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Abstract: This paper presents a probabilistic framework for updating the structural reliability of
offshore wind turbine substructures based on digital twin information. In particular, the information
obtained from digital twins is used to quantify and update the uncertainties associated with the
structural dynamics and load modeling parameters in fatigue damage accumulation. The updated
uncertainties are included in a probabilistic model for fatigue damage accumulation used to update
the structural reliability. The updated reliability can be used as input to optimize decision models for
operation and maintenance of existing structures and design of new structures. The framework is
exemplified based on two numerical case studies with a representative offshore wind turbine and
information acquired from previously established digital twins. In this context, the effect of updating
soil stiffness and wave loading, which constitute two highly uncertain and sensitive parameters, is
investigated. It is found that updating the soil stiffness significantly affects the reliability of the joints
close to the mudline, while updating the wave loading significantly affects the reliability of the joints
localized in the splash zone. The increased uncertainty related to virtual sensing, which is employed
to update wave loading, reduces structural reliability.

Keywords: offshore wind substructures; reliability updating; probabilistic fatigue assessment; digital
twins; uncertainty quantification

1. Introduction

The offshore wind industry has experienced significant growth over the last decade [1].
As a result, the number of offshore wind turbines operating in Europe has reached 5402
in 2020 [2], with much more planned to be installed worldwide in the close future [3].
The typical lifetime of an offshore wind turbine ranges between 20 and 25 years, which
means that over the coming years a large number of these structures reach their intended
lifetime, and operators will have to take actions regarding their assets. Potential actions,
denoted as decision models, can be to decommission, re-power, perform inspections, or
extend lifetime. An optimal decision depends on what specific business model the operator
pursues, but, regardless of the business aspect, an accurate and precise estimation of the
structural reliability is key in making such a decision [4].

A digital twin-defined as a digital replica of a physical asset [5,6]-can help us to assess
the structural integrity of existing structures more accurately and precisely compared to
predictions from generic design practices because consistent and updated information
of the structure is available. This has been successfully demonstrated in the oil and gas
industry [7,8], in aerospace engineering [9], and in the offshore wind industry as well [10].
In fact, a number of wind standardization committees, including Det Norske Veritas
(DNV) [11,12], International Electrotechnical Commission (IEC) [13], and Federal Maritime
and Hydrographic Agency (BSH) [14], are working on design recommendations on how to
use measurement data and inspection information to optimize decision models for existing
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wind turbines. Currently, a key missing aspect is how to use the improved structural
models contained in digital twins to subsequently improve the decision models.

Although fully physics-based digital twins have not yet been applied to improve
decision models for wind turbines, some publications already indicate how measurement
data can be used to achieve such an improvement. Nielsen and Sørensen [15] applied
dynamic Bayesian networks to calibrate a Markov deterioration model based on past in-
spection data of wind turbine blades. Ziegler and Muskulus [16] investigated the feasibility
of lifetime extension for offshore wind monopile substructures, with particular focus on
identifying important parameters to monitor during the operational phase of the turbines.
Leser et al. [17] presented a general framework for fatigue damage estimation based on in
situ measurements. Mai et al. [18] focused on prediction of the remaining useful lifetime
of wind turbine support structure joints using met-ocean in situ data. Augustyn et al. [19]
extended a conceptual framework for updating decision models based on information
from a digital twin, initially proposed by Tygesen et al. [7], to be applied to offshore wind
substructures. In the framework, a digital twin is established with an updated structural
and load model, and subsequently the digital twin is used to quantify uncertainty and
update the structural reliability.

In the present paper, we outline the framework by Augustyn et al. [19] beyond its
conceptual level and propose a probabilistic method for updating the structural reliability of
offshore wind turbine substructures based on new information obtained from digital twins.
Depending on the information type available, various methods for updating reliability
can be used [20]. If information on the structural integrity becomes available, for example,
by an inspection of joints to identify potential cracks, risk-based inspection methods can
be applied [21–24]. Even though the inspection planning methodology is matured and
well-proven in industrial applications [25], its feasibility for the majority of offshore wind
applications is questionable due to the profound inspection costs [26]. A more economically
feasible alternative, in the form of condition-based monitoring, is typically investigated
for offshore wind applications [27,28]. In this context, condition monitoring data can be
applied to identify structural damage, and then the resulting integrity information can
be employed for updating reliability [29]. Application studies have been presented for
mechanical components in turbine [30] and wind turbine blades [4]. However, in these
studies, the condition monitoring data merely provide structural integrity information at a
global level-that is, if damage is present or not. In the present study, we aim at enhancing
the spatial resolution of the integrity assessment and hereby provide information at a local
(joint) level. Consequently, this paper proposes a framework where condition monitoring
data are used to update structural models; these updated models are subsequently used to
update structural reliability, including uncertainty stemming from the updating procedure.

The contribution of this paper consists of: (1) proposing a method on how the un-
certainties related to the structural dynamics and load modeling in fatigue damage ac-
cumulation can be quantified and updated based on updated distribution functions of
model parameters, which can be acquired with the aid of a digital twin. Subsequently,
(2) we present a framework where the updated uncertainty is used to update the structural
reliability based on a well-established probabilistic model [31,32]. Generally, the framework
can be used for optimization of operation and maintenance of existing turbines and design
of new structures. The framework is exemplified based on two numerical case studies, in
which digital twins established in previous studies by the authors [33,34] are included.

The remainder of this paper is organized as follows. In Section 2, we outline the
concept of structural reliability estimation and convey the motivation for the proposed
structural reliability updating framework, which is presented in Section 3. The two fol-
lowing sections address the numerical case studies used to exemplify the framework for
existing and new substructures; Section 4 describes the setup of the case studies and
Section 5 presents the appertaining results. Finally, this paper closes with concluding
remarks in Section 6.
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2. Background and Problem Statement

A wind turbine consists of structural components, for which reliability analysis is
performed using structural reliability theory [35], and electrical/mechanical components,
for which classical reliability models can be used, with the main descriptor being the failure
rate or the mean time between failure (MTBF). Regardless of the component type being
addressed in the reliability analysis, a probabilistic model describing the component’s
integrity is required. The reliability of electrical/mechanical components is typically
modeled by a Weibull model for the time to failure and the components are assumed to
be statistically independent. Using, for example, failure tree analysis (FTA) and failure
mode and effect analysis (FMEA), system reliability models can be established and the
reliability update can be performed when new information becomes available [36–38]. In
the present paper, jacket-type steel wind turbine substructures are considered, so structural
reliability techniques are required to model loads, resistances, and model uncertainties and
to account for the correlation between the components. The fatigue damage is often design
driving for the structural components of offshore wind substructures, such as joints. In this
instance, fatigue damage accumulation can be expressed in terms of probability of failure
or, equivalently, by the reliability index [39].

Let g(t) be the fatigue limit state at year t ∈ N for an offshore wind substructure;
then [32,40],

g(t) = ∆−
l

∑
i=1

z

∑
j=1

Ni,j pit
K∆s−m

i,j
(XdXlXs)

m, (1)

where ∆ is the fatigue resistance and the double summation expresses the accumulated
fatigue damage. In particular, ∆ is a stochastic variable representing the limit value of
the accumulated fatigue damage estimated using, for example, SN curves, including the
uncertainty related to application of Miner’s rule for linear fatigue damage accumulation.
In the expression for the fatigue damage, pi is the yearly probability of occurrence for sea
state i (including wind and wave parameters), Ni,j is the number of cycles for the ith sea
state and jth stress range ∆si,j, and K and m are the parameters related to the SN curve,
with m being the Wöhler exponent [41]. The uncertainties related to the SN curve approach
are included by modeling K as a stochastic variable. Xd, Xl , and Xs are stochastic variables
that model the uncertainties associated with the structural dynamics, load modeling and
stress concentration.

If g(t) ≤ 0, the limit state is exceeded and the structure fails, while g(t) > 0 im-
plies that the structure is safe. The probability of fatigue failure in the time interval
t ∈ [0, T], Pf (t) = P(g(t) ≤ 0) can be estimated by first-order and second-order reliability
methods [39] or, as is the case in this paper, by Monte Carlo methods [42]. The corre-
sponding reliability index, β, can be computed as β(t) = −Φ−1

(
Pf (t)

)
, where Φ is the

standard normal distribution function. The annual reliability index, ∆β, can be calculated
analogically assuming a reference period of one year.

We note that (1) Xd and Xl may be correlated, and, in this instance, they should be
modeled by a joint probability density function with correlation coefficient ρ and (2) a
linear formulation of the limit state equation can be readily generalized for a bi-linear
formulation of the SN curve. The parameters in model (1) are elaborated in Section 2.1.

2.1. Uncertain Parameters and Their Modeling

The uncertainty modeling related to structural reliability due to fatigue damage is
summarized in Figure 1. In the framework proposed in Section 3, we focus on updating
stochastic variables related to structural dynamics and loading uncertainty, as schematically
indicated by the dark blue boxes in Figure 1. The remaining part of the uncertainty (the
light blue boxes in Figure 1) can be quantified based on experiments and data. This is not
considered in the proposed framework, but a brief discussion is provided in the present
subsection for the sake of completeness.
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Figure 1. Stochastic variables modeling uncertainty in fatigue damage accumulation. The stochastic variables from the
probabilistic model (1) are represented by separate boxes. The light blue boxes indicate stochastic variables estimated based
on generic, design-based recommendations. The dark blue boxes indicate stochastic variables that can be quantified and
updated based on new information from a digital twin.

2.1.1. Met-Ocean Model

The joint probability distributions of the wind-wave climate is discretized by a finite
number of short-term sea state simulations including random wind and wave seeds to
model a stochastic process [40]. Met-ocean uncertainty is included in (1) by the yearly
probability of each sea state, denoted pi. The met-ocean uncertainty can be quantified if
long-term climate parameters are monitored [18,43].

2.1.2. Structural Dynamics

Estimating dynamic system properties is associated with uncertainties [44]. The
uncertainties stem from environmental and operational variability, non-stationary sea
states (fluctuating mean sea water level), time-variant structural conditions (corrosion,
scour), output noise, and the formulation of the structural model, including modeling of
highly uncertain parameters such as soil stiffness, joint stiffness and damping. We note
that the output noise relates to the noise in the acceleration and/or strain signals, which
is propagated through system identification procedures and results in uncertainty of the
updated structural model parameters [44]. The structural dynamics uncertainty is included
in (1) through the stochastic variable Xd.

2.1.3. Loading

Depending on the location of the wind turbine, the loading may include the following
exogenous sources and their inherent uncertainties:

• Hydrodynamic loading-uncertainty related to calculating wave loads that stems from
different wave theories (linear vs. non-linear), Morison’s equation, stretching and
mass and drag coefficients.

• Aerodynamic loading-uncertainty related to calculating wind loads that stems from
wind turbulence, wake model, and shear coefficient.

• Ice loading-uncertainty related to calculating ice loads, for example, ice thickness, ice
crushing strength and ice failure regime.

• Earthquake loading-uncertainty related to calculating earthquake loads, for example,
earthquake acceleration profile, structural response, soil-structure integration, and
force transfer.

If loading uncertainty is quantified based on information from digital twins, the main
part of the uncertainty is related to obtaining the structural response due to external loading.
This response is typically estimated based on virtual sensing methods, which are associated
with uncertainties [34,45]. The loading uncertainty is included in (1) through the stochastic
variable Xl .

2.1.4. Stress Concentration

Stress ranges in specific locations can be estimated based on simplified parametric
equations, for example, Efthymiou [46] or detailed finite element (FE) models. The stress
concentration uncertainty is included in (1) through the stochastic variable Xs. The stress
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concentration uncertainty can be quantified if a detailed FE model is used to establish hot
spot stresses [47] or if hot spot stresses are measured directly.

2.1.5. SN Curve

The uncertainty in parameter estimation from the SN curve approach [48] is included
in (1) through the stochastic variable K and the deterministic parameter m. If a bi-linear SN
curve is used, then stochastic variables are used to model the two branches of the SN curve.
The SN curve uncertainty can be quantified if fatigue testing is performed [48].

2.1.6. Fatigue Damage

Uncertainties related to the accumulated fatigue damage model (Miner’s rule [49])
and the crack propagation method (Paris–Erdogan [50] or fracture mechanics) is included
in (1) by modeling the resistance, ∆, as a stochastic variable.

2.2. Current State-of-Practice for Reliability Updating

Design standards define a specific level of reliability that offshore wind substructures
must fulfill, for example, a target annual reliability index of ∆β = 3.3 in IEC 61400-1 [31,40].
Reliability levels indicated in standards assume a generic level of uncertainty representative
for all types of substructures and locations. Because the uncertainty is assumed to cover a
wide range of structures and locations, the resulting design is, in many cases, conservative.
The level of conservatism can be quantified when new information specific to a particular
structure becomes available. One way of obtaining such information is by means of
digital twins, which can be used to quantify the uncertainty and subsequently update the
structural reliability.

3. Structural Reliability Updating Framework

In this paper, we propose a probabilistic framework in which digital twin informa-
tion is used to update the uncertainties associated with the fatigue damage accumulation,
which are then used to update the structural reliability. In particular, we use the updated
parameters from the established digital twins to quantify the model uncertainties of the
structural dynamics, Xd, and load modeling, Xl . The updated uncertainties are quantified
based on a forward propagation method, which allows quantifying separate uncertainty
sources stemming from specific model parameters. Having updated the relevant uncer-
tainty contributions from the updated model parameters, the reliability is updated based
on the linear probabilistic limit state Equation (1). Finally, the updated reliability serves as
a decision basis for a decision model update. A schematic illustration of the framework is
seen in Figure 2, and steps one to six are described in Sections 3.1–3.6.

Data Value

1) Model updating 2) Input parameters 3) Uncertainty
propagation

4) Uncertainty
quantification 5) Reliability update 6) Decision model

αi D(αi) Xd, Xl ∆β(t)

Figure 2. Structural reliability updating framework based on information from a digital twin. Updated parameters from
the digital twin are used to quantify uncertainty in fatigue damage accumulation. Subsequently, the structural reliability
is updated.

3.1. Model Updating

It is assumed that an updated structural model (step one) is available, which can be
obtained based on well-established model formulation and updating procedures [51].



Energies 2021, 14, 5859 6 of 22

3.2. Input Parameters

The distribution functions of the updated model parameters (available from step one)
are used in step two as input for the uncertainty quantification procedure. The stochastic
variables reflect both the aleatory and epistemic uncertainties, which constitute the updated
Xd and Xl uncertainties.

3.3. Uncertainty Propagation

The effect of the updated model parameters on the fatigue damage accumulation is
established by a Monte Carlo uncertainty propagation method [52], as indicated in step
three in Figure 2. Based on the uncertainty in the input parameters (i.e., the distribution
functions of the updated numerical model parameters), we obtain the distribution of
fatigue damage, hence quantifying the uncertainties in fatigue damage due to the updated
model parameters. The uncertainty quantification procedure is described next. The aim is
to express the uncertainty as a stochastic variable multiplied to the fatigue stress ranges.

The uncertainty in fatigue damage accumulation due to an uncertain parameter, αj ∈ α,
can be quantified by simulating n realizations from this parameter’s distribution function
and calculating the corresponding fatigue damage. When calculating fatigue damage, the
remaining parameters are assumed to be deterministic. Moreover, the fatigue damage is
calculated assuming one sea state parameter. In this way, the introduced uncertainty is
solely governed by the variability of αj, hence quantifying this parameter’s contribution
to the fatigue damage accumulation uncertainty. For example, a distribution function of
updated soil stiffness implies structural dynamics uncertainty, while a distribution function
of an updated inertia coefficient in Morison’s equation implies loading uncertainty.

Among a number of uncertainty quantification methods [53], a Bayesian framework [54]
is recommended by a number of standard committees, for example, IEC and Joint Com-
mittee on Structural Safety (JCSS), due to its sound theoretical basis and wide range of
applicability. However, a main challenge in the Bayesian framework is the requirement of a
prior distribution on the parameters to be quantified. In the context of offshore wind uncer-
tainties, information on prior distributions is not available in the background documents
for the above mentioned standards and committees. Consequently, in the proposed frame-
work, we implemented a simplified method where we start with the uncertainty modeling
consistent with the design standard of wind turbines [40], and subsequently we quantify
the uncertain parameters already included in (1) using the maximum likelihood method.

Assuming the fatigue damage, modeled as a stochastic variable depending on the
uncertain parameter αj, is normally distributed, D(αj) ∼ N

(
µDj , σ2

Dj

)
, the fatigue dam-

age distribution (mean value µDj and standard deviation σDj ) can be found through the
maximum likelihood method, where the likelihood is defined as

L
(

µDj , σDj

)
=

n

∏
i=1

1√
2πσDj

exp

−1
2

(
Di − µDj

σDj

)2
, (2)

with Di being the fatigue damage associated with the ith realization of αj computed based
on the updated structural model contained in the digital twin.

The log-likelihood function becomes

ln L
(

µDj , σDj

)
= −n ln

(√
2πσDj

)
−

n

∑
i=1

1
2

(
Di − µDj

σDj

)2

, (3)

and the optimal parameters are found to be

argmax
µDj

, σDj

ln L
(

µDj , σDj

)
. (4)
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3.4. Uncertainty Quantification

The procedure outlined in the previous subsection quantifies uncertainty in fatigue
damage accumulation. However, the probabilistic model (1) requires uncertainty in stress
ranges rather than in the fatigue damage. Therefore, it is now described how uncertainty
in fatigue damage can be transformed into uncertainty in stress ranges, as indicated in step
four in Figure 2.

The fatigue damage accumulation, D, is proportional to the stress ranges, ∆s, accord-
ing to D ∝ ∆sm (assuming a linear SN curve), from which it follows ∆s ∝ D1/m. The stress
range distribution parameters can be computed from Monte Carlo simulations. Alterna-
tively, assuming the damage distribution function is normal, the stress range distribution’s
mean, µ∆s, and coefficient of variation (CoV), c∆s, can be approximated as

µ∆s = µ1/m
i (5)

and
c∆s =

ci
m

, (6)

where µi and ci are the mean and CoV of the fatigue damage distribution due to the
uncertainty associated with αj.

3.5. Reliability Update

The quantified and updated uncertainties can be consistently included in the prob-
abilistic framework to update the reliability level. The probabilistic model (1) is used to
derive an annual reliability level, ∆β(t), given the updated uncertainties. This procedure is
indicated in the fifth step in Figure 2, where two reliability curves (with and without using
information from a digital twin) are schematically presented. The outcome of the reliabil-
ity update (increase or decrease) depends on the outcome of uncertainty quantification
(increased or decreased).

3.6. Decision Models

Given new information from digital twins becomes available (either during operation
or already in the design stage), the decision models can be updated as indicated by the last
step in Figure 2. The digital twin information can be included based on Bayesian decision
theory [24,55]. For existing structures, an operation and maintenance decision plan can be
optimized based on an updated reliability level, for example, an updated inspection plan or
lifetime reassessment. More specifically, a reliability-based inspection planning technique
can be implemented [56] and some of the inspections can be removed (if any were planned
during the lifetime of the structure in question) or new inspections can be included if the
structural integrity is compromised. For new structures, the expected outcome of a future
digital twin can be used to optimize structures already at the design stage (before the digital
twin information becomes available) by the use of Bayesian pre-posterior theory [54].

4. Case Study Setup

To demonstrate an application of the proposed framework, we consider an example
where information from a digital twin of an offshore wind jacket substructure is used
to update the structural reliability of the substructure. The numerical models of the
substructure and the turbine are described in Sections 4.1.1 and 4.1.2, followed by a
description of the analyzed load case scenarios in Section 4.1.3. Based on the simulation
results (in the form of stress range distributions), the structural reliability of selected
joints is calculated in Section 4.2.1 by assuming a generic level of uncertainty. The results
are nominal and are, in Section 5, compared with the results obtained by using digital
twin information.
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4.1. Modeling

We simulate a numerical model of a 7 MW jacket-supported turbine using the pro-
cedure outlined by Nielsen et al. [57] and applied by, e.g., Augustyn et al. [34]. The
simulation procedure consists of the following steps: (1) the substructure model and corre-
sponding wave loading are reduced to a Craig–Bampton superelement [58] with 30 internal
modes accounting for internal substructure dynamics. A convergence study has been
performed to ascertain that the reduced model (including 30 modes) adequately captures
the relevant modal parameters of the non-reduced system. Subsequently, (2) the wind
loading is computed through aero-elastic analyses, in which the substructure superelement
is included. Finally, (3) the force-controlled recovery run outlined by Nielsen et al. [59] is
performed, where the response of the substructure is recovered and relevant measurements
are extracted. The applied model is formulated using state-of-the-art modeling approaches
included in a typical design procedure for jacket substructures, and the model has been
validated to accurately and precisely represent the structural dynamics of a combined
substructure and wind turbine system [60,61].

4.1.1. Substructure

The jacket substructure and its appertaining wave loading were modeled using ROSAP
(Ramboll Offshore Structural Analysis Programs), version 53 [62]. The jacket substructure
considered in this study, which is depicted in Figure 3, has a total height of approximately
75 m. The substructure comprises three legs, each with a diameter ranging between 1.2
and 1.7 m, and four brace bays, each with a diameter ranging between 0.8 and 1.1 m. The
substructure model includes, i.a., soil-pile interaction, local joint flexibility, scour, marine
growth and appurtenance masses. The water depth is 55 m and the soil conditions are
characterized as clay. The substructure includes 50 m grouted piles. The soil-structure
interaction is modeled by the use of soil curves linearized according to the API method [63].
The structural damping was modeled according to a Rayleigh model [64] with 0.5% and
1% modal damping in the first and second bending modes, respectively.

Figure 3. Substructure model used in the case studies. (A) Side view, (B) side view with indication of
levels (blue circles indicate joints analyzed in the case studies) and (C) top view with indication of
directions, side and leg names. NB: a wind turbine model is not shown in the figure.

The locations of the selected joints considered in the case studies are indicated in
Figure 3B. The joint levels range between 13 (mudline) to 50 (top of the jacket). Results
for sides B and C of the jacket, see Figure 3C, are provided. The joints are named in the
following way: 50CL, where 50 indicates the level, C is the jacket side, and L indicates the
lower element in the joint.
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4.1.2. Wind Turbine

The substructure carries a representative 7 MW turbine, which is modeled in LACflex
aero-elastic code [65]. The turbine includes a 90 m tubular tower with a diameter ranging
between 4 and 6 m. Along the tower, three concentrated masses are assumed to emulate the
effect of secondary-structures. The aero-elastic code employs a modal-based representation
of the turbine (including the tower, rotor and blades). An aerodynamic damping contribu-
tion is included through the fluid-structure interaction when calculating aero-elastic forces.
The wind turbine model was originally developed for industrial purposes, where it was
applied in commercial projects. A rather similar model (albeit a 5 MW turbine instead of
7 MW), which adheres to the same modeling principles, has been applied in other studies
on structural dynamics of wind turbines [34,66].

4.1.3. Load Cases

In this study, we consider the fatigue failure mode in the normal operating condition
(design load case (DLC) 1.2 [40]). For a typical offshore wind jacket substructure, this DLC
accounts for most of the fatigue damage [67].

The met-ocean parameters applied in this study are derived based on measurements
from a representative North Sea site [68] and are summarized in Table 1. The wind speed
ranges between 4 and 31 ms−1, resulting in nb = 15 wind speed bins. For each wind speed
bin, representative wave parameters, i.e., the significant wave height and peak period,
are assigned. The significant wave height ranges from 0.1 to 7.9 m while the peak period
ranges from 3.0 to 9.6 s. The met-ocean parameters along with their yearly probability of
occurrence are derived from a site-specific joint probability distribution function, which
is a common design practice [40]. A total of nd = 12 wind directions are analyzed (wind
and waves are assumed fully aligned). For each wind speed, a total of nTI = 5 turbulence
intensity quantiles, namely, q ∈ [q10, q30, q50, q70, q90], are considered. The quantiles for
each wind speed are calculated based on the Weibull distribution according to the IEC
standard [40] for turbulence class B. The turbulence intensities for the given site ranges
from 0.09 to 0.31. The fatigue damage is scaled with the corresponding turbulence intensity
quantile probability, hence representing the target Weibull distribution. Every load case
(wind speed, wave height, peak period and turbulence intensity) is simulated with ns = 6
seeds. The total number of load cases analyzed is nt = nbndnTIns = 5400.

Table 1. Load case definitions according to IEC [40] and representative site-specific parameters.

Turbine State DLC Wind Speed, U (ms−1) Turbulence, TI (-) Wave Height, Hs (m) Wave Period, Tp (s) Direction (deg)

Operational 1.2 4–31 0.31–0.09 0.1–7.9 3.0–9.6 0–330

4.2. Nominal Results

The structural reliability of selected joints of the jacket substructure is evaluated based
on model (1) and the variables are summarized in Table 2. The stress ranges, ∆σ, and
number of cycles, N, were obtained from simulations. The SN curves for tubular joints
in air and in seawater with cathodic protection are used according to [48]. The SN curve
for the air environment are applied to the joint at level 50. For the remaining joints, the
SN curve for seawater with cathodic protection is applied. For tubular joints exposed
to seawater with cathodic protection, negative inverse slopes of m1 = 3 and m2 = 5 and
intercepts of log Kc1 = 12.18 and log Kc2 = 16.13 are assumed to calculate the characteristic
SN curve. For tubular joints in air environment, the following values can be used: log Ka1 =
12.48 and log Ka2 = 16.13, while assuming the same m values as for seawater environment.
The mean SN curve for the probabilistic analysis was calculated from the characteristic SN
curve’s intercepts assuming a standard deviation of 0.20 [48].
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Table 2. Variables used in the probabilistic model to estimate fatigue damage accumulation in the
nominal case [32].

Variable Distribution Mean CoV Std. Dev. Ref.

∆ N 1.00 0.30 N/A [69]
logKc1 N 12.58 N/A 0.20 [48]
logKc2 N 16.53 N/A 0.20 [48]
logKa1 N 12.88 N/A 0.20 [48]
logKa2 N 16.53 N/A 0.20 [48]

m1 D 3 N/A N/A [48]
m2 D 5 N/A N/A [48]
Xd LN 1.00 0.10 N/A [31]
Xl LN 1.00 0.10 N/A [70,71]
XS LN 1.00 0.05 N/A [70]

Distribution: N-normal, LN-logNormal, D-deterministic.

4.2.1. Annual Reliability

The annual reliability index as a function of time, ∆β(t), is calculated based on the
state-of-the-art probabilistic methods described in Section 2. The limit state Equation (1)
was applied using the standard-based variables provided in Table 2. The reliability indices
are presented in Figure 4 and Table 3 and are denoted as the nominal results. The results
represent the situation where no additional knowledge from a digital twin is available. The
results are provided for 10 selected joints, which are typically critical for a jacket design.

The structure is designed to have a fatigue lifetime of 25 years. The fatigue lifetime
ends when the annual reliability index reaches the target value ∆β = 3.3, which serves as
the basis for reliability-based calibration of safety factors in recognized design codes [31,40].
For the considered case study, the design driving joints are 13BU and 40CU with a lifetime
of 25 and 27 years. Joint 13BU is located close to the mudline, while joint 40CU is located
slightly below the splash zone. Joints 40CL, 40BL, 25BU and 25BL have a lifetime between
50 and 100 years, while the remaining joints have a lifetime above 100 years.

Table 3. Fatigue lifetime derived based on probabilistic model (1) and stochastic variables presented
in Table 2.

Joint Fatigue Lifetime (Years)

50CL >100
50BL >100
40CL 54
40BL 77
40CU >100
40BU 25
13CU 27
13BU >100
25BL 98
25BU 86
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Figure 4. Structural reliability as function of time for the nominal model.

5. Case Study Results

In this section, we exemplify how new information from digital twins can be included
in the proposed framework to quantify uncertainty and subsequently update structural
reliability for the particular case study. We use information from previously established
digital twins [33,34]. The effect of structural dynamics uncertainty, Xd, is investigated based
on a model updating study presented in [33], where the soil stiffness, ks, was calibrated
based on in situ measurements. The effect of loading uncertainty, Xl , is investigated based
on a virtual sensing study [34], where modal expansion was used to estimate unmeasured
field quantities. The results are presented and discussed based on two design driving joints,
namely, 13CU and 40BU.

5.1. Updating Structural Dynamics Uncertainty

In this subsection, we present the updated structural reliability based on an updated
structural dynamics uncertainty. First, we present a sensitivity study on updating soil
stiffness, followed by a case study based on in situ soil stiffness calibration [33].

5.1.1. Soil Stiffness Sensitivity

The effect of updating thesoil stiffness mean value, µks , for joint 13CU is presented in
Figure 5 and in Table 4. It is assumed that new information from a digital twin is obtained;
in this particular case, the mean value of uncertainty related to structural dynamics, µXd , is
updated. The results are derived by using the limit state Equation (1) with the standard-
based variables provided in Table 2 and updated values for µXd .

As seen in Figure 5, the soil stiffness has a significant impact on the fatigue lifetime.
Updating the soil stiffness by a factor of 0.5 (resulting in reducing the mudline pile stiffness
by half) results in a reduction in lifetime by a factor of 0.3. In contrast, increasing the soil
stiffness by a factor of 2.0 results in a lifetime increase by more than fourfold (>100 years).
The effect of updating soil stiffness on joint 40BU is negligible, as indicated in Figure 6.

Note that in Figures 5 and 6 (and the other figures describing structural reliability as a
function of time), the reliability generally decreases with time, albeit non-monotonically
in some cases. For example, consider the green curve in Figure 5, where a local increase
in reliability around year 20 is observed. This is due to a limited number of Monte Carlo
simulations, but we note that this limitation does not qualitatively affect the conclusions
drawn from the analyses.
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Table 4. Fatigue lifetime derived for different distributions of Xd.

ks
13CU 40BU

µXd CoV Xd Lifetime µXd CoV Xd Lifetime

0.50 1.20 0.10 7 0.98 0.10 26
0.75 1.10 0.10 15 0.99 0.10 25
1.00 1.00 0.10 25 1.00 0.10 25
1.25 0.90 0.10 85 1.01 0.10 25
1.50 0.80 0.10 >100 1.02 0.10 24
2.00 0.70 0.10 >100 1.04 0.10 22
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Figure 5. Impact of updating soil stiffness on structural reliability-joint 13CU.
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Figure 6. Impact of updating soil stiffness on structural reliability-joint 40BU.

5.1.2. Reliability Update-Soil Stiffness

Based on the results presented in [33], we assume the soil stiffness distribution function
after the update can be approximated by a normal distribution with mean value of 4.7 and
CoV = 0.12, i.e., ks ∼ N

(
4.7, (4.7× 0.12)2). The soil stiffness uncertainty is propagated

through the numerical model, and the uncertainty on stress ranges was estimated according
to the method presented in Section 3.3. It was assumed, for illustrative purposes, that
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the soil stiffness is the only uncertain parameter affecting the Xd uncertainty, i.e., α = ks.
The Xd uncertainty is quantified and its updated value was applied together with the
nominal uncertainty values for the remaining stochastic variables in (1). The updated Xd
distribution (mean value and CoV) as a result of the soil updating is presented in Table 5.

The soil stiffness update results in a reduction in the mean value of Xd for all joints
except three joints in the splash zone (joints 40CL, 40BL and 40CU). The CoV of Xd is
reduced for all joints because the CoV of Xd is reduced from the initial value of 0.10 for
all joints. The structural reliability after the soil update is presented in Figure 7 alongside
the lifetime compared to the nominal model presented in Table 5. After the soil update,
we can observe an increase in fatigue life in four joints close to the mudline (13CU and
13BU) and in the lowest X-joint (25BL and 25BU). Compared to the nominal model, we can
conclude that for both critical joints (40BU and 13CU), the fatigue lifetime is increased after
the update. Note that the fatigue lifetime in joint 40BL is reduced despite a reduced CoV.
That is due to the fact that for this joint, two opposite effects of the soil update are merged;
namely, the positive effect of the reduced CoV (0.006 vs. 0.10) and the negative effect of the
increased mean value (1.07 vs. 1.00).

The general conclusion holds that if both the mean value and CoV are reduced, then
the fatigue lifetime is increased, while if both of the values are increased, then the opposite
result holds. If either mean or CoV is reduced while the other is increased, the fatigue
lifetime can either increase or decrease depending on the extent of the increase/decrease in
mean value and CoV.

Table 5. Effect of updating soil stiffness on fatigue lifetime.

Joint µXd CoV Xd Lifetime (Years) Compared to Table 3

50CL 0.98 0.004 >100 N/A
50BL 0.98 0.005 >100 N/A
40CL 1.04 0.004 62 +8
40BL 1.07 0.006 69 −8
40CU 1.05 0.003 >100 N/A
40BU 0.98 0.005 44 +19
13CU 0.65 0.058 >100 +
13BU 0.56 0.057 >100 N/A
25BL 0.90 0.013 >100 +
25BU 0.92 0.012 >100 +
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Figure 7. Structural reliability after the soil stiffness update. (ks update based on the study in [33]).
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5.2. Loading Uncertainty Update

In this subsection, we investigate the effect of updating loading uncertainty on the
structural reliability. First, we present a sensitivity study on wave loading calibration,
followed by updating the reliability based on load calibration using two virtual sensing
configurations. The virtual sensing study is presented based on uncertainty quantified
in [34]. In this subsection, the Xl uncertainty is updated based on an updated Cm parameter.
It is assumed, similarly as in Section 5.1, that only one uncertain parameter affects the
uncertainty modeling, i.e., α = Cm.

5.2.1. Wave Loading Sensitivity

The effect of updating the wave loading coefficient, Cm, on the structural reliability of
joint 13CU is presented in Figure 8 and in Table 6. The mean value of the wave loading
coefficient is modified by a factor of 0.8–1.2, which results in modifications of the loading
uncertainty. It is assumed that new information from the digital twin is obtained; in
this particular case, the mean value of uncertainty related to loading uncertainty, µXl , is
updated. The results are derived by using the limit state Equation (1) with the standard-
based variables provided in Table 2 and updated values for µXl .

The wave loading modification has a medium impact on the fatigue lifetime. Updating
the wave loading by a factor of 0.8 (reducing the inertia-induced wave loading by 20%)
results in an increased lifetime by a factor of 1.6. Increasing the wave loading by a factor of
1.2 results in reducing the lifetime by a factor of 0.7. The effect of updating wave loading
on joint 40BU is more pronounced, as indicated in Figure 9. For this joint, reducing the
wave loading by 20% results in a lifetime increase by more than fourfold (>100 years),
while a wave loading increase by 20% results in a lifetime reduction by a factor of 0.3.

0 20 40 60 80 100

2.5

3

3.5

4

4.5

5

+20%

+10%

Nominal model

-10%

-20%

Figure 8. Impact of updating wave loading on structural reliability-joint 13CU.

Table 6. Fatigue lifetime derived for different distributions of Xl .

Cm
13CU 40BU

µXl CoV Xl Lifetime µXl CoV Xl Lifetime

1.2 1.06 0.10 17 1.20 0.10 7
1.1 1.03 0.10 21 1.10 0.10 12
1.0 1.00 0.10 25 1.00 0.10 25
0.9 0.97 0.10 33 0.90 0.10 55
0.8 0.94 0.10 42 0.80 0.10 >100
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Figure 9. Fatigue lifetime derived for different distributions of Xl-joint 40BU.

5.2.2. Reliability Update-Virtual Sensing Uncertainty

The virtual sensing uncertainty quantified for two virtual sensing configurations are
considered based on results presented in [34]. The following virtual sensing uncertainty
configurations are used: (1) basic setup: CoV = 0.10 and (2) extended setup: CoV = 0.05,
while the mean value for both setups is assumed to be 1.00. The basic setup includes only
acceleration sensors above the water level, while the extended one, in addition, includes
sub-sea acceleration sensors and a wave radar sensor. It is assumed that the virtual sensing
uncertainty are combined with the nominal Xl uncertainty. Furthermore, it is assumed, for
illustrative purposes, that the mean value of Xl equals 0.9. The Xl distribution parameters
used in this study are summarized in Table 7 for joints 40CU and 13BU.

The results for joint 40BU are presented in Figure 10. As each model update configura-
tion results in the same mean value update so the only difference in the stochastic model is
the CoV, the higher the CoV, the shorter lifetime we should derive. This is confirmed in the
results as the direct sensing method (measuring directly), with CoV = 0.00 resulting in a
lifetime of 60 years, followed by the extended virtual sensing method (lifetime of 50 years
and CoV = 0.05), while the most uncertain method (basic virtual sensing with CoV = 0.10)
results in a fatigue lifetime of 40 years. In this case, each configuration derives a fatigue
lifetime larger than the nominal one, i.e., 25 years. However, this is not the case for joint
13CU, where the fatigue lifetime using the basic virtual sensing configuration is 22 years,
as depicted in Figure 11. Even though the mean value of the update results in reduced
fatigue damage (µXl = 0.97 for this case), the negative effect of increased uncertainty (CoV
Xl = 0.14) results in a fatigue lifetime reduction of 3 years.

Table 7. Fatigue lifetime updated based on various uncertain wave loading calibration methods. Xl
distribution is updated (mean and CoV).

Configuration
13CU 40BU

µXl CoV Xl Lifetime µXl CoV Xl Lifetime

Nominal 1.00 0.10 25 1.00 0.10 25
Basic 0.97 0.14 22 0.90 0.14 40

Extended 0.97 0.11 30 0.90 0.11 50
Direct sensing 0.97 0.10 35 0.90 0.10 60
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Figure 10. Impact of updating wave loading based on uncertain virtual sensing methods-40BU.
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Figure 11. Impact of updating wave loading based on uncertain virtual. sensing methods-13CU.

5.3. Uncertainty Correlation

In the previous subsections, the Xd and Xl uncertainties were investigated separately,
hence neglecting a potential correlation. In this subsection, we consider updating both
Xd and Xl with varying correlation coefficients. The correlation can stem from interaction
between the structural dynamics and loading parameters. For example, the loading param-
eters can be calibrated based on responses from a previously updated structural model.

We assume the structural and loading uncertainties are quantified based on new infor-
mation from a digital twin, resulting in updated mean values of structural and load uncer-
tainties: µXd = 0.80 and µXl = 0.97 and using the reference uncertainty level CoV = 0.10.
The updated uncertainty value corresponds to increasing the soil stiffness by 50%, ks = 1.5,
and reducing the wave loading coefficient by 10%, Cm = 0.9. The results are presented for
joint 13CU.

Three scenarios of correlation between Xd and Xl are investigated: (1) ρ = 0 (no
correlation), which can be the case if the load calibration was performed without using
information from the updated structural model, (2) ρ = 1 (full correlation), when, for
example, load calibration using mode shapes from an updated structural model and (3) an
intermediate case with ρ = 0.5, where both analytical and measured mode shapes were
used for load calibration.
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The structural reliability calculated for various scenarios is presented in Figure 12. The
nominal setup yields a fatigue lifetime of 25 years, while the updated uncertainty results in
a fatigue lifetime ranging between 23 and 48 years, where the difference stems solely from
varying correlations. The largest fatigue lifetime is obtained when assuming no correlation,
while the lowest lifetime is derived for full correlation. Note that despite reducing the
mean values of Xd and Xl , the fatigue lifetime is reduced compared to the nominal result
for the full correlation case. The results are in line with expectations, because positive
correlation increases the combined XdXl uncertainty.
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 = 1.00

Figure 12. Impact of Xd and Xl correlation on structural reliability.

5.4. Application for New Structures

Assuming a number of digital twins for similar structures have been established in
the past, we can, by applying the proposed framework, obtain a distribution function of
XdXl , which indicates what is the expected outcome of updating the structural and load
model. This knowledge can be used at the design stage, resulting in an optimized design
given the expected model update is realized. However, the updated information may be
at a preliminary stage of validation and therefore subject to some degree of uncertainty,
i.e., the expected model update outcome only represents our (best) knowledge. Hence, we
must confirm our expectation by performing model updates during the structural lifetime
and consider all potential outcomes of the experiment (model update) in the design stage.
This is accounted for by preparing a decision rule, which for any outcome introduces
an action that guarantees that the wind turbine has a sufficient reliability level until the
intended lifetime is reached. The proposed application is based on Bayesian pre-posterior
decision theory [54] and has, in the offshore wind industry, been applied in, for example,
optimization of operation and maintenance of wind turbines [55].

In the following, an illustrative example is presented for this application to new
structures. Assume that, based on previous digital twins, we obtain a prior distribution
function of quantified uncertainties, X f = XdXl . This prior distribution can be regarded as
the future (yet to be realized) distribution of the updated uncertainties and can be used
already at the design stage.

For the sake of illustration, we assume that the future outcome of model updates can
be modeled as X f ∼ N

(
0.9, (0.9× 0.05)2), as depicted in Figure 13. The prior distribution

is used together with model (1) to design the optimized structure. This is obtained by
assuming that the generic structural dynamics and loading uncertainty are substituted
with the expected uncertainty quantified based on the future experiment, XdXl = X f . The
decision models are derived based on (1), where, depending on the outcome of the model
update, different values of X f are assumed. The X f values are summarized in Table 8. As a
result, we derive an optimized structure, which has sufficient reliability until the intended
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lifetime is reached. This is indicated in Figure 14 by the blue curve. In the design, we
have used the prior distribution of the updated uncertainty and assumed that updating the
model is performed during the operation of the structure to confirm our expectation (obtain
the posterior distribution). The point in time when updating the model must be performed
can be derived by applying model (1) with the nominal uncertainty from Table 2, as shown
in Figure 13 with the orange curve. Finally, we derive a point when the structure reaches
the target reliability level and some action is needed to confirm its structural reliability.
This is indicated by the orange curve in Figure 14.

When the model update time is reached, updating of the model is performed. As a
result of model update, we can obtain one of the three outcomes for X f , which will have
an impact on the decision models, as depicted in Figure 15. In particular, we have the
following potential outcomes:

• Most likely: the mean value of the derived model update is close to the mean value of
the prior distribution assumed in the design stage, µXdXl = µX f . In such a case, the
structure is fit for operation for the intended lifetime and no further action is required.
This scenario is indicated by the green line in Figure 15.

• Unlikely positive: the mean value is less than the value assumed in the design stage,
µXdXl < µX f . This results in a longer lifetime than expected and no further action is
required. This scenario is indicated by the yellow line in Figure 15.

• Unlikely negative: the mean value is greater than the value assumed in the design
stage, µXdXl > µX f . This results in a shorter lifetime than expected and action is
required to ensure a sufficient reliability during the intended lifetime of the structure.
This scenario is indicated by the dashed red line in Figure 15.

Given the expected or positive outcome of updating the model is realized, no further
action is required. However, if the outcome of updating the model is unexpectedly negative,
the following mitigation actions can be considered to ensure the required level of reliability
during the intended lifetime: (1) strengthening or (2) curtailing of the wind turbine (thereby
reducing fatigue damage) and operating until the end of the intended lifetime. If it is
economically infeasible to continue the operation of a particular turbine given the model
updating outcome, one can consider premature decommissioning. The reliability level
after the mitigation action is performed as indicated by the solid red line in Figure 15.

Table 8. Pre-posterior stochastic model.

Case µX f CoV X f Comment Information

Pre-posterior design 0.9 0.05 Prior knowledge on X f Generic design
Determine model update time 1.0 0.14 Using no extra information from digital twin Generic design

Model updating (expected outcome) 0.9 0.05 The same as prior knowledge, lifetime as expected, no
action

Digital twin

Model updating (positive outcome) 0.85 0.05 Positive outcome, longer lifetime than expected, potential
for lifetime extension

Digital twin

Model updating (negative outcome) 0.95 0.05 Negative outcome, shorter lifetime than expected Digital twin
Model updating (negative outcome + mitigation) 0.9 0.05 Mitigation (extra cost) required, after mitigation expected

(or longer) lifetime achieved
Digital twin + mitigation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5

10

Prior

Nominal

Figure 13. Stochastic model for pre-posterior design.
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Figure 14. Benefit of including pre-posterior design (including prior knowledge on X f ).
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Figure 15. Pre-posterior design at inspection time.

6. Conclusions

In this paper, we propose a probabilistic framework for updating structural reliability
of offshore wind substructures based on new information from digital twins. The digital
twin information is consistently included in the framework by updating the uncertainty
related to structural dynamics and load modeling and propagating this uncertainty to the
fatigue damage accumulation. The resulting uncertainty is then converted into uncertainty
of the stress ranges, which is included in a probabilistic model on structural reliability.
The proposed framework is applicable to offshore wind substructures whose lifetimes are
governed by fatigue damage accumulation.

The framework is applied to two case studies, where the potential for improved
decision models for existing and new structures is demonstrated. In the former case, up-
dating soil stiffness and wave loading is considered to investigate the potential for lifetime
extension of fatigue critical joints. In the latter case, the framework is applied to optimize
new structures by using Bayesian pre-posterior theory for future wave load calibration.
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