithm.

C. The MCD Algorithm

The MCD-based method is adopted to group the MPCs [28].
In [28], the MCD between the i-th and j-th MPCs (i 6= j) is
given by:

MCDi,j =
√
MCD2

AOA,ij +MCD2
τ,ij (8)

where MCD2
AOA,ij and MCD2

τ,ij are the MCD in delay and
angle domain, respectively, MCD2

τ,ij is calculated as:

MCDτ,ij = ς
|τi − τj |δτ

∆τ2
max

∆τmax = max{|τi − τj |;∀i, j ∈ {1, . . . ,M}}
(9)

where ς is a delay scaling factor to balance the weights of
the MCD in delay and angle domain. The MCD2

AOA,ij is
calculated as:

MCDAOA,ij =
1

2

∣∣∣∣∣∣
cos Ωi cos Θi

cos Ωi sin Θi

sin Ωi

−
cos Ωj cos Θj

cos Ωj sin Θj

sin Ωj

∣∣∣∣∣∣ .
(10)

The implementation of the algorithm consists of the following
three steps as in [29]:

1) : Choose a reference MPC which has the largest power
among all the MPCs in a set eligible for extracting clusters.

2) : Calculate the MCD between the reference MPC and
all other MPCs in the set, select those MPCs with the MCDs
less than a predefined threshold denoted with MCDth, and
group them together with the reference MPC as one cluster.

3) : Remove the MPCs already allocated to a cluster from
the MPC set, and re-execute step (1) to find the next cluster.
This procedure stops until all the MPCs are assigned to certain
clusters.

The MCD algorithm is simple to implement and has a
fairly low computational complexity. However, the parameter
ς and MCDth are determined by a visual inspection evaluated
by whether the clustering results can map to the physical
environment.

D. The KPM Algorithm [10]

The KPM algorithm is an extension of the K-means algo-
rithm proposed in [30], in which MCD is used as the distance
matric considering the MPCs power, the detailed description of
the KPM can be found in [10], the main steps are as follows:
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1) : Randomly choose initial cluster centroid positions
from the MPCs set.

2) : Allocate MPCs to cluster centroids by minimizing the
total sum of power weighted distance between the MPC and
assigned cluster centroid.

3) : Recalculate the cluster centroids by the intra-cluster
MPCs.

4) : Repeat steps 2 and 3 until the cluster centroid is no
longer updated. In this paper, a combined validation [10] is
used to choose the optimum number of clusters to improve
the performance of the KPM algorithm.

III. PROPOSED CLUSTERING ALGORITHM

As explained, the conventional KPD algorithms would fail
to work when there are only a small number of MPCs inside
the cluster. This will become more problematic for high
frequency mmWave channels due to its sparse nature [31]
[32]. Therefore, in this work, we firstly proposed an AKPD
algorithm, where a new distance-based metric is proposed
to calculate an adaptive-K for each MPC, and we use the
adaptive-K nearest MPCs to calculate the densities and relative
densities for all MPCs in the AKPD algorithm. The main
difference between the proposed AKPD and the traditional
KPD is that the AKPD uses adaptive-K nearest MPCs to
calculate the densities and relative densities for all MPCs,
while the KPD uses a fixed K. Thus the proposed AKPD
algorithm can be used in scenarios where we have more
complex distribution of MPCs, as the density of MPCs can
be calculated with higher accuracy with the adaptive-K.

As we explained, thanks to the small-scale fading and the
intra-cluster power variation problem, there is a need for an
additional cluster-merging step for conventional KPD. Without
such cluster-merging operation, there might exist too many
initial clusters based on the estimated key MPCs. This problem
is solved in the proposed AKPD algorithm, since the adaptive-
K enables the algorithm to be better adapted to the cluster
densities and their distribution.

However, the relative density variation caused by small-
scale fading and intra-cluster power variation will lead to
mis-clustering when the clusters are closely-spaced since the
AKPD clusters the MPCs according to the high-density-
neighboring MPCs. To overcome the limitations of the AKPD,
we proposed a novel machine-learning inspired SVM-AKPD
algorithm.

A. The AKPD Algorithm

In this part, we firstly discuss how to calculate the adaptive-
K, which is a key improvement compared to the conventional
KPD.

A fixed value K = L/2 is initially set for all MPCs, and
then value K will be updated. The following are the steps of
using the distance-based method to calculate the adaptive-K:

1) Calculating Distance Between the MPCs: For MPCs xi
and xj , the distance between MPCs can be calculated by

d̂i,j = [(τi
′ − τj ′)2 + (ΩT,i

′ − ΩT,j
′)2 + (ΩR,i

′ − ΩR,j
′)2

+ (ΘT,i
′ −ΘT,j

′)2 + (ΘR,i
′ −ΘR,j

′)2]
1
2

.

(11)

In (11), the parameters τ , Ω or Θ have different dimensions,
and they are normalized by

Xi
′ =

Xi − min
l∈[1,L]

Xl

max
l∈[1,L]

Xl − min
l∈[1,L]

Xl
(12)

where X represents a specific parameter of MPCs. In [14], a
similar normalization of MCD is proposed for a fair treatment
of the different parametric dimensions of the estimated MPCs.
The distance calculation method between MPCs is also used
in the KPD algorithm in this paper.

2) Finding the Leaping Separation Distance: Define
di := {di,1, . . . , di,j , . . . , di,L} is the descending order of
{d̂i,1, . . . , d̂i,j , . . . , d̂i,L}, then the separation distance ∆di :=
{∆di,1, . . . ,∆di,j , . . . ,∆di,K−1} can be calculated by

∆di,j = di,j+1 − di,j , di,j ∈ di, j ∈ [1,K − 1]. (13)

3) Calculating adaptive-K: If there exists a large separation
distance ∆di,j which is bigger than a threshold, we regard
that the MPCs xi and xj belong to different clusters and K
is updated to adaptive-K = j. However, the selection of the
threshold is crucial in the algorithm. To set the threshold based
on the distribution of the MPCs automatically, the maximum
distance between xi and all the MPCs is utilized to avoid
misjudging the leaping separation distance that may occur in
an intra-cluster MPCs. Therefore, the threshold ∆dthreshold is
defined as follows:

∆dthreshold = µ× dmax (14)

dmax = max
j∈[1,L]

d̂i,j (15)

where µ is the scale factor between ∆dthreshold and dmax.
It should be noted that the concept of a leaping separation
distance has been used to indicate a separation between two
clusters in [13].

Fig. 1. The schematic diagram of the distance-based metric.

Fig. 1 shows the schematic diagram of the distance-based
metric, where the yellow solid circle is the estimated MPC
xi, the blue solid circles represent intra-cluster MPCs with xi,
the black solid circle is the farthest MPC from xi, and the red
solid circles are the K nearest MPCs of xi which does not
belong to the same cluster with xi. di,j is the distance between
MPCs xi and xj , dmax is the biggest distance between xi and
all MPCs, ∆di,j is the leaping separation distance.

The pseudo-code of adaptive-K calculation is presented as
follows:

The AKPD can be implemented by the following steps:
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Algorithm 1: The Distance-based metric
Input: Φ = {x1, . . . , xL}, µ

1 K = L/2
2 for i ∈ [1, L] do
3 for j ∈ [1, L] do
4 Calculate d̂i,j according to (11)
5 end for
6 di := {di,1, . . . , di,j , . . . , di,L} = descend

{d̂i,1, . . . , d̂i,j , . . . , d̂i,L}
7 Calculate ∆dthreshold according to (14)
8 for j ∈ [1,K − 1] do
9 Calculate ∆di,j according to (13)

10 if ∆di,j > ∆dthreshold then
11 Adaptive−Ki = j
12 else
13 Adaptive−Ki = K
14 end
15 end for
16 end for

Output: Adaptive−K1,. . ., Adaptive−KL

1) Calculating adaptive-K: For each MPC sample xi,
i ∈ [1, L], the distance-based metric discussed is applied to
calculate adaptive-Ki, then the set of the adaptive-Ki nearest
MPCs of xi is as follows:

Ii := {x1, x2, . . . , xadaptive−Ki}. (16)

2) Calculating Density: For each MPC sample xi, use the
adaptive-K nearest MPCs to calculate the density ρ by (4).

3) Calculating Relative Density: For each MPC sample xi,
calculate the relative density ρ∗ using the adaptive-K nearest
MPCs’ density by (5). It should be noted that the relative
density is equal to 1 when there is only one MPC inside one
cluster.

4) Searching Initial Cluster Centroids: For each MPC
sample xi, satisfying ρ∗xi

= 1, label it as the key MPC which
is the initial cluster centroid.

5) Clustering: Cluster the MPCs according to the high-
density-neighboring MPCs as mentioned in the KPD.

With the using of the proposed distance based matric, the
number of nearest MPCs of the estimated object is no longer
a fixed value, but is calculated based on the actual MPCs
distribution. The impact of adaptive-K on the clustering results
will be analyzed from two aspects: 1) Density, in (4), the
density of MPCs is calculated based on the nearest MPCs
in the set of I, it is obvious that the fixed K used for all
MPCs will lead to the inaccurate calculation. 2) Relative
density, compared with the fixed K, if the K is smaller than
the adaptive-K, the relative density would be larger while too
small MPCs are used to calculated the relative density, which
will lead to the problem that too many cluster centroids are
estimated according to the key MPCs. If the K is larger than
the adaptive-K, the relative density may be smaller while too
many MPCs are used to calculated the relative density, which
will lead to the problem that there are no key MPCs in the
clusters with small number of MPCs. Thus, the adaptive-

K ensures that the MPCs used to calculate the density and
relative density belong to the same cluster as the estimated
MPCs and adapt to varying densities and distributions of
MPCs.

The pseudo-code of the AKPD algorithm is presented in
Algorithm 2.

Algorithm 2: The AKPD algorithm
Input: Φ = {x1, . . . , xL}, µ

1 Calculate adaptive-K according to the distance-based
method

2 for i ∈ [1, L] do
3 calculate ρxi

according to (4)
4 end for
5 for i ∈ [1, L] do
6 calculate ρ∗xi

according to (5)
7 end for
8 Φ̂ := {xC1, xC2, . . . , xCNkey

= {xi|xi ∈ Φ, ρ∗xi
= 1}}

9 for i ∈ [1, L] do
10 find x̃i according to (7)
11 end for
12 E1 = {(x, x̃)|x ∈ Φ \ Φ̂}
13 ζ1 = (Φ, E1)
14 for i ∈ [1, Nkey] do
15 Φi = {xCi}
16 for j ∈ [1, L] do
17 if xCi is reachable from xj in ζ1 then
18 Φi = Φi ∪ {xj}
19 end
20 end for
21 end for

Output: Φ1,. . .,ΦNkey

B. The SVM-AKPD Algorithm

In clustering step (5) of the AKPD algorithms, the MPC
is aggregated via the closest MPCs with higher relative den-
sity i.e., high-density-neighboring MPCs as explained in (7).
However, the MPCs lying at a large distance from the cluster
centroids or at the edge of the cluster, will not be able to seek
the proper high-density-neighboring MPCs when the clusters
are closely-spaced or the shape of the MPCs distribution is not
regular. In this case, the high-density-neighboring MPCs of the
clustered objects will be misjudged as the closest the higher-
density MPCs belong to the surrounding clusters owning to
the relative density variation. To overcome those problems of
the AKPD, the SVM is introduced for channel clustering.

SVM was proposed by Vapnik [33], which is called max-
imum margin classifier. The SVM is a linear classifier that
learns by minimizing the generalized error based on classifier
with kernel function, which is lowest in classification com-
plexity of learning system [34]. The purpose of the SVM is to
find an optimal hyperplane by maximizing the margin between
the separating hyperplane and the data. As shown in the Fig.
3, the two kinds of samples delegated by the yellow points
and blue points are divided by line H. Two lines H1 and H2
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are parallel to H, and pass through the two kinds of samples
that are nearest to H. The distance between them is called the
classification margin. The optimal classification line is the one
that can divide the two types of samples correctly, and also
makes the margin to be the largest. H in Fig. 2 is the optimal
classification line. In a high-dimensional space, the optimal
classification line will become the optimal hyperplane.

Fig. 2. The basic idea of SVM classification.

A cluster is a convex set composed of MPCs with similar
parameters, and any two clusters can be separated linearly. For
a linearly separable convex set, there must be support vector
and hyperplane to separate different clusters to feature space.
Thus, the SVM is feasible for channel clustering. However,
one discrepancy is that the SVM is a kind of supervised
learning algorithm, while the MPCs are the data without label.
Therefore, in the proposed SVM-AKPD algorithm, the cluster
centroids calculated by the partial AKPD are used to train
the SVM model, which is regarded as labeled data. Compared
with the traditional algorithm, the SVM-AKPD does not need
any a-prior information. Furthermore, the SVM-AKPD can
better adapt to the irregular MPC distribution because of
its idea of full partition of feature space. Firstly we search
the initial cluster centroids as labeled key MPCs using the
AKPD algorithm, and secondly, we train the labeled data
using one-versus-rest (OvR) SVM algorithm where OVR is a
decomposition methods of multi-class SVM by reconstructing
a multi-class classifier from binary SVM-based classifiers.
After the above two stages the feature space is divided by
hyperplane, then MPCs will be clustered into different feature
space.

The SVM-AKPD algorithm is implemented by the follow-
ing steps.

1) Searching Initial Cluster Centroids: Calculate the key
MPCs using the steps 1-4 of the AKPD.

2) Clustering by the OvR SVM: Train the initial cluster
centroids to the obtain SVM classifiers, namely the classifica-
tion model, and classify all MPCs using classification model
to implement clustering. Consider the key MPCs set C with
Nkey data samples and Mkey features. The training data is
then represented as

C = {(xi, yi)|xi ∈ Φ̂, yi ∈ Lkey}, i = 1, 2, . . . , Nkey (17)

where xi is small scale parameters vector of the key MPCs,
yi and Lkey are the label of i-th key MPC i.e., i-th cluster
and the set of total label set, respectively. The clustering of
MPCs can be considered as multi-classification with Nkey

cluster categories essentially. The OvR firstly decomposes

multi-classification into multiple binary SVM classifications
by dividing the multi-class data into Nkey data sets, which
is a basic strategy to solve multi-classification problems by
using binary classifier. For j-th binary SVM classification, it
considers the key MPC with j-th cluster label as positive class
and the rest of the other data samples as negative class in
dataset Cj , 1 ≤ j ≤ Nkey . The clustering result of new MPC
samples is determined by combining the cluster labels which
is predicted from all the SVM classifiers. Suppose the multiple
binary SVM classifier are f1, f2, . . . , fNkey

, the final clustering
result of a MPC sample x is decided by

c(x) = arg max
i
fi(x). (18)

A schematic diagram of the OvR SVM is shown in Fig. 3,
the blue and yellow line represent the training and predicting
process of the OvR SVM, respectively.

Fig. 3. The schematic diagram of the OvR SVM.

In the process of training the SVM, the set of box constraint
(i.e., penalty parameter) and kernel function are crucial. For
the box constraint, the training algorithm must allow some
error classification in the training set while the data cannot
be completely separated. In this case, the higher the box
constraint is, the higher the cost of error classification points
will be. Thus, it will make the data classification stricter. In this
paper, we set box constraint to a smaller value as the cluster is
linearly separable essentially. For the kernel function, different
kernel functions will greatly affect the classification effect, and
the commonly used kernel functions are Logistic Regression
(LR), Linear and Gaussian Kernel function. Generally, when
the feature number is large and close to the sample number,
LR is applied or the SVM is without kernel function (Linear
Kernel function). The Gaussian Kernel function is used when
the feature number is small and the sample number is normal.
When the feature number is small and the sample number is
large, the extra features should be added manually to apply
the LR or Linear Kernel function. In the channel cluster, the
number of features (delay, AOA, EOA) is smaller than the
number of samples (key MPCs), thus the Gaussian Kernel
function is used to train the SVM to achieve the best clustering
performance.

The pseudo-code of the SVM-AKPD algorithm is presented
in Algorithm 3.
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Algorithm 3: The SVM-AKPD algorithm
Input: Φ = {x1, . . .}, µ

1 Calculate adptive−K according to distance-based
method

2 for i ∈ [1, L] do
3 calculate ρxi

according to (4)
4 end for
5 for i ∈ [1, L] do
6 calculate ρ∗xi

according to (5)
7 end for
8 Φ̂ := {xC1, xC2, . . . , xCNkey

= {xi|xi ∈ Φ, ρ∗xi
= 1}}

9 for i ∈ [1, Nkey] do
10 label = zeros(1, Nkey)
11 label{i} = 1

12 SVMmodel{i} = fitcsvm(Φ̂, label)
13 end for
14 for i ∈ [1, L] do
15 for j ∈ [1, Nkey] do
16 scorei,j = predict(SVMmodel{j}, xj)
17 end for
18 for j ∈ [1, Nkey] do
19 if scorei,j == max(score{i, :}) then
20 ci = j
21 end
22 end for
23 Φci = Φci ∪ xi
24 end for

Output: Φ1,. . .,ΦNkey

C. Clustering algorithm performance evaluation

In this section, the F measure [35] and Silhouette coefficient
S [36] are used to evaluate the clustering performance. The
Silhouette coefficient S is used to evaluate the performance
of different clustering algorithms based on the measured data,
it is a matric of the tightness of all MPCs in the clusters.
As the ground-truth is not available in [37], the Silhouette
coefficient S can be used to compare the performance of
different clustering algorithms, as it only depends on the actual
distribution of clusters. The definition of the S is as follows:

S = E

[
b(x)− a(x)

max{b(x), a(x)}

]
x∈Φ

(19)

where a(x) denotes the mean distance between x and MPCs
belonging to the same cluster, b(x) denotes the minimum
distance between x and MPCs belonging to the different
cluster. The detailed definition of a(x) and b(x) can be found
in [36]. S lies within [−1, 1], and a larger value means a better
clustering performance.

The F measure is a robust quality measure that can be
used to balance the precision and recall [38]. The ground-truth
partition needs to be available in the F measure. The ground-
truth partition is often available in the simulated channel data,
which is not possible with the measured channel data. The
definition of the F measure is given as follows:

F =
2 · PB ·RB
PB +RB

. (20)

where PB and RB denote the average of BCubed precision
and recall, and the detailed definition of PB and RB can be
found in [39]. As the Silhouette coefficien, F measure lies
within [−1, 1], and a larger value means a better clustering
performance.

IV. ALGORITHM ANALYSIS

In this section, the clustering results of the proposed
AKPD and SVM-AKPD algorithms are analyzed based on
the measured channels. Firstly, the measurement system and
campaigns are introduced, and the measured MPCs are exacted
by the SAGE algorithm in delay and angular domains. Then,
the measurement data in the NLoS scenario is used as an
example to demonstrate the performance of the proposed
AKPD and SVM-AKPD clustering algorithms compared with
the conventional algorithm.

A. Measurement System and Campaigns

The channel measurement was carried out in the large
waiting hall at Qingdao high-speed railway station at 28 GHz
with 500 MHz bandwidth. The measurement environment
and layout are shown in Figs. 4 (a) and (b), respectively.
The transmitter (Tx) and receiver (Rx) are set about the
same height of 2 m, a vertically polarized omni-directional
antenna was used in the Tx, and a vertically polarized uniform
linear array (ULA) with 8 array elements was applied in
the Rx. The eight ULA antennas are connected with eight
individual RF channels at Keysight receiver. The detailed
information of the Keysight time domain channel sounder and
the calibration method are described in [17] [40]. It should
be noted that the channel sounding with restricted/limited
technical setup samples only measures the partial wireless
channel and subsequent data analysis would lead to limited
even erroneous results. The measured channel data quality
is determined by the channel sounder system parameters,
e.g., code length, system bandwidth, system dynamic range,
antenna array configuration, and so on. By moving the ULA
eight times in the horizontal plane, a large scale 1×64 virtual
ULA can be formed with inter-element spacing set to 0.5λ
at 28 GHz. There were in total 21 and 12 measurement
positions (indicted by numbers with yellow circles) in the
line-of-sight (LoS) and non-line-of-sight (NLoS) scenarios as
shown in Figs. 4 (c) and (d), respectively. The measurements
were performed at midnight to avoid moving people. The hall
itself and the shops around are equipped with glass windows,
which implies rich scattering propagation environment. The
measurement system parameters and detailed measurement
information can be found in the Table I in [41].

B. Clustering Results Analysis

In the AKPD and SVM-AKPD algorithms, the initial value
of µ is required to be determined where µ factor is used to
adjust relative distance between the estimated MPC and all
MPCs to achieve the better clustering performance. Inappro-
priate values of µ will cause the unexpected leaping separation
distance. For simplicity, we set in the region of [0.1, 0, 3] in
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(a) (b)

(c)

(d)

Fig. 4. Measurement environments and layout of the large waiting hall. (a)
and (c) are for the LoS scenario, (b) and (d) are for the NLoS scenario,
respectively.

the work, which is found to be a reasonable choice. A heuristic
argument for µ ∈ [0.1, 0.3] is that a small value of µ ensures
that the clusters are separated from each other.

The performance of the proposed AKPD and conventional
KPD algorithms are analyzed with the measurement data at
the 8-th position in the NLoS scenario. Figs. 5 (a) and (b)
show the relative density of the KPD and AKPD algorithms,
respectively, the color bar and maker size indicate the value
of estimated relative density ρ∗ of MPCs, the circles pointed
by the arrow are the key MPCs with ρ∗ = 1 and the value
is the adaptive-K value of MPCs. In the AKPD, the K of
MPCs in different cluster is adaptive, as we can see in Fig.
5 (b), the adaptive-K is equal to the number of MPCs inner
one cluster. In contrast, the fixed K of all MPCs in the KPD
algorithm will lead to inaccurate calculation of the density and
relative density in the case of the clusters with small MPCs,
in the results of that cluster centroids will be misestimated.
As we can see that there are 6 key MPCs calculated by KPD
algorithm with 4 nearest MPCs in Fig. 5 (a), while 8 key MPCs
are distinguished with adaptive-K calculated by the distance-
based algorithm in Fig. 5 (b).

In the conventional KPD algorithm, there are usually too
many key MPCs according to the fixed K when a large number
of MPCs belong to one cluster, and it is necessary to merge

(a)

(b)

Fig. 5. Relative densities of MPCs calculated with measurement data at the
8-th position in NLoS scenario. (a) KPD, (b) AKPD.

those clusters that are fairly close to each other. Fig. 6 shows
the clustering results of the KPD and AKPD algorithms. We
can see from Fig. 6 (a) that the clusters circled by ellipse with
dash line are merged in Fig.6 (b). In addition, in the KPD
algorithm, the MPCs circled by ellipses with solid line are
clustered into the surrounding clusters incorrectly in Fig. 6
(b), as there are no expected key MPCs among those MPCs
as we can see from Fig. 5 (a). Meanwhile, the MPCs circled
by ellipses with solid line can be clustered accurately in Fig. 6
(c), which is more in line with the actual cluster distributions.
This also verifies the clustering results which are shown in Fig.
5 and intuitively shows the superiority of the AKPD algorithm.

Fig. 7 shows the clustering results of the AKPD and SVM-
AKPD with measurement data at the 3-th position in the
NLoS scenario. As we explained, the MPCs are clustered
by finding the high-density-neighboring MPC in the AKPD,
which will lead to the mis-clustering for the MPCs lying at
a large distance from the cluster centroids. In the Fig.7 (a),
arrow line refers to the process of MPCs clustering, where
the black and red arrow lines indicate the right and wrong
direction of aggregation, respectively. As we can see in Fig. 7
(b), the MPCs circled by ellipse with solid line are clustered to
the cluster circled by ellipse with dash line erroneously. In Fig.
7 (c), scatters with different color are the key MPCs calculated
with the steps 1-4 of the AKPD algorithm, and different color
regions correspond to different SVM classifiers. Fig. 7 (d)
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(a)

(b)

(c)

Fig. 6. Clustering results of measurement data at the 8-th position in NLoS
scenario. (a) KPD without merging, (b) KPD with merging, (c) AKPD.

is the clustering results by different SVM classifiers where
clusters are divided into different regions of feature space.
Compared with the AKPD algorithm, SVM-AKPD algorithm
has better clustering results.

(a) (b)

(c) (d)
Fig. 7. Clustering results of measurement data at the 3-th position in NLoS
scenario. (a) relative density of MPCs, (b) clustering results of AKPD, (c)
training results of SVM classifiers, (d) clustering results of SVM-AKPD.

V. PERFORMANCE EVALUATION

In this section, the performance of the proposed algorithms
is evaluated based on the measured and simulated channels
with the AKPD, SVM-AKPD, KPD, KPM and MCD algo-
rithms, respectively. The simulated channels are generated by
5G channel simulator QuaDRiGa and the synthetic MPCs
are extracted. The QuaDRiGa model is an enhancement of
the Wireless World Initiative for New Radio (WINNER)
model [42] and it uses random statistical distribution to
generate scatterers. The QuaDRiGa channel model follows a
geometry-based stochastic channel modeling approach, which
allows the creation of an arbitrary double directional radio
channel. The channel parameters are determined stochasti-
cally, based on statistical distributions extracted from channel
measurements. The distributions are defined for, e.g., delay
spread, angle spread, shadow fading and cross-polarization
ratio. Specific channel realizations are generated by sum-
ming contributions of rays with specific channel parameters,
e.g., delay, power, angle-of-arrival and angle-of-departure.
Furthermore, the F measure and Silhouette coefficient S are
used to validate the performance of the different clustering
algorithms, which evaluates the compactness and separation
of the cluster. For the simulated channels, the ground-truth
partitions are available [37], the number and spread of clusters
are synthesized, which can be easily adjusted and therefore
can allow us to test algorithm performance under different
conditions. Note that the ground truth is not available and the

TABLE I
THE STATISTICAL PARAMETERS CALCULATED BY DIFFERENT ALGORITHMS BASED ON THE SIMULATED CHANNEL DATA

Algorithms Number of clusters Cluster DS [ns] Cluster ASA [deg] Cluster ESA [deg]
µ δ µ δ µ δ

Ground-Truth 12 4.3 0.6 10.6 1.7 5.5 1.1
SVM AKPD 12 4.3 0.6 10.6 1.7 5.5 1.1

AKPD 12 4.3 0.6 10.8 1.9 5.6 1.2
KPD 14 4.3 0.7 10.6 1.9 5.5 1.3
KPM 18 4.1 0.7 9.1 3.3 5.3 1.2
MCD 15 4.4 0.6 10.0 2.3 5.5 3.2
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data are more affected by noise for the measured channels. We
use two measures, i.e., Silhouette coefficient S and F measure,
for different cases to better validate the AKPD and SVM-
AKPD algorithms.

The number of clusters, cluster DS, cluster-wise root-
mean-square azimuth spread of arrival angles (cluster ASA)
and cluster-wise root-mean-square elevation spread of arrival
angles (cluster ESA) are calculated to reveal the impact of
the clustering results calculated by different algorithms on the
channel modeling. Table I shows the statistical parameters
calculated by different algorithms based on the simulated
channel data, as the ground-truth is available. The “Ground-
Truth” indicates the results calculated with the real cluster
label. As shown in the Table I, the number of clusters of the
SVM AKPD and AKPD algorithms is 12, which is same as
the Ground-Truth, while the KPD, KPM and MCD algorithms
present a larger number of clusters. Especially, the number of
clusters is 14 for the KPD algorithm. This is because the fixed
K will introduce too many calculated initial cluster centroids,
in which the cluster merging of the KPD algorithm cannot
guarantee that all clusters can be correctly merged. We reach a
similar conclusion that the results of the proposed algorithms
are closer to the ground truth for the cluster DS, ASA and
ESA. It should be noted that the cluster ASA which is set to
simulate the channel is small to ensure the available ground
truth. When the ASA in the cluster is too large, the number
of clusters will be changed (if the MPCs in one cluster are
too scattered, these MPCs may no longer be considered as
belonging to the same cluster). In this case, the misclustering
is introduced by the splitting of cluster, it will not change
the value of cluster DS, ASA and ESA too much, but it will
indeed change the number of clusters. Thus, the difference
of the cluster DS, ASA and ESA is small by using different
algorithms.

Fig. 8. CDF plots of the estimated Silhouette coefficients with different
clustering algorithms.

Fig. 8 shows the cumulative distribution function (CDF)
plots of the estimated Silhouette coefficients based on the LoS
and the NLoS measured date with different clustering algo-
rithms, namely SVM-AKPD, AKPD, KPD, KPM and MCD. It
can be seen from Fig. 8 that the SVM-AKPD and AKPD have
better performance than the KPD, KPM and MCD, whereas
the MCD performs the worst and the SVM-AKPD performs
the best. This is because that the method of determining the

cluster centroid in the MCD only considers the power and
the MCD ignores the small-scale fading characteristics of the
channel. The KPM shows the better performance than the
MCD, as the cluster centroids are updated with iteration in the
KPM while the MCD always choose the MPCs with the largest
power as the reference MPC (i.e., cluster centroid). As for
the KPD, the fixed K makes the algorithm unable to identify
clusters with small MPCs. In contrast, the adaptive-K enables
the AKPD and SVM AKPD distinguish clusters accurately
with similar cluster densities and small MPCs within a cluster.
Furthermore, the SVM-AKPD utilize the optimal hyperplane
to maximizing the margin between different clusters, which is
insensitive to the distribution variation of intra-cluster MPCs.

(a)

(b)

Fig. 9. CDF plots with different cluster algorithms, based on simulated
channels. (a) Silhouette coefficient, (b) F measure.

Figs. 9 (a) and (b) show the CDF comparison of Silhouette
coefficients and F measure with different clustering algorithms
based on simulated channels. For the simulated channels,
the large scale parameters calculated with the experimental
LoS measurements [1] are used in the QuaDRiGa simulator.
By taking a fixed number of clusters, 40 random simulated
channels with different cluster ASA [43] are generated for
each position. Thus 840 simulated channels are generated
with 12 clusters for each channel and 20 sub-MPCs in each
cluster. It can be seen that the SVM-AKPD offers the best
performance in Fig. 9. It is noteworthy that the value of
Silhouette coefficient is difficult to reach 1. In (19), if a(x) is
equal to 0, then S is equal to 1, which means that there is
only one MPC in each cluster, and it is almost non-realistic
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in reality. Thus, the improvement of cluster performance is
relatively small in Fig. 9 (a) between the AKPD and KPD
algorithms compared with the AKPD and MCD algorithms,
as the value of S is fairly large for the AKPD and KPD.
However, the improvement of performance is obvious for the
SVM-AKPD in Fig. 9 (b), therefore the F measure is a robust
quality measure to validate the quality of clustering results if
the ground-truth partition of data is available.

(a)

(b)

Fig. 10. The impact of cluster ASA based on simulated channels. (a)
Silhouette coefficient, (b) F measure.

Then we analyze the impact of cluster angular spread on
the clustering accuracy. In the simulated channels, we set
different cluster ASA in the range of {0.5◦, 1◦, . . . , 20◦} to
the simulated channels. The value of Silhouette coefficient and
F measure is calculated by the means of 21 channels for each
cluster ASA. As we can see in Figs. 10 (a) and (b), with the
increase of cluster ASA, Silhouette coefficient and F measure
have a downward trend of the different algorithms, and the
cluster performance of the SVM-AKPD is obviously better
than that of others. Moreover, for the different cluster ASA,
the performance of the SVM-AKPD algorithm is better and
the SVM is insensitive to the distribution variation of intra-
cluster MPCs, which benefits from the fact that the cluster of
the SVM-AKPD is based on the full partition of feature space.
The partition of feature space is stable with different cluster
ASA as long as the cluster center (key MPCs) is accurately
found, so the SVM-AKPD algorithm can adapt to different
“cluster conditions”. In addition, the performance gap between

the AKPD and KPD algorithms is little when the cluster ASA
is small, in the case of that the MPCs is more concentrated,
which is very rare in the real channel.

VI. CONCLUSION

The accurate and effective clustering algorithm is challeng-
ing, due to the increasing number and parameter dimensions
of the resolvable MPCs in the massive MIMO channels. In
this paper, a novel AKPD and SVM-AKPD algorithms are
proposed for MPC automatic clustering. The key features are:
1) a distanced-based metric is used to calculated adaptive-K
for each MPC, and adaptive-K nearest MPCs are considered
to estimated density and relative density, which enables better
identifying of the local density variations of MPCs, especially
when the number of MPC inside a cluster is smaller than K;
2) the SVM is innovatively applied in the channel clustering,
and the SVM-AKPD can find the hyperplane to make the
feature space of different clusters best separable, which makes
the algorithm more robust and insensitive to the distribution
variation of intra-cluster MPCs. 3) the performance of algo-
rithms is validated based measured channels in 5G millimeter
wave band, in which the proposed algorithms outperform the
other algorithms in a real-word environment. 4) the proposed
algorithms have good performance in the different “cluster
conditions” with the simulated channels where different cluster
ASA is set to generate synthetic MPCs. Both numerical
simulations and experimental measurements demonstrated the
effectiveness and robustness of the proposed algorithms for
practical channel measurement campaigns, and the results in
this paper are useful for the cluster based channel modeling
of 5G and beyond 5G communications.
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