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Abstract—The distribution of electric vehicle (EV) charging 

area is affected by customer behavior, which has strong non-

uniform characteristics. This will cause some areas to be in a 

busy state, unable to supply EV charging in time, while the ar-

eas with low passenger flow will be in an idle state, which leads 

to the lower charging efficiency and revenue. In order to solve 

such problem, this paper proposes a customer-oriented charg-

ing incentive strategy for EVs based on information sharing 

among multiple microgrid regions. Firstly, a customer-oriented 

charging incentive strategy implementation framework is pro-

posed to realize multi regional charging coordination by shar-

ing regional charging information with customers. Then, con-

sidering the impact of charging price on charging demand and 

customer transfer, the customer charging demand model is con-

structed. Based on this, the optimization model is constructed 

to maximize the interests of system operators in multi microgrid 

area, and solved by particle swarm optimization (PSO) algo-

rithm. Simulation results show that the proposed mechanism 

can effectively alleviate the charging dissatisfaction caused by 

the above phenomenon, and improve the overall operating rev-

enue of multi region. 

Keywords—EVs, customer-oriented, multi-microgrid, incen-

tive strategy, particle swarm optimization. 

Ⅰ. INTRODUCTION 

Due to the environmental friendly and low emission char-
acteristics of electric vehicle (EVs), they have become the 
trend of future travel. Moreover, EVs have the characteristics 
of energy transfer in time and space, and have been paid great 
attention in the aspects of stabilizing the fluctuation of re-
newable energy, cutting peak and filling valley, and auxiliary 
services. Therefore, EVs have been widely used in recent 
years. However, with the increase of EVs, the charging de-
mand of customers also go upward, and more research on the 
customer charging package and strategy has been conducted 
to seize customer resources, which can be mainly divided in 
two categories. One is to attract customers with low charging 
cost and build the lowest charging cost model. In this re-
search, customers choose the appropriate charging time with 
Time-of-Use (TOU) price [1], real-time electricity price [2] 
and so on, so as to meet their own needs and spend as little 
electricity as possible. Later, this method gradually evolved 
into a charging menu based on real-time or TOU price, and 
its purpose is to optimize the charging cost [3]-[4]. There are 
also customers participating in the ancillary services market 
[5], where the flexible charging and discharging ability of 
EVs is used to balance the real-time power supply and de-
mand, so as to obtain market revenue while meeting their 

own power demand. The other is, to build the optimal oper-
ation benefit model of the system with the participation of 
EVs from the perspective of aggregators or system operators, 
with the goal of minimizing the overall operating cost or 
maximizing the revenue of the system [6]. This research usu-
ally has two levels of optimization [7]-[9]. In the upper layer, 
the system operator or load aggregator evaluates the overall 
dispatching plan, and then issues it to the EV users. In the 
optimization of the lower level, price-based or incentive-
based schemes are used to make profits in the charging pro-
cess, so as to achieve the minimum cost goal of the upper 
level. It should be pointed out that, on one hand, when the 
above two types of research involve the customer level, the 
unified and shared market information such as time-sharing 
price and real-time price is used to guide the charging of us-
ers. However, this kind of guidance will only change the us-
er's behavior in time, and the unified and shared price infor-
mation has no effect on the change of user's spatial behavior. 
On the other hand, user behavior is guided, based on electric-
ity price or incentive improved hierarchical charging pack-
age or variable electricity price. However, this kind of guid-
ance can only prompt users to change their time behavior in 
the local pile and station with this kind of package. It is be-
cause this kind of package is often bound in the hardware 
facilities of the pile or station, and the information of the pile 
/station package in different regions is not directly shared, 
which cannot guide users to change their spatial behavior. 

Therefore, even though many strategies are applied in the 
scenarios of EV stations or piles at present, the problem that 
the charging price and incentive messages are not shared for 
all consumers still exists. These local strategies cannot reach 
a better optimal point when it comes to multi-microgrids, be-
cause in single grid, the local strategies only focus on solving 
charging sequence of large-scale plug-in EVs but not aim at 
charging collaboration of multiple grids. The most typical 
example is when one station is busy and others are free. In 
this situation, it might exist an optimization to guide consum-
ers to charge elsewhere via incentive mechanisms. Mean-
while, this optimization might contribute to the total profit 
due to the increase of charging amount. 

Based on the above analysis, this paper innovatively pro-
poses a charging incentive mechanism directly facing cus-
tomers. The purpose is to guide customers to change their 
spatial behavior among different regions, and alleviate the 
phenomenon that some charging stations are busy while oth-
ers are idle and have no revenue. The main contributions can 

be summarized as follows: 



 

1) A novel consumer-oriented charging incentive mecha-
nism in distribution network containing multiple inter-
connected microgrids is proposed. Compared to other 
station-oriented research, this is one of the rare research 
featured by consumer-orientation and aims at charging 
collaboration of multiple grids. 

2) Considering the impact of price, distance and capacity 
on consumers’ decision-making and transportation, a 
model of electricity demand is established, in which 
heterogeneous parameters from different consumers are 
handled by stochastic scenario probabilities.  

3) An optimal profit model for system operation is pre-
sented, wherein the EVs transportation caused by opti-
mized prices in each iteration is involved. Moreover, 
the model is compared in 4 cases to discuss its applica-
bility.  

The remaining part of the article is organized as follows. 
Section II presents the description of the proposed charging 
pricing strategy. Section III describes the system model. Sec-
tion IV presents the problem formulation. Section V presents 
case studies together with simulation results. Finally, conclu-
sions are drawn in Section V. 

Ⅱ. DESCRIPTION OF THE PROPOSED CHARGING PRICING 

STRATEGY 

The overall structure of the proposed charging strategy is 
shown as Fig.1.  
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Fig.1 framework of the proposed strategy. 

With distribution system operator (DSO) as the main body 
of information aggregation, the charging behavior of EV 
groups in multiple microgrid regions is guided, mainly in-
cluding the following parts. 1) Collect the output of renewa-
ble energy, distributed generation and conventional re-
sources in the covered distribution network area, and predict 
the overall power vacancy. 2) Collect the power supply and 
demand status of microgrid and the free and idle state of 
charging station, determine the optimal price based on the 
supply and demand of the whole network and the charging 
equilibrium degree of each region, and broadcast it to the 
electric vehicle users. 3) After receiving the broadcast charg-
ing price, the customer selects the charging area and uploads 
the charging demand to DSO. As the regional transfer of EVs 
takes time, the electricity price is different from that of the 

actual charging. The following mechanism is added in this 
paper: After the costumers makes a choice, he goes to the 
charging area within the agreed time, and will be given a dis-
count according to the selected charging price. 

Ⅲ. SYSTEM MODEL 

In the above mentioned structure, when the customers re-
ceive the broadcast information from DSO, the charging be-
havior will be adjusted. The choice will be influenced by the 
following aspects. 1) Charging price. Generally, the higher 
the charging price is, the less the charging capacity is. 2) 
Charging location. Customers usually do not consider the 
charging point which is rather far. If it's on the way, it's al-
ways a priority. 3) Charging waiting time. For a busy charg-
ing station, the waiting time cost of costumers is high. In this 
case, costumers will consider changing the charging location. 

A. Impact of price on consumers 

Affected by price elasticity, costumers will actively reduce 
the amount of charging when the charging price is high. In 
this paper, the price elasticity model of [10] is used, and the 
charging demand of users can be described as follows:  
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where 
int

, ,d j tv  is the original charging demand of customer j 

at the time t. Suppose customer j is in area d. max, jE  is the 

maximum charging capacity of customer j. ,avg jSOC  is the 

average state of charge of customer j, which can be obtained 

by the historical data of acquisition for each charge. 
int

,d tPR  

is the original charging price of area d at the time t. j  is 

the price elasticity of the customer j which is non-negative. 

When j  is positive, it represents the charging demand of 

customer j has negative relation with price, which means as 

the price increases, the demand decreases. When j  is zero, 

it means the customer does not have elasticity. When the 

charging price of area d ,d tPR  changes, the demand of 

customer j turns to , ,d j tv , which satisfies the following equa-

tion. 
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B. Modeling of EVs transposition  

The transfer of EVs is influenced by the price, distance and 
the power supply capacity of the destination. Customers have 
different sensitivity on these factors. 

The sensitivity of user j to price is defined by a quadratic 
function, which can be described as: 

 
2

,( )PR

j ep jf PR PR PR    (3) 

where ( )PR

jf   is the function of the jth user’s willingness to 

change behavior influenced by the price, which means the 
lower the charging price is than the customers' expected price, 
the more motivated the customers are to choose low-cost 

charging. ,ep jPR  is the expected charging price of custom-

ers. Generally, in order to motivate customers to change their 



 

behavior, the value of PR is lower than the expected value.  

Except the influence of price, the sensitivity of customer j 
on the distance can be defined as: 

2
( ) jrt

jf R R


      (4) 

where ( )rt

jf   is the function of the jth customer’s willing-

ness to change behavior influenced by distance. j  is the 

distance influence factor of customer j. When j  is large, it 

means the further the distance is, the more unwilling the cus-
tomers are to change the charging location. 

Then, the power supply capacity can be modelled with 

( )cc atl

jf D : 

( )cc atl atl

j jf D D    (5) 

where ( )cc

jf   is the function of the jth customer’s willing-

ness to change behavior influenced by power supply capacity 

of destination. j  is the power supply influence factor, 

which is positive. It means that the larger the capacity is, the 
higher the chance of being selected. 

Then, the behavior of customer j transferring from area 

wd  to area vd  is the result of the comprehensive influence 

of price, distance and power supply capacity of destination. 
The comprehensive influence can be defined as: 

     , , , , ,w v v w v v

PR rt cc atl

d d j t j d t j d d j df PR f R f D    (6) 

Furthermore, the transition probability of customers se-
lecting charging area according to the degree of comprehen-
sive influence is described as: 
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where DN  is the sum of the areas. , , ,w vd d j t  is the transfer 

probability of customer j from area wd to area vd . 

C. Modeling of electricity demand 

Due to the different sensitivity of customers on the price, 
distance and the power supply capacity, the customers with 
the same characteristics are classified in one type and there 

is a total of JN  types of customers. 

Considering the difference of different types, the number 
of EVs after transfer in area d can be described as: 

, , , , ,

1 1
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w w
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where j  is the proportion of the jth type of customers. ,wd tN

and ,d tN  are respectively the number of EVs of area wd and 

area vd  at the moment t. Then, the total charging demand 

of area d is: 

, , , ,

1

JN

d t d t j d j t

j

D N v


     (9) 

D. Scenarios discussion and simplification 

System model (1)-(9) involves many parameters of users, 

such as j , max, jE , ,avg jSOC , ,ep jPR , j , j , etc. For these pa-

rameters, almost every user has different values, which re-
sults in a large number of heterogeneous parameters, which 
is difficult to deal with in the actual model. The conventional 
method is to simulate the above user data through Monte 
Carlo, and divide the parameters of similar features by clus-
tering algorithm, and finally form several typical scenarios 

[11]. On this basis, the scene probability distribution j can 

be obtained from the clustering results. 

In addition, we set forth the following assumptions: 

Assumption1: for user j, the charging demand determined 
at time t is not affected by the subsequent price. This is be-
cause there is an agreement in the framework: after the user 
makes a choice, he will go to the charging area within the 
agreed time, and still give the user a discount according to 
the selected charging price. 

Assumption2: the charging price strategy of a microgrid is 
the same. This is because when a microgrid has multiple 
charging prices, it can be treated as multiple regions. In the 
framework of the previous part, when there are multiple 
charging stations in the microgrid, and the charging price is 
the same, it can be equivalent to a virtual charging station. In 
this regard, we aim to optimize the charging price of each 
region. 

Ⅳ. PROBLEM FORMULATION 

A. Objective function 

The purpose of the DSO is transferring the EVs that may 
be queued for a long time from the busy charging area to the 
idle charging area, so as to sell more electricity to users to 
increase the overall revenue. The income of DSO can be 
composed of the following parts: 

max income buy prdOF F C C       (10) 

In the formula， incomeF  is the total revenue of DSO , buyC  

is the cost of purchasing electricity from the external grid,

prdC  is the operating cost of DSO, including distributed 

generation costs DGsC  and renewable energy operating 

costs RESsC . The formula for each sub-item is as follows: 

 , , , , ,
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T DN N
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t d
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max
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d t d t d tD D D    (12) 

In the formula， ,

atl

d tD is the actual total consumption of area 

d in time period t, 
max

,d tD  is the maximum charging capacity 

of area d in time period t, ,d t  is the binary variable of supply 

and demand in area d at time t, 1 represents oversupply, and 

0 represents the opposite. ,

sell

d tPR  represents the electricity 

purchase price of area d at time t, and ,

sell

d tP t  represents the 

capacity of electricity sold at time t. Correspondingly, the 
cost of DSO buying electricity from the main network is as 
follows: 

, , ,

1 1
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buy buy

buy d t d t d t

t d

C PR P t
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where ,

buy

d tPR t  indicates the capacity of electricity pur-

chased of area d at time t. The operating costs in the distribu-
tion network area include distributed power costs and renew-
able energy costs, as described below: 

prd DGs RESsC C C       (14) 
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where DGsC and RESsC  are the operating costs of distributed 

power and renewable energy, respectively. ( )iC   is the cost 

function of the ith unit, usually is a quadratic function. ,i tP  is 

the output of the ith  unit at time t, ,i tSU and ,i tSD  are the 

start and stop costs of the ith unit at time t. ,w tPR and ,v tPR  are 

the operating costs of wind turbines and photovoltaics at time 

t. ,w tP and ,v tP  are the output of wind turbines and photovol-

taics at time t. WN , VN and DGN  are the number of wind 

turbines, photovoltaics, and distributed power sources re-
spectively. 

B. Constraints of the problem 

The objective function mentioned in this paper needs to 
satisfy the operating state constraints of the distribution net-
work, user charging constraints, charging price and risk con-
straints, as follows: 

1) Distribution network operating status constraints: in-
cluding power balance constraints (17), microgrid tie line ca-
pacity constraints (18), each microgrid output unit capacity 
constraints (19)-(21), and the charging capacity provided per 
unit time constraint (22), described as follows: 
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max,

, ,0 buy buy

d t d tP P     (19) 

max,

, ,0 sell sell

d t d tP P     (20) 

max

/ , /0 w v t w vP P     (21)  

min max

,i i t iP P P     (22) 

2) Charging price constraints in each region: The charg-
ing price should be higher than the selling price of electricity 
to the grid, meeting the constraint (23). Moreover, in order to 
prevent the charging price from fluctuating too much, the 
variation of the charging price should be limited to fluctua-
tions within a certain percentage of the original price, satis-
fying (24). 
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C. Problem Solution Methodology 

In order to solve the described problem, this paper uses the 
Monte Carlo method to simulate the uncertainty distribution 
of users. Monte Carlo generates random parameters of each 
customer forming a total of 2.7×105 scenarios. In order to 
reduce the number of scenarios and facilitate the calculation, 
the k-means algorithm is used to cluster users with similar 
characteristics, and finally 20 scenarios are formed, and ap-
plied to the proposed random optimization model. Since the 
proposed model contains many variables, especially when 

,d tD  is a high-order variable and there are multiple nonlin-

ear constraints, conventional nonlinear programming algo-
rithms are difficult to solve and time-consuming. In this pa-
per, particle swarm optimization (PSO) algorithm is selected 
to solve the model, because PSO is not complicated and has 
a faster convergence effect, which can better adapt to the 
real-time characteristics required by the price optimization 
strategy of this paper. The particles are the charging price and 
DG output of each area in each time. 

Ⅴ. SIMULATION AND NUMERICAL RESULTS 

A. Case study and simulation parameters 

The strategy proposed in this paper is applied to a multi-
microgrid interconnected distribution system, in which the 
parameters of distributed generation and renewable genera-
tion in microgrid adopt unified specifications, as shown in 
Table Ⅰ. 

TABLE Ⅰ. INFORMATION OF GENERATING UNITS 

Unit 

Min-Max 

Genera-

tion 

Marginal 

Cost 

Start-

up 

Cost 

Shut-

down Cost 
Amounts 

DG 25-150 0.045 0.09 0.08 15 

WT 0-80 0.055 - - 20 

PV 0-75 0.040 - - 15 

Assume that this part of power generation resources only 
supplies power to EVs. Each customer in EVs group is 
equipped with edge communication module, which is used to 
receive DSO broadcast information and upload charging plan. 
The wind and solar output data in the microgrid is obtained 
from the power generation data of a certain area in China, 
which is shown in Fig.2. 300 EV users are generated by 
Monte Carlo method, all of which are fast charging custom-
ers. The parameters are evenly distributed according to the 
range in the table and 20 typical scenes are clustered by the 
k-means algorithm, which is shown in Fig.3. The other pa-
rameters are listed in Table Ⅱ. 
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Fig. 3 cluster centers of 20 typical scenarios 

TABLE Ⅱ. OTHER GLOBAL PARAMETERS 

Parameters Value Parameters Value 
sellPR  4.0   [0.3,3] 

buyPR  6.8   [0.5,2] 

intPR  9.34   [1,2] 

1  20% avgSOC  0.3 

In this paper, four examples are set to verify the superiority 
of the proposed strategy under different EV initial distribu-
tion and different charging requirements. The settings of the 
four examples are shown in Table Ⅲ. 

TABLE Ⅲ. CASES SETTINGS 

Index Initial EVs distribution EV types 

1 Uniform distribution BYD E5 with 40kWh 

2 Uniform distribution BYD E6 with 80kWh 

3 Non-uniform distribution BYD E5 with 40kWh 

4 Non-uniform distribution BYD E6 with 80kWh 

Finally, our simulation selects 24 hours as the cycle, and 
the time scale is 1 hour. The optimization results include the 
electricity price, distributed unit output, power purchase and 
capacity sale in each period. The simulation is based on 
MATLAB 2019b running a win 10 system with 16GB 

memory and AMD 4800U@4.2GHzprocessor. 

B. Case study of three MG areas 

In the three micro-grid areas, the distance can be described 

by the matrix  5 15 25  15  5 20  25 20 5R  ； ； . The origi-

nal distribution of EVs in Case 1 and Case 2 are 
[100 100 100] , and those in Case 3 and Case 4 are 

[200 40 60] . Meanwhile, the tie-line power of the three mi-

crogrids is limited to 7000kw and the power supply capacity 

is [5000 5000 7000]atlD  . The optimization goal of this 

strategy is to maximize the benefits of system operators, 
while the comparison strategy adopts the single region local 
optimization under the condition that the price information is 
not shared. The optimized results of the two methods are 
shown in Fig.4. It can be seen from Fig.4 that the overall ben-
efits of the proposed strategy are higher than the one without 
it, which means the strategy in this paper is very effective in 
improving the overall efficiency. Based on Fig.4, the rate of 
revenue increase is counted in Table IV. 

It can be illustrated in Fig.4 and Table V that, in Case 1 
and Case 3, the increase of the proposed strategy is relatively 
low. This is because that the charging capacity of BYD e5 is 
small and the microgrids can satisfy the charging demand of 
it and the situation that one area has insufficient capacity and 
another area has excess power is relatively less. Reversely, 
in Case 2 and Case 4, the charging capacity of BYD E6 is 
large. 

Optimized results

Not optimized results

Case 1          Case 2          Case 3          Case 4  

 

Fig.4 profits comparisons before and optimization 

TABLE IV. PROFITS IMPROVEMENT RATIO AFTER OPTIMIZATION 

Case 1 2 3 4 

Improve-

ment Ratio 
3.46% 7.81% 4.45% 10.28% 

 

When the EVs in the areas increase, area1 and area2 will 
be busy due to insufficient power supply. In this case, our 
strategy will guide some vehicles to the area 3 with large 
power supply capacity, increasing more revenue from elec-
tricity sales, so as to improve the overall revenue. Therefore, 
this strategy has more advantages in the scenario where some 
areas are busy and some areas are idle. Earnings of each pe-
riod in different cases are depicted in Fig.5. When the charg-
ing demand is high, the volatility of revenue in each period 
is greater than when the charging demand is low. Comparing 
Case 1 and Case 3, when the charging demand is low, this 
strategy can reduce the volatility of revenue in each period, 
but also slightly improve the revenue. However, with the 
comparison of Case 2 and Case 4, when the charging demand 
is high, this strategy does not improve the volatility of each 
period, but significantly increases the income. Furthermore, 
combined with Fig.5 and Table V, comparing case 1 and case 
3, case 2 and case 4, we can find that the overall revenue of 
system operators is higher when the initial distribution is un-
even. It means that this strategy is more suitable for the non-
uniform distribution of EVs.  

 

Fig. 5 Total profits of three MG areas in different cases 
 

Fig.6 makes a comparison of the EVs transfer in each area 
among different cases. It can be seen that no matter how the 
EVS are initially distributed, the transfer of EVs tends to be 
consistent without using the optimization strategy in this pa-
per. It is in line with the transfer law between regions in real 
life because customers will drive in a relatively regular way 
without knowing the price of other regions. However, In the 
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case of using the proposed strategy, the transfer between re-
gions is guided by the price. The driving law of users will 
change when they get the price information of other regions, 
which is not regular and is helpful to alleviate some charging 
areas, which have been busy for a long time. 
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Fig.6 The distribution of EVs over a whole period 

Fig. 7 shows the revenue of different regions under differ-
ent scenarios, where the above is before optimization, and the 
below is after optimization.  
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Fig.7 Profits of each MG area in different cases 

It can be seen that, without the proposed strategy, the in-
come of the three regions is relatively fixed. Area 1 gains the 
most, followed by area 2 and area 3. When the power supply 
capacity is insufficient, especially in Case 2 and Case 4, the 
revenue of area 1 will be limited, which cannot exceed 
3×104cents/h. In contrast, after using the proposed strategy, 
the revenue of each region is relatively balanced, and the rev-
enue of region 3 with stronger power supply capacity is 
higher than that of other regions. Especially in Case 2 and 
Case 4, the revenue of region 3 is more than 3 × 104 cents / 
h, which means the strategy is beneficial for EVs to transfer 
from the busy charging area to the area with larger power 
supply capacity, so as to improve the overall benefit of all 
areas. 

Ⅵ. CONCLUSION 

In this paper, a charging incentive mechanism for electric 

vehicles was proposed. By optimizing the charging price of 

each region and realizing information sharing, customers 

could be guided to change the spatial driving behavior, so as 

to change the distribution of EVs, promote the charging busi-

ness in the edge areas, and achieve the optimal operation ben-

efit of all microgrid regions. Simulation results showed that 

the proposed strategy can improve the operation efficiency 

in four cases, and its effect could become more visible with 

the increase of charging demand. In practice, it is helpful to 

improve the phenomenon that some areas are busy while oth-

ers are idle with little revenue, and promote the balance of 

charging map. 
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