

Aalborg Universitet

Implementing physical models in real-time using partitioned convolution: An
adjustable spring reverb

Onofrei, Marius Gerorge; Willemsen, Silvin; Serafin, Stefania

Published in:
Proceedings of the 18th Sound and Music Computing Conference

DOI (link to publication from Publisher):
10.5281/zenodo.5113511

Creative Commons License
CC BY 3.0

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Onofrei, M. G., Willemsen, S., & Serafin, S. (2021). Implementing physical models in real-time using partitioned
convolution: An adjustable spring reverb. In D. A. Mauro, S. Spagnol, & A. Valle (Eds.), Proceedings of the 18th
Sound and Music Computing Conference (pp. 108-114). Axea sas/SMC Network. Proceedings of the Sound and
Music Computing Conference https://doi.org/10.5281/zenodo.5113511

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.5281/zenodo.5113511
https://vbn.aau.dk/en/publications/fa39e585-05aa-4fac-b891-265b6016620b
https://doi.org/10.5281/zenodo.5113511

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

108

IMPLEMENTING PHYSICAL MODELS IN REAL-TIME USING PARTITIONED
CONVOLUTION: AN ADJUSTABLE SPRING REVERB

Marius G. ONOFREI(monofr11@student.aau.dk)1, Silvin WILLEMSEN(sil@create.aau.dk)2, and
Stefania SERAFIN(sts@create.aau.dk)2

1Dept. of Architecture, Design & Media Technology, Aalborg University Copenhagen, Denmark
2Multisensory Experience Lab, CREATE, Aalborg University Copenhagen, Denmark

ABSTRACT

This paper presents a detailed description of the develop-
ment of a real-time spring reverb effect interface which is
built based on the solution of a complex physical mod-
elling implementation of helical springs. Impulse re-
sponses for various helical springs with different physical
parameters are computed offline using an implicit finite
difference scheme. These are then used to manipulate a
real-time input sound by means of a partitioned convolu-
tion implementation, which allows for the use of long im-
pulse responses with low latency. Furthermore, a smooth
transition is carried out when changing from one impulse
response to another, thus providing the means for real-time
manipulation of the physical parameters of the spring and
consequently the effect’s quality.

1. INTRODUCTION

Spring reverbs have been around since the 1940s [1], and
have been developed as cheap, compact devices which give
the illusion of room-reverberation [2]. However, due to
their highly dispersive nature, they could never really re-
produce the sound of a real room. Even so, their sound
had its unique appeal and they became very popular, par-
ticularly due to their affordability and compact size which
allowed them to be included in classic guitar amplifiers
throughout the late 20th century. Spring reverb simulations
have been implemented for example using combinations
of allpass filters [3] or other combinations of filters and de-
lays [4], [5], as well as virtual analogue simulations [6].

In [7], Bilbao and Parker suggest a spring reverb simu-
lation using finite difference schemes (FDSs), based on a
helical spring model where the pitch angle is assumed to
be small, described as a system of two variables: the trans-
verse and longitudinal vibration. The model is a reduced
version of the twelve variable system described by Wit-
trick [8]. Starting from the same model, Bilbao describes
a more complex interleved FDS which includes the effect
of the pitch angle in [9]. Van Walstijn presents an alterna-
tive FDS which uses ghost nodes in order achieve higher
order spatial accuracy in [10], but needs to be evaluated a a

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

very high sample rate of 1 MHz in order to limit numerical
dispersion.

The implicit method proposed by [7] can be run at a typi-
cal sampling frequency of 44100 Hz and capture the com-
plex dispersive properties of the spring and could poten-
tially be implemented as-is in real-time for a fixed set of
spring parameters. This, however, requires a large dimen-
sional matrix inversion for solving the update equation.
Additionally if one desires to change the spring’s physi-
cal parameters dynamically, an optimization procedure is
necessary in order to calculate values for the free parame-
ters of the scheme as to minimize the difference between
the numerical dispersion and the dispersion of the original
system. This computationally demanding fact results in
this solution being impractical for a real-time implementa-
tion.

The main aim in our paper is to make use of Bilbao and
Parker’s helical spring physical model in a real-time spring
reverb application regardless of the limitation described in
the above paragraph. Using this model gives us the flexibil-
ity of easily simulating springs of different physical prop-
erties. We digitally reproduce a spring reverb and embed
it in a physical interface aiming to extend its possibilities
compared to the typical uses, with a focus being on the
real-time manipulation of the spring’s physical parameters.
Our approach consists of computing a database of helical
spring impulse responses, where the physical parameters
of the springs are varied in a consistent way with a fo-
cus on the parameters found to be most critical in terms
of audio perception. These impulse responses can then be
convolved with a dry input sound in order to add the wet
spring reverb quality. This is achieved by implementing a
partitioned convolution algorithm which allows for the use
of long duration impulse responses with minimal latency,
as described in [11].

Using this convolution approach one could be tempted
to skip the physical model part and use measured im-
pulse responses of mechanical spring reverb units instead.
This, however, would reduce the flexibility of changing
the spring physical parameters as desired and achieving a
database with smoothly varying parameters.

Furthermore, an additional feature is developed in order
to achieve a smooth transition of sound when changing be-
tween the various impulse responses. This is an addition
compared to what the first author found as readily avail-
able implementations of partitioned convolution, such as
the one available in the SuperCollider platform [12], where

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

109

one cannot switch from one impulse response to another
without stopping the sound.

2. HELICAL SPRING

2.1 Continuous Model

A simple model for the vibration of a helical structure,
which can reasonably simulate the behavior in the human
auditory range is given by Bilbao and Parker in [7] which
follows their previous work in [13]. They propose a cou-
pled model where the transverse displacement 𝑢, and lon-
gitudinal displacement, 𝜁, along the arclength 𝑥 ∈ [0, 𝐿],
for some unwound spring length 𝐿, are coupled. This is
described in continuous time by the following system of
PDEs, where the subscripts 𝑡 and 𝑥 denote a derivative with
respect to time and space respectively:

𝑢𝑡𝑡 =
−𝐸𝑟2

4𝜌

(︀
𝑢𝑥𝑥𝑥𝑥 + 2𝜖2𝑢𝑥𝑥 + 𝜖4𝑢

)︀
+

𝐸𝜖

𝜌
(𝜁𝑥 − 𝜖𝑢)− 2𝜎𝑡𝑢𝑡,

(1a)

𝜁𝑡𝑡 =
𝐸

𝜌
(𝜁𝑥𝑥 − 𝜖𝑢𝑥)− 2𝜎𝑙𝜁𝑡, (1b)

where 𝑟 is the radius of the wire, which is of circular cross-
section and the parameter 𝜖 ≈ 1/𝑅 is a measure of the
curvature of the spring, with 𝑅 being the coil radius. Fur-
thermore, parameters 𝐸 and 𝜌 are related to the material of
the spring, the first being the Young’s modulus of elastic-
ity and the second being the material density. The param-
eters 𝜎𝑙 and 𝜎𝑡 model loss in the longitudinal and trans-
verse direction respectively. The number of physical pa-
rameters of the spring can be reduced by rewriting the sys-
tem in Equation (1) in a scaled form. This can be done
by introducing the non-dimensional variables 𝑥′ = 𝑥/𝐿,
𝑢′ = 𝜖𝑢 and 𝜁 ′ = 𝜁/𝐿. Furthermore, one can write
𝜅 = (𝑟

√︀
𝐸/𝜌)/(2𝐿2) as a measure of the stiffness of the

spring and 𝛾 =
√︀

𝐸/𝜌/𝐿 as the longitudinal wave veloc-
ity, both measured in s−1. Then the curvature is normal-
ized as the dimensionless parameter 𝑞 = 𝜖𝐿. This results
in the following system (the ′ superscript that indicates the
’scaled’ parameter was removed for brevity):

𝑢𝑡𝑡 = −𝜅2
(︀
𝑢𝑥𝑥𝑥𝑥 + 2𝑞2𝑢𝑥𝑥 + 𝑞4𝑢

)︀
+ 𝑞2𝛾2 (𝜁𝑥 − 𝑢)− 2𝜎𝑡𝑢𝑡,

(2a)

𝜁𝑡𝑡 = 𝛾2 (𝜁𝑥𝑥 − 𝑢𝑥)− 2𝜎𝑙𝜁𝑡. (2b)

One can investigate the typical dispersive characteristic
of the helical spring by deriving the dispersion relation-
ship of the system given in Equation (2) in the lossless
case. This can be done by introducing solutions of the form
𝑢(𝑥, 𝑡) = 𝑈𝑒𝑗(𝜔𝑡+𝛽𝑥) and 𝜁(𝑥, 𝑡) = 𝑍𝑒𝑗(𝜔𝑡+𝛽𝑥), where 𝑈
and 𝑍 are some constants. Solving for the nontrivial so-
lutions of the resulting system of equations the following
relationship governing the dispersion is obtained:

(𝜔2 − 𝛾2𝛽2)(𝜔2 − 𝜅2(𝛽2 − 𝑞2)2 − 𝛾2𝑞2)− 𝛾4𝑞2𝛽2 = 0.
(3)

This results in two separate dispersion relationships, i.e.
pairs of (𝜔, 𝛽) functions that satisfy Equation (3), one of

Figure 1. Auditory range solution to the dispersion re-
lationship for a helical spring system, with 𝜅 = 0.05,
𝛾 = 2000 and 𝑞 = 800.

which lies above the limit of human hearing. The other
solution, which lies in the audiable range, is illustrated in
Figure 1 for a spring with the parameters as given in the
caption, where 𝑓 = 𝜔/2𝜋. This figure is highly illustrative
of the the interesting behavior of helical springs. It can be
seen that dispersion relationship is not monotonic, mean-
ing that components of different wave lengths can have the
same temporal frequency. Furthermore, it can be seen that
the dispersion relationship shown has a zero at 𝛽 = 𝑞 (ver-
tical line in the Figure 1) and has a maximum in the lower
frequency range at approximately 𝛽 = 𝑞/2. This is the
wave length which corresponds to the frequency 𝑓𝑐 given
by:

𝑓𝑐 =
3𝜅𝑞2

8𝜋
√
5
, (4)

which is the transition frequency where the dispersion
regime changes, and is of perceptual interest for reverber-
ation purposes.

2.2 Finite Difference Scheme

The FDS used for solving this system is an implicit scheme
proposed by Bilbao and Parker in [7]. First, the continu-
ous time-space domain over which the PDEs are defined is
discretized across a time-space grid of 𝑡 = 𝑛𝑘 and 𝑥 = 𝑙ℎ,
such that the grid function 𝑢𝑛

𝑙 denotes a discretized version
of 𝑢(𝑥, 𝑡). The same applies for 𝜁 where 𝜁(𝑥, 𝑡) ≈ 𝜁𝑛𝑙 .
Then ℎ is the spatial step of the discretization and 𝑘 is the
time step, which results from a desired sampling frequency
of the model from 𝑘 = 1/𝑓s. Furthermore, 𝑙 and 𝑛 are in-
tegers indexing space and time respectively. As a means of
approximating the derivatives in the continuous-time PDEs
given in Equation (2), the following finite difference oper-
ators are introduced, as per [14]:

𝑢𝑡 ≈ 𝛿𝑡·𝑢
𝑛
𝑙 =

1

2𝑘

(︀
𝑢𝑛+1
𝑙 − 𝑢𝑛−1

𝑙

)︀
, (5a)

𝑢𝑡𝑡 ≈ 𝛿𝑡𝑡𝑢
𝑛
𝑙 =

1

𝑘2
(︀
𝑢𝑛+1
𝑙 − 2𝑢𝑛

𝑙 + 𝑢𝑛−1
𝑙

)︀
, (5b)

𝑢𝑥 ≈ 𝛿𝑥−𝑢
𝑛
𝑙 =

1

ℎ

(︀
𝑢𝑛
𝑙 − 𝑢𝑛

𝑙−1

)︀
, (5c)

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

110

𝑢𝑥 ≈ 𝛿𝑥+𝑢
𝑛
𝑙 =

1

ℎ

(︀
𝑢𝑛
𝑙+1 − 𝑢𝑛

𝑙

)︀
, (5d)

𝑢𝑥𝑥 ≈ 𝛿𝑥𝑥𝑢
𝑛
𝑙 =

1

ℎ2

(︀
𝑢𝑛
𝑙+1 − 2𝑢𝑛

𝑙 + 𝑢𝑛
𝑙−1

)︀
, (5e)

𝑢𝑥𝑥𝑥𝑥 ≈ 𝛿𝑥𝑥𝑥𝑥𝑢
𝑛
𝑙 =

1

ℎ4
(𝑢𝑛

𝑙+2 − 4𝑢𝑛
𝑙+1 + 6𝑢𝑛

𝑙

− 4𝑢𝑛
𝑙−1 + 𝑢𝑛

𝑙−2),
(5f)

𝑢 ≈ 𝜇𝑡·𝑢
𝑛
𝑙 =

1

2

(︀
𝑢𝑛+1
𝑙 + 𝑢𝑛−1

𝑙

)︀
. (5g)

With this framework, a discretization of the system of
equations given in Equation (2) can be written in the fol-
lowing way [7]:

(1 + 𝜂𝜅𝑘𝛿𝑥𝑥)𝛿𝑡𝑡𝑢 = −𝜅2
(︀
𝛿𝑥𝑥𝑥𝑥𝑢+ 2𝑞2𝛿𝑥𝑥𝑢+ 𝑞4𝑢

)︀
+ 𝛾2𝑞2(𝛼+ (1− 𝛼)𝜇𝑡·) (𝛿𝑥−𝜁 − 𝑢)

− 2𝜎𝑡𝛿𝑡·𝑢,

(6a)

(1 + 𝜃𝛾2𝑘2𝛿𝑥𝑥)𝛿𝑡𝑡𝜁 = 𝛾2(𝛼+ (1− 𝛼)𝜇𝑡·) (𝛿𝑥𝑥𝜁 − 𝛿𝑥+𝑢)

− 2𝜎𝑙𝛿𝑡·𝜁.

(6b)

For explicit numerical schemes one can calculate an up-
date grid function value at a location 𝑥 = 𝑙ℎ, i.e. 𝑢𝑛+1

𝑙 ,
knowing the values of the grid function 𝑢 at current (𝑢𝑛

𝑙)
and previous time steps (𝑢𝑛−1

𝑙). Such methods however
need to be run at very high sample rates in order to accu-
rately model the dispersion of the system within an audi-
ble bandwidth [14]. This can be alleviated by the use of an
implicit scheme instead, where the update solution needs
to be computed at multiple locations along the grid func-
tions. Expanding the difference operators in Equation (6),
it is found that in order to compute the future value at the
update point 𝑢𝑛+1

𝑙 , future values at its neighboring points:
𝑢𝑛+1
𝑙+1 and 𝑢𝑛+1

𝑙−1 are needed, hence a linear coupling among
the unknown values of the grid function is introduced. This
is due to the introduction of a number of the difference op-
erators 𝛿𝑥𝑥 to the left side of the equations and 𝜇𝑡· to the
coupling terms (between 𝑢 and 𝜁). The “weights” of these
operators are controlled by a number of free parameters in
the numerical scheme: 𝜂, 𝜃, 𝛼. For example if these three
parameters are all taken as 0, then the scheme in Equa-
tion (6) reduces to an explicit scheme. These parameters
can be tuned to provide a more accurate solution in terms
of dispersion for a given set of physical spring parameters.

Following the suggestion in [14], 𝛼 = 1/2 and an addi-
tional parameter 𝑞 = (2/ℎ) sin(𝑞ℎ/2) is introduced as an
approximation to 𝑞. The remaining parameters 𝜂 and 𝜃 are
free to change.

Similar to how the dispersion relationship was computed
for the continuous model in Equation (3), the numeri-
cal dispersion can be derived by inserting the discretized
form of the test solutions, i.e. 𝑢𝑛

𝑙 = 𝑈𝑒𝑗(𝜔𝑘𝑛+𝛽𝑙ℎ) and
𝜁𝑛𝑙 = 𝑍𝑒𝑗(𝜔𝑘𝑛+𝛽𝑙ℎ) in Equation (6). Figure 2 shows a
comparison of the numerical dispersion with the model
dispersion for different choices of the free parameters. The
effect of the choice of 𝑞 is illustrated going from (a) to
(b), while the effect of tuning the 𝜂 and 𝜃 parameters is
seen going from (b) to (c). The optimal 𝜂 and 𝜃 values

differ for each possible combination of spring parameters,
hence an optimization procedure is used to compute these
optimal values by means of introducing a mean squared
error loss function, ℒ between the values of 𝜔model, result-
ing from the continuous model dispersion relationship and
𝜔FDS, which results from the dispersion relationship of the
FDS, as given in Equation (7):

ℒ =
1

𝑀

𝑀∑︁
𝑖=1

(𝜔model,𝑖 − 𝜔FDS,𝑖)
2,

𝜔model,𝑀 < 𝜋𝑓s,

(7)

where 𝑖 is an index of the 𝜔 values and 𝑀 + 1 is the index
at which 𝜔model is bigger than the range of interest. This
loss is minimized with respect to the 𝜂 and 𝜃 parameters
via a Nedler-Mean simplex algorithm as described in [15].
If one would desire to change the physical parameters of
the spring in real-time this optimization needs to be recom-
puted.

Having a fixed time step 𝑘, then ℎ needs to be computed
such that the numerical solution remains stable. In [7], an
energy-based stability analysis is presented which results
in the following stability conditions for ℎ:

ℎ ≥ 2𝛾𝑘
√
𝜃+, (8a)

ℎ ≥
√︂

𝜅𝑘
(︁
2𝜂+ +

√︀
4(𝜂+)2 + (1 + | cos(𝑞ℎ)|)2

)︁
, (8b)

where 𝜂+ = (𝜂 + |𝜂|)/2 and 𝜃+ = (𝜃 + |𝜃|)/2, describe
the positive parts of 𝜂 and 𝜃 respectively. An ℎ that satisfies
the stability conditions as close to equality as possible, will
result in a more accurate numerical solution. Once an ℎ
value is chosen, the maximum number of grid intervals can
be calculated as 𝑁 = 1/ℎ (since the length of the spring is
normalized to 1 in the scaled system).

Simply supported boundary conditions are considered for
the model at the edges, i.e. 𝑢 = 𝑢𝑥𝑥 = 𝜁 = 𝜁𝑥𝑥 = 0 at
𝑙 = 0 and 𝑙 = 𝑁 , where 𝑁 is the number of discretized
segments of the scaled helical spring. This means that the
domain of calculation will be 𝑙 ∈ [1, 2, ..., 𝑁 − 2, 𝑁 − 1],
as values at the edges will always be 0.

For the actual implementation of the solver, the finite
difference scheme in Equation (6) is rewritten in matrix
form. Hence, the finite-length column vectors u𝑛 =
[𝑢𝑛

1 , ..., 𝑢
𝑛
𝑁−1]

𝑇 and 𝜁𝑛 = [𝜁𝑛1 , ..., 𝜁
𝑛
𝑁−1]

𝑇 are introduced
over the spatial domain (with 𝑙 ∈ [1, . . . , 𝑁 −1]), where 𝑇
denotes the transpose. The resulting matrix equations are
then factorized with respect to u𝑛+1, u𝑛, u𝑛−1, 𝜁𝑛+1, 𝜁𝑛

and 𝜁𝑛−1 resulting in a system of the form

A1u
𝑛+1 +B1u

𝑛 +C1u
𝑛−1

+D1𝜁
𝑛+1 +E1𝜁

𝑛 + F1𝜁
𝑛−1 = 0,

(9a)

A2u
𝑛+1 +B2u

𝑛 +C2u
𝑛−1

+D2𝜁
𝑛+1 +E2𝜁

𝑛 + F2𝜁
𝑛−1 = 0,

(9b)

for Equations (6a) and (6b) respectively. This can be fur-
ther merged by introducing a state vector which concate-
nates u𝑛 and 𝜁𝑛 as: w𝑛 = [𝑢𝑛

1 , ..., 𝑢
𝑛
𝑁−1, 𝜁

𝑛
1 , ..., 𝜁

𝑛
𝑁−1]

𝑇 .

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

111

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

10
4

Model Dispersion Rel

Numerical Dispersion Rel

(a)

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

10
4

Model Dispersion Rel

Numerical Dispersion Rel

(b)

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

10
4

Model Dispersion Rel

Numerical Dispersion Rel

(c)

Figure 2. Comparisons of model dispersion of a helical spring with physical parameters 𝜅 = 0.05, 𝛾 = 2000 and 𝑞 = 800
with numerical simulations using different sets of free parameters. (a) 𝑞 = 𝑞, 𝜂 = 𝜃 = 0. (b) 𝑞 = 2

ℎ sin(𝑞ℎ/2), 𝜂 = 𝜃 = 0.
(c) 𝑞 = 2

ℎ sin(𝑞ℎ/2), 𝜂 = 0.4313, 𝜃 = 0.000327.

(a) (b) (c)

Figure 3. Spectrogram of the impulse response for three helical springs. Black lines represent the model transition fre-
quency 𝑓𝑐. (a) 𝜅 = 0.08, 𝑞 = 600, 𝛾 = 1800. (b) 𝜅 = 0.08, 𝑞 = 1000, 𝛾 = 1800. (c) 𝜅 = 0.08, 𝑞 = 1000, 𝛾 = 1000.

This results in

Aw𝑛+1+Bw𝑛 +Cw𝑛−1 = 0, where,

A =

[︂
A1 D1

A2 D2

]︂
B =

[︂
B1 E1

B2 E2

]︂
C =

[︂
C1 F1

C2 F2

]︂
(10)

from which an update equation to the state vector can be
computed as

w𝑛+1 = A−1
(︀
−Bw𝑛 −Cw𝑛−1

)︀
. (11)

As can be seen, a large matrix inversion is necessary for
solving the system, which along with the optimization of
the scheme’s free parameters necessary to minimize the
numerical dispersion, causes the solution to be impracti-
cal with regards to a direct real-time implementation.

3. IMPLEMENTATION

This section details the implementation of the helical
spring presented in the previous section and the develop-
ment of the spring reverb interface. A demonstrative video
can be found at [16].

3.1 Impulse Response Database

Impulse responses are generated by exciting the helical
spring at one end (at the first free point, i.e. 𝑙 = 1) with a
sine sweep covering the human auditory perception range,
20 Hz to 20 kHz and measuring the output at the other end
of the spring (the last free point, i.e. 𝑙 = 𝑁 − 1). Both
the excitation and pickup are carried out in terms of the
transverse displacement of the spring 𝑢, and is consistent
with [10]. The initial sine sweep is then deconvolved from
this output leaving only the impulse response of the sys-
tem. For the loss parameters, values suggested in [14] are
used: 𝜎𝑙 = 𝜎𝑡 = 1.65.

A database of impulse responses is generated with the
aim that there is a distinct difference between each impulse
response. This is achieved by systematically changing the
parameters of the model in a well-informed manner. Look-
ing again at the dispersion relationship of the continuous
model, it is clear that a highly important parameter is 𝑞, as
it governs both the location where there is a zero, as well as
having a big weight in the transition frequency 𝑓𝑐, as it is
squared in the numerator in Equation (4). Furthermore, the
𝛾 parameter is a scaled version of the longitudinal wave ve-
locity and therefore plays a role in the density of the echoes
of the spring.

This can be seen in Figure 3 where two distinct disper-
sion zones appear: for frequencies above the transition 𝑓𝑐

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

112

the behavior is essentially bar-like with higher frequen-
cies travelling faster, while below 𝑓𝑐 solutions of differing
wave-numbers are possible, [14]. Comparing (a) to (b) one
can see that a higher 𝑞 value raises the transition frequency,
while comparing (b) to (c) one can see that a higher 𝛾 leads
to greater echo density.

For the use in the spring reverb interface, it was decided
to keep 𝜅 = 0.08 as a constant value and only vary the
other two parameters. Since variations in 𝑞 are heuristi-
cally found to be more distinct perceptually, a denser vari-
ation for this parameter is chosen. In total, 27 values are
used ranging from 200 to 600 in increments of 25, then
from 600 to 1000 in increments of 50 and from 1000 to
1200 in increments of 100. This was done to somewhat
mimic the fact that the relationship between frequency and
pitch is exponential. This holds when remembering that 𝑓𝑐
is directly proportional to 𝑞2. Furthermore two values of 𝛾
are considered, 1000 and 1800. These are found to provide
a good distinction in the sound of the resulting impulse re-
sponses. A smaller difference in these values is not very
noticeable, while for significantly higher values of 𝛾, the
accuracy of the numerical solution in terms of numerical
dispersion suffers. As a result of these choices, this leads
to a total of 54 impulse responses. This chosen variation
in the spring physical parameters directly translates to a
variation in 𝑓𝑐, the dispersion regime transition frequency,
by means of Equation (4). Furthermore, a measure of the
delay time of the springs in the low frequency dispersive
region, 𝑇𝑑, can be derived based on the spring parameters
using a relationship given by Parker and Bilbao in [13],
T𝑑 ≈ 4𝐿𝑅/(𝑟

√︀
𝐸/𝜌). The average T40 decay time of

these impulse responses is calculated to be of 2.12 seconds,
using Schroeder’s backward integration method [17].

3.2 Impulse Responses - Convolution

Since the helical spring system is linear time invariant
(LTI) it follows that if one knows the impulse response of
this system one can determine its output via the theory of
convolution [18]. In time domain this is expressed as

𝑦𝑐[𝑛] = 𝑥𝑐[𝑛] * ℎ𝑐[𝑛] =

+∞∑︁
𝑚=−∞

(𝑥𝑐[𝑚]ℎ𝑐[𝑛−𝑚]), (12)

where 𝑥𝑐 is the input to a system which is described by the
impulse response ℎ𝑐 and 𝑦𝑐 is its output. The subscript 𝑐
(for convolution) is used to avoid confusion with the vari-
ables used in the previous section.

However, convolution is better implemented in frequency
domain where Equation (12) transforms into simple mul-
tiplication, after which a conversion back to time domain
can be performed:

𝑌 (𝜔) = 𝑋(𝜔)𝐻(𝜔),

𝑦𝑐[𝑛] = IDFT(DFT(𝑥𝑐[𝑛])DFT(ℎ𝑐[𝑛])),
(13)

with 𝑋 being the frequency response of the input, 𝐻 the
frequency response of the impulse response and finally 𝑌
is the frequency response of the output, while DFT and
IDFT are abbreviations for the discrete Fourier transform
and its inverse.

Figure 4. Partitioned convolution process overview, from
[11].

Using this method, the length of the impulse response
will immediately translate to the latency of the system (ex-
cluding other overheads). This is a straightforward and
efficient method when the impulse response is of a small
length, but the impulse responses of the springs are 2 sec-
onds, or 88200 samples long. A better implementation
of convolution for the current task is partitioned convolu-
tion, described in detail in [11]. It consists of partition-
ing the impulse response, ℎ𝑐, into equally sized blocks of
length 𝐾. Furthermore, these blocks are treated as sepa-
rate impulse responses and are convolved using a standard
overlap-and-save method [11]. That is, each block is zero-
padded to a size 𝐿 = 2𝐾, after which it is transformed to
frequency domain via FFT, obtaining a collection of fre-
quency domain filters 𝑆. These are then applied to chunks
of size 𝐿 of the input signal while overlapping the results
of the latest 𝑃 input blocks. A diagram of the algorithm is
shown in Figure 4, taken from [11]. This is what is used
for the current project and the details of the implementa-
tion are given in the next section.

A major advantage of the partitioned convolution method
is the reduced latency which is only of 𝐿 rather than 88200
samples.

3.3 Interface Development

The concept behind the interface design is to keep a stan-
dard box like design, familiar to most users, while the de-
sign of the parameter controls of the interface went hand
in hand with the implementation of the algorithm and the
various I/O controls. Figure 5 shows the final result.

In order to have the necessary computational power for
the heavy partitioned convolution algorithm, as well as to
have a standalone interface, it was decided to adopt the
Bela platform. The Bela is a small, single-board Linux
computer built on the BeagleBone Black that provides high
quality audio at ultra-low latency, in addition with a large
array of analog and digital I/O options [19]. For this
project, the Bela Mini was chosen due to its reduced size

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

113

Figure 5. Spring reverb interface

and the fact that it provides all the needed features. Also
from the Bela platform, the Bela Trill Square sensor was
used, which is a capacitive touch sensor that supports I2C
communication. Details regarding the choice of the sen-
sors are given in Section 3.4.

A standard ABS plastic enclosure was used for embed-
ding the Bela and the various sensor/controls. The electri-
cal connections between the various sensors and the Bela
board were done on a standard prototype breadboard using
jumper wire cables.

The physical model simulations of the spring impulse re-
sponses were carried out in Matlab [20], while the imple-
mentation of the partitioned convolution algorithm is car-
ried out in the Bela in-browser IDE in C++. The audio
sampling rate used is 44100 Hz, while the analog I/O sam-
ple rate is 22050 Hz.

The block size for the audio render is taken as 256 sam-
ples, while the block size used in the partitioned convo-
lution algorithm (size 𝐿 described in Section 3.2) is 8192
samples. This means that the convolution processing func-
tion is only run every time 8192 new audio samples are
added in the audio input circular buffer. Furthermore, to
avoid possible underruns, a multi-threaded implementation
is carried out for the convolution processing function, mak-
ing sure that the audio render function always has higher
priority.

Moreover it was found that an initial lag between the
global input buffer and the global output buffer of 3 times
the hop size 𝐾 is needed. This basically gives the I/O la-
tency of the interface, which results in 279 ms. Figure 6
shows this latency as measured with the in-browser oscil-
loscope available in the Bela IDE. If one would reduce the
block size 𝐿 to half, i.e 4096 samples for instance, the re-
sulting latency would also be halved.

However, it was found that the real-time capability of the
implementation is limited by the maximum number of fre-
quency domain filter blocks 𝑆 (see Section 3.2), that is how
many overlapped bins the impulse response is divided in.
It was found that the program cannot run in real time when
more than 22 blocks are used, regardless of the block size

Figure 6. Illustration of system latency as measured with
the in-browser oscilloscope available in the Bela IDE. Blue
line is the input signal and red line is the output. There is a
lag of approximately 279 ms between the two.

𝐿. So when reducing the size from 8192 to 4096 samples,
one can only use impulse responses of length 2048·23 =
47104 samples (22 block sizes of length 4096 overlapped
with a hop size of 2048), which is a bit more than 1 sec-
ond at the audio sample rate used. There appears to be a
trade-off between the latency of the implementation and
the maximum length of the impulse responses.

3.4 Parameter Mapping

Since spring impulse responses from the available database
differed with respect to two physical parameters: curvature
parameter 𝑞 and wave velocity 𝛾, it was desired to have
the option to quickly navigate through them with respect
to both these dimensions. Hence, the Trill Square capaci-
tive sensor from the Bela platform was used, and each im-
pulse response was mapped to locations on the (x,y) grid
position on the square. More specifically, the wave speed
𝛾 is mapped to the x-axis while curvature parameter 𝑞 is
mapped to the y-axis.

An important feature of the implementation is that a
smooth transition from using one impulse response to an-
other is achieved. This was done by doing all the process-
ing related to all the impulse responses in the setup part
of the audio algorithm. Then, when moving from one im-
pulse response to another, two convolutions are in fact car-
ried out for a brief transition time chosen as one audio pro-
cessing bin, i.e., 8192 samples (size 𝐿 in the partitioned
convolution algorithm). A square-root fade-in/fade-out is
then carried out between the two resulting outputs. More-
over, when taking the finger off of the sensor the impulse
response used for convolution will be the one associated
with the last read position.

Other parameter controls are carried out by means of
three potentiometers. One is mapped to a global mas-
ter volume, lineally mapped between -40 dB and +6 dB.
Another controls the dry/wet mixture of the output sig-
nal, where the minimum value of the potentiometer gives
a fully dry sound and the maximum value gives a fully wet
sound. The last parameter mapped to the remaining po-
tentiometer is the number of bins of the impulse response
considered in the convolution algorithm.

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

114

3.5 From Effect to Instrument

Another interesting addition to the interface is the fact
that the user can change between two different audio in-
put sources with the use of a toggle switch. The first is an
audio-in jack, which can be connected to any other sound
producing device, in essence turning the interface into an
effect processor. Furthermore, an electret microphone was
embedded in a side panel of the box, for which a signal
amplifier circuit is built on the breadboard. When switch-
ing to the mic input, the interface can be used similarly
to an instrument. One can tap, scratch, whistle and speak
into the microphone while changing the various real-time
parameter controls and produce interesting sounds. Addi-
tional investigations regarding this potential use coupled
with feedback are planned.

4. CONCLUSION

The work described in this paper focused on combining
physical modelling sound synthesis techniques with con-
volution with the aim to supplement each other towards a
real-time implementation of a spring reverb, whose physi-
cal parameters can be adjusted on the fly. While the phys-
ical model with adjustable parameters proved to be too
computationally expensive for a real-time implementation,
using partitioned convolution provided a way around this.
An important addition to this approach is providing a way
to have a smooth transition from the use of one impulse re-
sponse to another, and the fact that the impulse responses
are physically related to each other.

A physical interface was built which allows for an ex-
pressive manipulation of an input sound, via the provided
parameter controls.

Future work will focus on a more streamlined design of
the interface, by means of a CAD software together with
laser cutting or 3-D printing manufacturing options. As
for the electrical components, a more sturdy strip board
implementation followed by a custom PCB design of the
circuit is planned. Additional investigations regarding the
software implementation can focus on pushing the limits
of the model. For instance, how many impulse responses
can be easily processed in the audio setup and mapped to
the Trill square. Since the physical model for the helical
spring is mainly dependent on 3 parameters, an additional
dimension representing the 𝜅 parameter can be added to
the mapping, perhaps using a pressure sensor or making
use of the area of the touch.

While the interface was designed with the concept of a
spring reverb unit in mind, what it is essentially is a real-
time convolution effect processor, with an implemented
use case as a spring reverb. One can easily use other im-
pulse responses and completely change the nature of the
interface. Such other use cases will be looked into. Lastly,
an important observation is that this is a mono audio de-
vice, and expanding it to stereo, perhaps mapping different
impulse responses to each output channel, would be a wel-
come feature.

5. REFERENCES

[1] L. Hammond, "Electrical musical instrument," US Patent No.
2230836, Feb 1941.

[2] V. Välimäki, J. D. Parker, L. Savioja, J. O. Smith, and J. S.
Abel, “Fifty years of artificial reverberation,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 20,
no. 5, pp. 1421–1448, 2012.

[3] J. S. Abel, D. P. Berners, S. Costello, and J. O. Smith, “Spring
reverb emulation using dispersive allpass filters in a waveg-
uide structure,” in Audio Engineering Society Convention
121. Audio Engineering Society, 2006.

[4] J. S. Abel and E. K. Canfield-Dafilou, “Dispersive delay and
comb filters using a modal structure,” IEEE Signal Process-
ing Letters, vol. 26, no. 12, pp. 1748–1752, 2019.

[5] V. Välimäki, J. Parker, and J. S. Abel, “Parametric spring re-
verberation effect,” Journal of the Audio Engineering Society,
vol. 58, no. 7/8, pp. 547–562, 2010.

[6] V. Välimäki, S. Bilbao, J. O. Smith, J. S. Abel, J. Pakarinen,
and D. Berners, “Virtual analog effects,” in DAFX: Digital
Audio Effects, 2011, pp. 473–522.

[7] S. Bilbao and J. Parker, “A virtual model of spring reverber-
ation,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 18, no. 4, pp. 799–808, 2010.

[8] W. Wittrick, “On elastic wave propagation in helical springs,”
International Journal of Mechanical Sciences, vol. 8, pp. 25–
47, 1966.

[9] S. Bilbao, “Numerical simulation of spring reverberation,” in
DAFX: Digital Audio Effects, 2013.

[10] M. Van Walstijn, “Numerical calculation of modal spring re-
verb parameters,” in Proceedings of the 23rd International
Conference on Digital Audio Effects, 2020, pp. 38–45.

[11] E. Armelloni, C. Giottoli, and A. Farina, “Implementation of
real-time partitioned convolution on a dsp board,” 2003 IEEE
Workshop on Applications of Signal Processing to Audio and
Acoustics (IEEE Cat. No.03TH8684), pp. 71–74, 2003.

[12] S. Wilson, D. Cottle, and N. Collins, The SuperCollider Book.
The MIT Press, 2011.

[13] J. Parker and S. Bilbao, “Spring reverberation: A physical
perspective,” 2009.

[14] S. Bilbao, Numerical Sound Synthesis. John Wiley and Sons,
Ltd, 2009.

[15] J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Conver-
gence properties of the nelder–mead simplex method in low
dimensions,” SIAM Journal on Optimization, vol. 9, pp. 112–
147, 1998.

[16] M. G. Onofrei. A physical modelling based adjustable
spring reverb effect. Youtube. [Online]. Available: https:
//www.youtube.com/watch?v=HZRWU0b45vg

[17] M. R. Schroeder, “New method of measuring reverberation
time,” The Journal of the Acoustical Society of America,
vol. 37, no. 6, pp. 1187–1188, 1965.

[18] T. H. Park, Introduction To Digital Signal Processing: Com-
puter Musically Speaking. World Scientific Publishing Co
Pte Ltd, 2008.

[19] A. McPherson and V. Zappi, “An environment for
submillisecond-latency audio and sensor processing on bea-
glebone black,” vol. 2, pp. 965–971, 2015.

[20] MATLAB, version (R2020b). Natick, Massachusetts: The
MathWorks Inc., 2019.

