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Regular article 

Glucose-insulin mathematical model for the combined effect of medications 
and life style of Type 2 diabetic patients☆ 

Mohamad Al Ahdab a,*, John Leth a, Torben Knudsen a, Peter Vestergaard b, 
Henrik Glavind Clausen a 

a Section of Automation and Control, Department of Electronic Systems, Aalborg University, DK-9220 Aalborg Øst, Denmark 
b Steno Diabetes Center North Jutland, Aalborg, Denmark   
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A B S T R A C T   

The goal of this paper is to propose a new mathematical model for the combined effect of different treatments 
and lifestyles on the glucose-insulin dynamics of Type 2 diabetes (T2D) patients. The model gives the possibility 
to take into consideration physical activity, stress, meals, and medications while evaluating or designing treat-
ment plans for T2D patients. The model is proposed by combining and modifying some of the available models in 
the literature. Simulations were performed for the modifications to show how the model confirm with literature 
on T2D patients. Additionally, a discussion is provided to demonstrate the ability of the model to be used in the 
assessment of treatment plans and in the design for robust insulin dose guidance algorithms. An open source code 
for the model is additionally provided.   

1. Introduction 

One of the greatest health challenges which faces humanity in the 
21st century is the emergence of type 2 diabetes (T2D) as a global 
pandemic. More than 463 million were reported to suffer from diabetes 
in 2019 and the number is expected to reach 700 million by 2045 [15]. 
Moreover, the global expenses related to diabetes are estimated to be 
760 billion USD in 2019 and they are expected to increase [15]. T2D is 
characterized by high levels of glucose concentration in the blood. This 
increase in glucose levels can cause cardiovascular, kidney, and eye 
diseases and, if left untreated, will lead to organ failures. For T2D pa-
tients, low sensitivity to insulin, which is the hormone responsible for 
lowering glucose concentration in the blood, causes the beta cells in the 
pancreas to produce insulin to compensate. This will eventually weaken 
the cells and damage them, which in turn will make the body fail to 
regulate glucose concentration [24]. Insulin based treatment is initiated 
at later stages of the T2D disease when changes in diets and physical 
activities accompanied with oral medications have failed. Clinically, it is 
difficult to calculate suitable insulin doses and oral medication treat-
ment plans for each specific patient. Therefore, many patients experi-
ence uncontrolled hyperglycemia for a long period of time until they 

reach a safe level of glucose [38]. Having a model to simulate the 
combined effect of oral medications, insulin doses, and lifestyle changes 
can help medical professionals in the evaluation of different treatment 
plans. Moreover, such models can be used together with robust control 
methods to design automatic insulin guidance algorithms that ensure 
safe reach to the desired glucose concentrations. 

In general, there are two main categories of methods to model sys-
tems: first principles methods, or data driven methods derived by fitting 
data to general mathematical structures such as ARMAX models. 

The glucose-insulin dynamical models for T2D patients based on first 
principles can vary with different degrees of complexity. In the litera-
ture, there exist two main categories of such models: minimal models 
and maximal models [7]. Maximal models are very detailed models, 
which model metabolic functions at a molecular level. On the other 
hand, minimal models are less detailed and rely mostly on compart-
ments and mass balance equations. While maximal models provide a 
great level of accuracy, the amount of different data, which is required to 
estimate parameters for these models is large and difficult to obtain from 
patients undergoing typical treatment plans. Moreover, the high accu-
racy of maximal models provides little relevance to the accuracy of the 
general glucose-insulin dynamics within the human body [7]. 
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In contrast, minimal models consist of compartments to represent the 
distribution, diffusion, and production of glucose and insulin in the body 
with terms to represent the interaction between them. Furthermore, these 
models include pharmacokinetic equations to describe exogenous insulin 
injections and the intake of other medications. Several mathematical 
structures have been developed for the glucose-insulin dynamics in T2D 
patients. Some of them have a simple structure with less than ten states 
such as the ones presented in [2,31]. These models consider simple insulin 
injections and meal models. Their simplicity make them good candidates 
for patient specific parameter estimation and control design. Nevertheless, 
the few number of states force them to consider generic insulin and glucose 
states without considering other metabolic hormones (e.g. glucagon). Thus, 
making the process of augmenting them with oral medications and stress 
difficult. On the other hands, the models in [35,36] are larger and more 
complex. The model in [36] has recently been proposed and confirmed 
with patient data. Parameters were estimated as mean and covariance 
matrices of a normal distribution from patients’ data. Only the mean and 
the diagonal elements of the covariance matrices were reported. The model 
includes a glucose ingestion model that takes into account only glucose 
meal given after fasting conditions. The model was also augmented with an 
insulin degludec linear pharmacokinetic model in [37]. As for the model in 
[35], it is based on [33] and includes the effect of oral medications (met-
formin and vildagliptin), Glucagon, and Glucagon-like peptide-1. The 
model uses the same glucose ingestion model from [36] and it is only for 
glucose meals after fasting conditions. Only mean parameters were re-
ported. The work in [11] focused on the glucose dynamics in the brain and 

provided a mathematical description for the effect of stress in diabetic 
patients. Physical activity has been modelled before but mainly for type 1 
diabetes patients. It has been included in simple models such as the one in 
[6,29] or more complicated ones such as the one in [8]. 

Heart beat rate data from smart watches [30] and data regarding 
stress levels from self-assessment questionnaires [1,26] are becoming 
more feasible to be obtained from patients during treatment. Therefore, 
having a model to simulate the combined effect of different types of 
treatments together with the effect of stress and physical activity can 
improve the process of evaluating and developing treatment plans for 
diabetic patients. 

Therefore, in this work, it is intended to present a mathematical 
structure for the combined effect of multiple glucose meals with no 
fasting conditions, insulin injections, multiple oral doses of metformin 
with different sizes, physical activity, and stress. Additionally, a Matlab 
[25] toolbox is developed to simulate patients is provided as an open 
source code on GitLab1 for others to use the model easily and have a 
better chance to contribute for the development of the model. This 
structure can help with analyzing treatment plans depending on lifestyle 
conditions. Moreover, the structure can be used with robust control 
strategies to obtain algorithmic insulin dose calculators The structure is 
based on the one in [10] with modifications and inclusions as following 
(see Fig. 1): . 

Fig. 1. A summary of the overall model with blue indicating the modified or added models compared to [10].  

1 https://gitlab.com/aau-adapt-t2d/aau-t2d-simulator. 
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• Modifying the model to account for multiple meals (see Section 2.1).  
• Including a model for insulin injections based on [23] (see Section 

2.2).  
• Modifying the metformin model to account for multiple different 

doses in Section 2.3.  
• Including the effect of physical activity based on [6] (see Section 

2.4).  
• Including the effect of stress based on [11] (see Section 2.5). 

In addition, a discussion on how the developed model can be used, and 
what type of data is needed to fit the model is provided in Section 3. All 
simulations are performed using the toolbox from GitLab. The model 
parameters, which are used in the simulations, are found in Table B.3. 

2. Model description 

The model is mainly based on the one from [10] with the following 
four main subsystems: .  

• Glucose subsystem.  
• Insulin subsystem.  
• Glucagon subsystem.  
• Incretins hormone subsystem. 

See Fig. 1 for an overview of the model. The glucose and insulin sub-
systems are modelled as a set of compartments representing different 
main parts of the human body: brain, heart and lungs, guts, liver, kidney, 
and peripherals. The flow between these compartments follows the 
human blood cycle. As for the glucagon and the incretins, a single 
compartment is used for each one of them as it is assumed that glucagon 
and incretins have equal concentration in all the body parts. In addition, 
the model contains metabolic production and uptake rates for different 
compartments. These metabolic rates are generally defined as their basal 
values multiplied with scaling variables that depend on the concentra-
tions of insulin, glucose, and/or glucagon (see (A.1)). The pancreas has a 
different nonlinear and hybrid model. In addition, a glucose ingestion 
model based on [9] is included as in [35] but modified to handle mul-
tiple meals along the day. Moreover, metformin and vildagliptin oral 
treatment models are included based on [34] and [21] respectively, as in 
[10] but with a modification on the oral metformin model to handle 
different oral doses along the treatment. Additionally, a physical activity 
model based on [6] is added to the model. Furthermore, long acting and 
fast acting insulin injection models based on [23] are added. Finally, 
stress is included as a factor αs ∈ [0,1] as in [11]. The main model in-
cludes parameters that were estimated by [33] for a healthy 70 kg male. 
The work in [35] considered a subset of these parameters to be estimated 
for the diabetic cases. Parameters for the different added models are 
taken from their corresponding literature. 

In the following subsections, the added and modified models and 
states will be discussed. The full model equations are provided in Ap-
pendix A. 

2.1. Glucose absorption model 

In this section, a modification is introduced to account for multiple 
glucose meal sizes. The model is based on the one used in [35] which is 
based on [9]. The model takes into account that the gastric emptying of 
the stomach is correlated with the stomach content; which is supported 
by the study in [14]. The model in [35] and [9], however, are used for 
oral glucose tolerant tests only. The aim in this section is to make the 
model to take into account the effect of accumulated glucose meals on 
gastric emptying. It is acknowledged that gastric emptying depends on 
many factors other than the size of the meal as described in [17] and 
there exist models, which focus primarily on meal ingestion such as [4]. 
However, the model provided in this paper is a simplification by 
considering meals as glucose ingestions, as done in [2], and taking only 

the effect of the size of the meals for gastric emptying. 
The model used for glucose absorption in [35] considers only one 

glucose meal and was used for oral glucose tests in which the patients 
were given an oral glucose dose and asked to fast while data is collected. 
The model is given as: 

dqSs

dt
= − k12qqSs (1a)  

dqSl

dt
= − kemptqSl + k12qqSs (1b)  

dqint

dt
= − kabsqint + kemptqSl (1c)  

kempt = kmin +
kmax − kmin

2
(

tanh
[
φ1

(
qSs + qSl − kφ1 Dq

) ]

− tanh
[
φ2

(
qSs + qSl − kφ2Dq

) ]
+ 2

)

(1d)  

φ1 =
5

2Dq(1 − kφ1 )
(1e)  

φ2 =
5

2Dq(kφ2 )
(1f)  

Ra = fqkabsqint (1g) 

Where qSs(0) = Dq [mg] is the oral glucose quantity, Ra is the rate of 
glucose appearance in the blood, fq is an absorption factor, k12 [min− 1]

and kabs [min− 1] are the rate constants for glucose transfer to stomach and 
glucose absorption in the intestines respectively, kempt [min− 1] is a rate 
parameter for emptying the stomach of glucose to the intestines. This 
parameter can have values between kmin and kmax depending on the oral 
glucose quantity Dq. In order to make the model handle different meals 
with different time instants, the parameter Dq needs to be modified ac-
cording to the meal sizes and time. The following are the proposed 
modifications: 

dqSs

dt
= − k12qqSs +

∑Nq(t)

i=1
uqi δ(t − ti), i ∈ Z+ (2a)  

dDe

dt
= − kqDe +

∑Nq(t)

i=1
uqi δ(t − ti) (2b)  

dDq

dt
= kq

(
uqNq (t)

− Dq

)
+ Dm

∑Nq(t)

i=1
δ(t − ti) (2c)  

Dm =

{
De − Dq uqNq(0)

∕= 0
1 uqNq(0)

= 0

}

(2d)  

Where qSs(0) = 0, De(0) = 0[mg], δ(t− ti) is the Dirac delta distribution, ti 
is the time instance for meal i, Nq(t) is the integer number of meals until 
time t starting from time t = 0, that is Nq(t) takes into account all meals 
up until t, uqi [mg] is the amount of oral carbohydrates intake for meal i. 
The state De is introduced to handle the accumulation of carbohydrates 
meals with a decay factor kq [min− 1] in order to remove the effect of 
meals with time. With that, parameter Dq is now a state updated by De 
each time a new meal is consumed and made to converge to the last 
given meal amount uqi with the same rate factor kq such that it converges 
to the original model through time if no meal is consumed afterwards. 
Note that Dq(0) = 0[mg] when a zero carbohydrates meal (uqNq (0)

= 0) is 
assumed at time t = 0, which leads to (1c) being undefined (φ1qSs = ∞ 
0). To avoid this, the state Dm(0)[mg] is set to 1[mg] when uqNq (0)

= 0. 
Note also that the value Dm(0) can have any nonzero value in the case of 
zero carbohydrates meal at t = 0. The value Dm(0) will not affect the rate 
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of glucose appearance in the plasma since the states qSs for ingested 
carbohydrates, and De for the effect of accumulation of meals depend on 
uqNq (0)

and not Dm. Parameters fq, kφ1 , and kφ2 are known and taken 
from [9]. The rest of the parameters, k12q, kmin, kmax,kabs, and kq are 
taken to be the mean parameters which were estimated in [35]. The 
introduced parameter kq has no estimate. Therefore, it is assumed to be 
equal to kmin. 

A simulation of a patient with the modified meals model compared 
against the unmodified one is shown in Fig. 2. The patient is consuming 
a breakfast meal of 30 g carbohydrates, a second breakfast meal of 10 g 
carbohydrates, a lunch meal of 50 g carbohydrates, an afternoon snack 
of 10 g carbohydrates, and a dinner meal of 110 g carbohydrates. The 
simulated patient has a basal value of GPC(0) = 8 mmol L− 1 for glucose 
concentration in the central periphery compartment and IPF(0) =
1mU L− 1 for the insulin concentration in the interstitial fluid periphery 
compartment. No insulin injections or oral medications, physical ac-
tivity, or stress are included in this simulation. It can be seen from the 
simulation results that the glucose appearance in plasma is distributed in 
a larger window of time with lower peaks for meals that are close to each 
other. This is due to the reduction of the stomach emptying rate kempt in 
response to increased accumulation of ingested carbohydrates captured 
by the state Dq. Additionally, glucose appearance in plasma for the 
modified model in response to meals after hours of fasting closely re-
sembles the glucose appearance in plasma for the unmodified model as 
can be seen for the dinner and breakfast meal. This is intended since the 
unmodified model was proposed for fasting conditions.These observa-
tions agree with clinical data such as [27] and [18]. 

2.2. Insulin injection model 

In this section, a model for long acting and fast acting insulin in-
jections based on the one from [23] is introduced to the base model from 
[10]. Both fast and long acting insulin analogues treatments are 
considered for the model. When analogue insulin is injected, it dissoci-
ates from its hexameric form to dimers and monomers which then can 
penetrate the capillary membrane and get absorbed into the plasma. For 
fast acting insulin, only two compartments are considered: a compart-
ment for insulin in its hexameric form, and a compartment for insulin in 
its dimeric and monomeric form. The following are the equations for fast 
acting insulin: 

dHfa

dt
=

∑Nfa(t)

i=1
δ(t − ti)

10
VI

PF
ufi

− pfa

(
Hfa − qfaD3

fa

)
(3a)  

dDfa

dt
= pfa

(
Hfa − qfaD3

fa

)
−

bfaDfa

1 + IPF
(3b)  

Where Hfa[mU dL− 1] is the concentration of injected fast acting insulin 
in its hexameric form, Dfa[mU dL− 1] is the concentration of insulin in its 
diameric and monomeric form, Nfa(t) is the number of injected fast 
acting insulin doses until time t starting from time t = 0, that is Nfa(t) 
takes into account all doses up until t, ufi [mU] is the amount of injected 
fast acting insulin, bfa [min− 1] is a constant for the infusion of fast acting 
insulin into the body, pfa [min− 1] is a constant diffusion parameter, qfa 
[dL2 mU− 2] is a constant such that pfaqfa is the parameter for fast acting 
insulin dimers converting back to hexamers, and IPF [mU dL− 1] is the 
insulin concentration in the interstitial periphery compartment. Pa-
rameters for Lispo and Aspart insulin injection are reported in [23]. For 
long acting insulin, an extra state Bla is added in [23] to take into ac-
count the increased delay in the dissociation of hexameric insulin to 
dimers and monomers: 

dBla

dt
=

∑Nla(t)

i=1
δ(t − ti)

10
VI

PF
uli − klaBla

Cmax

1 + Hla
(4a)  

dHla

dt
= klaBla

Cmax

1 + Hla
− pla

(
Hla − qlaD3

la

)
(4b)  

dDla

dt
= pla

(
Hla − qlaD3

la

)
−

blaDla

1 + IPF
(4c)  

Where Bla [mU dL− 1] is the added bound state for the concentration of 
hexameric insulin before diffusing, Hla[mU dL− 1] is the concentration of 
injected long acting insulin in its hexameric form, Dla[mU dL− 1] is the 
concentration of injected insulin in its diameric and monomeric form, 
Nla(t) is the number of injected long acting insulin doses until time t 
starting from time t = 0, that is Nla(t) takes into account all doses up 
until t, uli [mU] is the amount of long acting insulin dose at time ti, 
bla [min− 1] is a constant for the infusion of long acting insulin into the 
body, pla [min− 1] is a constant diffusion parameter for long acting insulin, 
qla [dL2 mU− 2] is a constant such that plaqla is the parameter for long 
acting insulin dimers converting back to hexamers, kla [min− 1] is a con-
stant absorption rate, and Cmax is a dimensionless maximum trans-
mission capacity constant. Parameters for insulin Glargin are reported in 
[23]. The injected insulin enters the interstitial periphery compartment 
(A.10g) with the following rate rInj: 

rInj = VI
PF

rlablaDla

1 + IPF
+ VI

PF
rfabfaDfa

1 + IPF
(5)  

Where rla, rfa ≤ 1 are the fractions of long acting and fast acting insulin 
that get to the periphery compartment, and VI

PH [L] is the volume of the 
interstitial compartment. Fig. 3 shows a simulation for a patient having 
the same basal values and following the same meal plan as the simula-
tion discussed in Section 2.1. The patient takes a long acting insulin dose 

Fig. 2. Simulation results for the modified glucose absorption model against the unmodified one. Note the log scale on the second axis.  
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of 50 [U] everyday an hour before the breakfast meal. Additionally, the 
patient takes a 30 [U] of fast acting insulin 15 min before dinner. Oral 
medications, physical activity, and stress are not included in the simu-
lation. Long acting insulin lower the glucose concentration over a large 
window of time. Moreover, the fast acting insulin helps at reducing the 
glucose peak after dinner [16]. Quantitative Insulin Sensitivity Check 
Index (QISCI) [19] is a test performed on fasting glucose and insulin 
concentrations to assess insulin sensitivity. Healthy patients will typi-
cally have values around 0.382 while diabetic patients will have values 
around 0.304. The QISCI is calculated as: 

QISCI =
1

log(GHf ) + log(IHf )
(6)  

Where GHf and IHf are the fasting plasma glucose and fasting plasma 
insulin concentrations respectively. The QISCI was calculated for the 
case of taking insulin injection doses and for the case in which the pa-
tient was not taking any insulin doses. The QISCI with no insulin in-
jections was found to be 0.3717 while the QISCI with insulin injections 
was found to be 0.3369. The decrease in QISCI agrees with clinical 
studies [32]. Additionally, the gradual decrease of the glucose concen-
tration during the days with long acting insulin agrees with the data 
collected in the study in [3]. 

2.3. Metformin 

In this section, a modification for the metformin model in [10] is 
carried out to account for multiple doses of oral metformin with 
different amounts. The metformin model used in [10], including the 
pharmacokinetic and its interaction with full glucose-insulin dynamical 
models, is based on the model in [34] which was fitted with data from 
the study in [22] and confirmed with the clinical study in [28]. The 
pharmacokinetic model of metformin in [34] is given as follows: 

dMGL

dt
= − MGL

(
kgo + kgg

)
+ MO (7a)  

dMGW

dt
= MGLkgg + MPkpg − MGW kgl (7b)  

dML

dt
= MGW kgl + MPkpl − MLklp (7c)  

dMP

dt
= MLklp − MP

(
kpl + kpg + kpo

)
+ MGL (7d)  

Where MGL [μg] is the metformin amount in the gastrointestina lumen, 
parameters kgo, kgg, kpg, kgl, kpl, klp, kpo [min− 1] are transfer rate constants 
between the compartments, and MO is the flow rate of orally ingested 
metformin which is modelled as: 

MO = Ae− αM t + Be− βM t (8)  

Where A,B [μg min− 1] and αM, βM [min− 1] are constant parameters that 
were identified in [34]. These parameters were identified with data in 
which patients were taking only a 500 mg oral dose of metformin. 
Therefore, the model is modified in this work to take into account 
different amount of doses at different times by introducing the 
following: 

dMO1

dt
= − αMMO1 +

∑NM (t)

i=1
δ(t − ti)uMi (9a)  

dMO2

dt
= − βMMO2 +

∑NM (t)

i=1
δ(t − ti)uMi (9b)  

MO = ραM01 + ρβM02 (9c) 

Fig. 3. Simulation showing the effect of injected fast acting (FA) and long acting (LA) insulin on glucose and insulin concentrations.  

Fig. 4. Simulation showing the effect of metformin on glucose and insulin concentrations.  
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with NM(t) being the number of consumed doses of metformin until time 
t starting from time t = 0, that is NM(t) takes into account all doses up 
until t, uMi [μg] is the amount of metformin consumed at time ti, and the 
constants ρα = A∕(500000 [μg]) [min− 1] and ρβ = B∕(500000 [μg]) [min− 1]

are rate parameters. Fig. 4 shows a simulation result of the same patient 
as Section 2.1 taking metformin doses of 500 mg for the first two days 
and then a metformin dose of 1000 mg for the remaining days. Insulin 
injections, Vildagliptin oral medication, physical activity, and stress are 
not included in this simulation. The 1000 mg dose prolong the effect of 
metformin on lowering the glucose concentration when compared to the 
dose of 500 mg.The effect of metformin on both glucose and insulin 
concentrations matches the study in [28] that was used to confirm the 
model in [34]. The QISCI with no metformin doses was found to be 
0.3717 while the QISCI with metformin was found to be 0.3921. This 
shows the effect of metformin improving insulin sensitivity over time. 

2.4. Physical activity model 

In this section, a physical activity model based on [6] is added to the 
model in [10]. The model in [6] was developed for a T1D model based 
on [5]. The model considers the change of the heart beat rate following a 
physical activity to be the stimulus of two states E1 and E2, which are 
dimensionless: 

dE1

dt
= −

1
τHR

E1 +
1

τHR
(HR - HRb) (10a)  

dE2

dt
= −

(

ge(E1) +
1
τe

)

E2 + ge(E1) (10b)  

g(E1) =

(
E1

aeHRb

)ne

1 +

(
E1

aeHRb

)ne (10c)  

Where tHR, τe min are time constants, HR, HRbbpm are the current 
and rest heart rates respectively, and the parameters ae, ne are dimen-
sionless parameters. The first state E1 is used directly as a stimulus to 
increase the insulin-independent glucose uptake in response to a phys-
ical activity while the state E2 is used for the longer lasting change of 
insulin action on glucose. The glucose and insulin model structure in [6] 
is simpler than the one considered in this work. Nevertheless, the in-
clusion of the physical activity for the model in this work is similar to 
how other models include physical activity, e.g., see [8]. With that, the 
effect of the state E1 is included as an increase in the clearance rate of 
glucose in the periphery interstitial fluid compartment with a constant 
parameter βe [bpm− 1] as 1

TG
P
(1 + βeE1) where 1

TG
P
[min− 1] is the clearance 

rate for glucose in the periphery interstitial fluid compartment in (A.3g). 
The effect of E1 can be removed to obtain the original model by setting βe 
= 0. As for the effect on insulin action, the state E2 is introduced on the 
glucose metabolic rates, which depend on insulin as follows: 

• An increase in the periphery glucose uptake rate rPGU in the inter-
stitial fluid periphery compartment (A.3g) by a constant αe as 
(1 + αeE2)rPGU.  

• An increase in the hepatic glucose uptake rate rHGU in the liver 
compartment (A.3d) with a constant αe as (1 + αeE2)rHGU.  

• A decrease in the hepatic glucose production rate rPGH in the liver 
compartment (A.3d) with a constant αe as (1 + αeE2)rHGP. 

Fig. 5. Simulation showing the effect of physical activity on plasma glucose and plasma insulin concentrations.  

Fig. 6. Simulation showing the effect of stress on glucose and insulin concentrations.  
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The effect of E2 can be removed to obtain the original model by setting αe 
= 0. The parameters for the physical activity model are taken from [6] 
except for αe and βe, which were tuned to have a similar effect to the ones 
demonstrated in [6,8]. Fig. 5 shows a simulation for the patient 
described in Section 2.1 when the patient exercise every day before 
dinner raising the heart beat rate from a rest value of 80bpm to a value of 
140bpm for 30 min. Insulin injections, oral medications, and stress are 
not considered in this simulation. The immediate effect of physical ac-
tivity is seen in the simulation results. In addition, the prolonged effect 
of physical activity on insulin action on glucose is seen in the figure. 

The QISCI with no physical activity was found to be 0.3717 while the 
QISCI with physical activity was found to be 0.385. This shows the effect 
of physical activity on improving the insulin sensitivity. 

2.5. Stress effect 

In this section, the effect of stress is included in the model [10]. In 
[11], the effect of stress was included as a multiplicative factor 1 + αs, 
with αs ∈ [0,1], to the glucose and glucagon production rates. This is 
because stress causes a direct increase in the pancreatic glucagon pro-
duction through an increase in catecholamines, which in turns drives an 
increase of glucose production in the liver [39]. In addition, stress was 
also included as a multiplicative factor 1− αs to the pancreatic insulin 
secretion rate based on [39]. Similarly, in this work, the effect of stress is 
included in the model as follows:  

• An increase in the plasma glucagon release rate rPΓR in the glucagon 
compartment (A.9a) as (1 + αs)rPΓR.  

• An increase in the hepatic glucose production rate rHGP in the glucose 
liver compartment (A.3d) as (1 + αs)rHGP.  

• A decrease in the pancreatic insulin release rate rPIR in the insulin 
liver compartment (A.10d) as (1 − αs)rPIR 

Fig. 6 shows the effect of stress in a simulation for the same patient 
discussed in Section 2.1 when the patient is stressed on the second day 
with αs ramping up from 0 to 0.4 in 6 h, staying at 0.4 for 12 h, and then 
ramping down to 0 for the rest of the day. Insulin injections, oral med-
ications, and physical activity are not considered in the simulation. 
Stress manages to increase glucose concentration together with a 
decrease in insulin concentration. The QISCI was calculated at fasting 
conditions after the day in which stress is present. The QISCI with no 
stress was found to be 0.3717 while the QISCI with stress was found to 
be 0.3416. This shows a decrease in insulin sensitivity when stress is 
present for one day. 

3. Discussion 

3.1. Fitting the model with data 

The model has more than 120 parameters and it is, without a doubt, 
challenging to obtain clinical data that can be used to estimate all the 
parameters for the model. Nevertheless, the authors in [35], which the 
model in this paper is based on, performed a sensitivity analysis for the 
model’s parameters and determined a set of specific parameters that are 
more influential on the response of the model than other. The authors 
then carried out a least square nonlinear optimization problem to esti-
mate the parameters based on a 50 [g] oral glucose tolerance test data in 
which peripheral glucose and insulin concentrations are measured 
together with incretin concentration. Since the model in this paper is 
based on the one in [35], patients can perform oral glucose tolerance test 
occasionally to obtain data which, can be used to estimate personalized 
parameters for the base model. Subsequently, the estimated parameters 
for the base model can be fixed for each patient while the parameters for 
the extensions of the base model can be estimated using data that can be 
collected during the treatment process of the patients. Data for stress can 
be collected using the Perceived Stress Scale (PSS) as done in the studies 

[1,26] in which a self-administered questionnaire is filled by the pa-
tients. Afterwards, a stress level can be deduced from the answers by 
mapping them to be between 0 and 1 to match the model presented in 
this paper. As for the physical activity model, heart beat rate data can be 
acquired using wearable smart watches as discussed in [30]. Together 
with these data, continues glucose measurement data with registered 
insulin injections and oral medications data can be used to estimate 
more parameters of the augmented models other than the base model 
parameters. 

3.2. Usage of the model 

In this section, it is intended to discuss examples on how the model 
can be used to help subjects with Type 2 diabetes. Consider a patient 
who performed oral glucose tolerance test to estimate the base model 
parameters and has been providing data during treatment to estimate 
parameters of the augmented sub-models. Assume now a case in which 
the patient is expected to have a stressful period of 4 days. For examples, 
a school exam period. From previously gathered data about stress, the 
patient is expected to have stress levels ranging from 0.4 to 0.8 during 
these days. Moreover, the eating patterns of the patients are fitted from 
previously collected meal registered data according to the following for 
each meal of the day: 

with U (a, b) being a continues uniform distribution between a and b. 
In addition, the patient is known to have physical activity every day 
from to 16:00–16:30 raising their heart beat rate by 40 [bpm]. With all 
these information, a medical professional can test different treatment 
plans for the patient using the model by performing a Monte Carlo 
simulation with the given information about the patient. Fig. 7 shows a 
Monte Carlo simulation for a treatment plan consisting of long acting 
insulin doses of 40[U] at the beginning of each day together with met-
formin doses of 500 [mg] each day. The patient has a basal value of 
GPC(0) = 8 mmol L− 1 for glucose concentration in the central periphery 
compartment and IPF(0) = 1mU L− 1 for the insulin concentration in the 
interstitial fluid periphery compartment. It is seen from the figure that 
the fasting glucose is brought to a safe glucose concentration region 
between 4 and 6 for some simulations. Nevertheless, it is seen that for 
some cases the patient can experience high glucose concentration levels 
during the meals. The medical professional now test a different treat-
ment plan where the metformin dose is increased to 1000 [mg] and the 
long acting insulin dose is increased to 50 [U]. Fig. 8 shows the results. It 
can be seen now that the new treatment plan produces simulations with 
lower glucose concentration peaks. The example shows how the model 
gives the opportunity for a medical professional to test different treat-
ment plans against the combined effect of different factors such as stress 
and physical activity for patients. 

Fig. 7. 1000 Simulations of the patient with stress levels drawn uniformly 
between 0.4 and 0.8 for each simulation and a meal plan according to Table 1. 
The patient is taking a long acting insulin dose of 40[U] and a metformin dose 
of 500[mg] each day of the simulation. 
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The model can also be used to evaluate the performance of dose 
finding algorithms for insulin injections or oral medications against 
different kinds of patients and different lifestyles with stress, physical 
activity, and meals. For example, consider the rule based strategy for 
determining long acting insulin doses based on fasting glucose mea-
surement in [40]. The dose finder’s goal is to bring and keep fasting 
glucose concentrations within a safe region between 4 [mmol/L] and 5 
[mmol/L]. Fig. 9 shows the results of applying the rule based long acting 
insulin dose finding strategy to three different hypothetical patients to 
test the robustness of the strategy. The first patient having the same 
parameters as in Table B.3. The second patient is chosen to have the 
same parameters as in Table B.3 except with parameters c1 and c4 
increased by 90% and c2 decreased by 90%. This was done to increase 
the effect of insulin on the metabolic glucose uptake and glucose pro-
duction rates. Finally, the third patient is chosen to have the same pa-
rameters as in Table B.3 except with parameters c1 and c4 decreased by 
90% and c2 increased by 90%. This was done to decrease the effect of 
insulin on the metabolic glucose uptake and glucose production rates. 
Note that the 90% increase or decrease on the parameters is chosen 
arbitrary. The parameter perturbation range in which one can use for the 
parameters of the model and still obtain a model that represent a real life 
patient is uncertain. Nevertheless, ensuring a strategy to be robust under 
extreme cases is still an advantage. All the patients have meal plans 
identical to Table 1. In addition, all the patients are taking a metformin 
dose of 500 [mg] and having physical activity each day from 16 to 16:30 
increasing their heart beat rate during that period to 40 [bpm]. The aim 
of these simulations is to test the robustness of the dose finding algo-
rithm against physiologically different patients. It can be seen from the 

figure that the strategy managed to bring the fasting glucose concen-
trations for patient 1 to be within a safe range in less than 10 days. For 
patient 3, the strategy needed more time to bring the fasting glucose 
concentrations to the safe region. As for patient 2, the strategy under-
shooted below the safe region and then converged to a value on the 
lower limit of the safe region. This is dangerous since the risk of hypo-
glycemic episodes are higher for patient 2. In conclusion, the strategy 
can handle a variety of patients with different insulin resistivity. 
Nevertheless, the strategy can take a long period to have the fasting 
glucose concentrations converging for some cases. Moreover, it can 
cause patients to experience hypoglycemia by undershooting or 
converging to a concentration on the lower limit for the safe region, 
which is dangerous. 

This evaluation study was tested with the effect of physical activity 
considerations and metformin medication. Consider now testing the 
same strategy with the same patients but without the consideration of 
physical activity and metformin. Fig. 10 shows the results. It is clear 
from the figure that the strategy performs differently. While none of the 
patients risk experiencing hypoglycemia, the strategy takes more time to 
converge for all of them. Another point to notice here is that patient 2 
now takes more time to converge to the safe region than patient 3. The 
possibility to perform evaluations of treatment plans against physical 
activity and stress together with other medications is what distinguish 
this model from the current state of the art models. 

The model can also be used to design insulin and oral medication 
dose finders for patients. For example, similarly to how the model is used 
in the first example to test and evaluate treatment plans, the model can 
be used in an optimization algorithm to decide on the insulin, oral 
medication doses, or even physical activity conditions. Such strategies 
are refereed to as optimal predictive controllers or model predictive 
controller (MPC). One can use robust MPC techniques such as [20] by 
choosing a compact set in which some of the model parameters can take 
values from. In this case, one can optimize for certain objectives, e.g. 
bringing glucose concentrations to a safe region, or minimizing the use 
of injected insulin, while insuring satisfaction of some constraints, e.g. 
limited amounts of insulin, allowed time for physical activity, or con-
straining glucose concentrations to a specific region, for all possible 
values of the chosen parameters in the compact set. Moreover, one can 
have a more relaxed and realistic version by choosing a probability for 

Fig. 10. Fasting Glucose for three different patients. Physical activity and 
metformin are not considered. 

Table 1 
Meals model for the hypothetical patient.  

Meal Time [Hours] Glucose [g] 

Breakfast U (7,8) U (5,40)
Lunch U (11.5,13) U (50,100)
Dinner U (17,19) U (100,130)

Fig. 9. Fasting Glucose for three different patients. Physical activity and a dose 
of 500 [mg] metformin are considered. 

Fig. 8. 1000 Simulations of the patient with stress levels drawn uniformly 
between 0.4 and 0.8 for each simulation and a meal plan according to Table 1. 
The patient is taking a long acting insulin dose of 50[U] and a metformin dose 
of 1000[g] each day of the simulation. 
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the parameters to be inside the chosen compact set (Robust with prob-
ability MPC), and thus, ensuring the constraint satisfaction with a spe-
cific probability value. Another option is to consider stochastic MPC 
techniques [13] to handle stochastic disturbances or inputs similar to 
the meal plan example in Table 1. Stochastic MPC techniques offers the 
chance to optimize for the expected values of objectives or the proba-
bilities of objective while ensuring the satisfaction of some constraints 
with some chosen probability. 

4. Conclusion and future work 

A model for glucose-insulin dynamics, which incorporates the effect 
of multiple glucose meal sizes, different metformin doses, physical ac-
tivity, insulin injections, and stress, is proposed by combining and 
modifying different available models in the literature. The effect of the 
different added and modified models is demonstrated by different sim-
ulations and was aimed to match studies from the literature on T2D 
patients. A discussion on the data needed to fit the model is provided. 
Additionally, a discussion is provided on how the model can be used to 
evaluate treatment plans and possibly develop some treatment plans 
with robust and stochastic control techniques. The model, however, 
need to be confirmed with real patients data. Moreover, real patient data 

can be used to estimate joint probability distribution to simulate a 
population of T2D patients. 
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Appendix A. Full model equations 

The compartments include metabolic production rates rCXP and metabolic uptake rates rCXU for substance X in compartment C generally defined as 
following: 

rCXP,U = MIMGMΓrb
CXP,U (A.1)  

Where MI,MG, and MΓ are multiplicative quantities for the effect of insulin I, glucose G, and glucagon Γ respectively, and rb
CXP,U is the basal metabolic 

rate of substance X in compartment C. The general form for the multiplicative quantities representing the effect of a substance Y in compartment C 
with concentration YC is given as: 

MY =
a + btanh

[
c
(
YC∕Yb

C − d
) ]

a + btanh[c(1 − d)]
(A.2)  

Where Yb
C is the basal concentration of substance Y in compartment C, and a, b, c, and d are model parameters. 

A.1. Glucose Sub-Model 

Applying mass balance equations over the compartments for glucose, the following equations are obtained: 

VG
BC

dGBC

dt
= QG

B (GH − GBC) −
VG

BF

TG
B
(GBC − GBF) (A.3a)  

VG
BF

dGBF

dt
=

VG
BF

TG
B
(GBC − GBF) − rBGU (A.3b)  

VG
H

dGH

dt
= QG

B GBC + QG
L GL + QG

KGK

+QG
P GPC + QG

HGH − rRBCU

(A.3c)  

VG
G

dGG

dt
= QG

G(GH − GG) − rm
GGU + Ra (A.3d)  

VG
L

dGL

dt
= QG

A GH + QG
GGG − QG

L GL

+
( (

1 + αs)(1 − αeE2)rm
HGP − (1 + αeE2)rHGU

)
(A.3e)  

VG
K

dGK

dt
= QG

K(GH − GK) − rKGE (A.3f)  

VG
PC

dGPC

dt
= QG

P (GH − GPC) −
VG

PF

TG
P
(GPC − GPF) (A.3g) 
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VG
PF

dGPF

dt
=

VG
PF

TG
P
(GPC)

− (1 + βeE1)GPF ) − (1 + αeE2)rm
PGU

(A.3h)  

Where Gi[mg dL− 1] is glucose concentration for each compartment i, QG
i [dL min− 1] is the vascular blood flow for the glucose compartment i, 

VG
i [dL] is the volume of compartment i, TG

i [min] is the transcapillary diffusion time for compartment i, and rxP, rxU are metabolic glucose 
production and uptake rates respectively. The following are the meanings of each subscript in the model: Table A.2. 

The metabolic rates for the glucose subsystem are given as: 

rPGU = MI
PGUMG

PGUrb
PGU , rb

PGU = 35 (A.4a)  

rHGP = MI
HGPMG

HGPMΓ
HGPrb

HGP, rb
HGP = 35 (A.4b)  

rHGU = MI
HGUMG

HGUrb
HGU , rb

HGU = 20 (A.4c)  

rKGE =

{
71 + 71tanh[0.11(GK − 460) ] GK < 460
− 330 + 0.872GK GK ≥ 460

}

(A.4d)  

rBGU = 70, rRBCU = 10, rGGU = 20 (A.4e)  

Where: 

MI
PGU =

7.03 + 6.52tanh
[
c1
(
IPF∕IB

PF − d1
) ]

7.03 + 6.52tanh[c1(1 − d1)]
(A.5a)  

MG
PGU = GPF∕Gb

PF (A.5b)  

d
dt

MI
HGP = 0.04

(
MI∞

HGP − MI
HGP

)
(A.5c)  

MI∞
HGP =

1.21 − 1.14tanh
[
c2
(
IL∕IB

L − d2
) ]

1.21 − 1.14tanh[c2(1 − d2)]
(A.5d)  

MG
HGP =

1.42 − 1.41tanh
[
c3
(
GL∕GB

L − d3
) ]

1.42 − 1.41tanh[c3(1 − d3)]
(A.5e)  

MΓ
HGP = 2.7tanh

[
0.39Γ∕ΓB] − f (A.5f)  

d
dt

f = 0.0154
[(

2.7tanh[0.39Γ∕ΓB] − 1
2

)

− f
]

(A.5g)  

d
dt

MI
HGU = 0.04

(
MI∞

HGU − MI
HGU

)
(A.5h)  

MI∞
HGU =

2.0tanh
[
c4
(
IL∕IB

L − d4
) ]

2.0tanh[c4(1 − d4)]
(A.5i)  

MG
HGU =

5.66 + 5.66tanh
[
c5
(
GL∕GB

L − d5
) ]

5.66 + 5.66tanh[c5(1 − d5)]
(A.5j)  

Note that some of these rates have a constant numerical value. In addition, parameters a and b for the multiplicative quantities are substituted with 
numerical values. These numerical values are the ones estimated for a healthy 70 kg male. Parameters c and d were left for the estimation in case of a 

Table A.2 
Subscripts abbreviations.  

B Brain BC Brain capillary space 

BF Brain interstitial fluid H Heart 
G Guts L Liver 
K Kidney P Periphery 
PC Periphery capillary space PF Periphery interstitial fluid 
BGU Brain glucose uptake RBCU Red blood cell glucose uptake 
GGU Gut glucose uptake HGP Hepatic glucose production 
HGU Hepatic glucose uptake KGE Kidney glucose excretion 
PGU Peripheral glucose uptake    
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diabetic patient as in [35]. The following rates are modified with the effect of metformin as following: 

rm
GGU = (1 + EGW)rGGU (A.6a)  

rm
HGP = (1 − EL)rHGP (A.6b)  

rm
PGU = (1 + EP)rPGU (A.6c)  

Where EGW, EL, and EP are positives coefficients which depend on the amount of metformin in the gastrointestina wall (GI) MGW [μg], liver ML [μg], and 
peripherals Mp [μg] respectively. These coefficients increase (or decrease) the glucose uptake (or production) as seen in (A.6). The equations for these 
coefficients are given as following: 

EGW =
νGW,max × (MGW)

nGW

(
φGW,50

)nGW
+ (MGW)

nGW
(A.7a)  

EL =
νL,max × (ML)

nL

(
φL,50

)nL
+ (ML)

nL
(A.7b)  

EP =
νP,max × (MP)

nP

(
φP,50

)nP
+ (XP)

nP
(A.7c)  

Where νGW,max, νL,max, νP,max are parameters to represent the maximum effect of metformin in each one of its corresponding compartments, φGW,50, 
φGI,50, φGI,50 [μg] are the masses of metformin within the different compartments to produce half of its maximum effect, and nGW, nL, and nP are shape 
factors. 

A.2. Incretins Sub-Model 

The incretins hormones are metabolic hormones released after eating a meal to stimulate a decrease in blood glucose levels. For T2D patients, 
Glucagon-Like-Peptide-1 (GLP-1) is the most active incretin [12]. GLP-1 is then modelled with the following two compartments as in [10]: 

dψ
dt

= ζkemptqSl −
1
τψ

ψ (A.8a)  

VΨdΨ
dt

=
1
τψ

ψ − [Kout + (RmaxC − DRc)Cf 2]Ψ (A.8b) 

Where τψ [min− 1] is a time constant for the release and absorption of GLP-1 to the blood stream upon consuming a meal, VΨ[dL] is the volume of the 
GLP-1 compartment, DRc[nmol] is the amount of Dipeptidyl peptidase-4 (DPP-4) in the central compartment deactivated by the drug vildagliptin, 
Kout [min− 1] is a clearance constant for GLP-1 independently of the amount of DPP-4, and (RmaxC − DRc) is the amount of available activated DPP-4 in 
the blood plasma with RmaxC[nmol] being the maximum amount of active DPP-4 in the absence of the vildagliptin. Cf2 [min− 1 nmol− 1] is a propor-
tionality factor for the elimination of GLP-1 by active DPP-4 [21]. Parameters τψ and ζ are estimated in [35] when other incretins than GLP-1 are 
considered and later modified in [35] to account for vildagliptin treatment. Parameters Kout, RmaxC, and Cf2 were estimated in [21] together with the 
parameters for the vildagliptin model described in subsection Appendix A.6. 

A.3. Glucagon Sub-Model 

The glucagon subsystem consists of one compartment as it is assumed to have the same concentration over all the body: 

VΓdΓ
dt

= (1 + αs)rPΓR − 9.1Γ (A.9a)  

rPΓR = MG
PΓRMI

PΓRrb
PΓR, rb

PΓR = 9.1 (A.9b)  

MG
PΓR = 1.31 − 0.61tanh

[

1.06
(

GH

GB
H
− 0.47

)]

(A.9c)  

MI
PΓR = 2.93 − 2.09tanh

[

4.18
(

IH

IB
H
− 0.62

)]

(A.9d)  

Where rPΓR is the plasma glucagon release rate. The state Γ represent a normalized glucagon state with respect to its basal value. This is done since it is 
difficult in practice to obtain glucagon measurements for each subject in order to initialize the state. Therefore for this model, the basal glucagon state 
is 1. 
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A.4. Insulin Sub-Model 

Applying mass balance equations over the insulin compartments will yield the following: 

VI
B
dIB

dt
= QI

B(IH − IB) (A.10a)  

VI
H

dIH

dt
= QI

BIB + QI
LIL + QI

KIK

+QI
PIPV − QI

HIH

(A.10b)  

VI
G

dIG

dt
= QI

G(IH − IG) (A.10c)  

VI
L
dLL

dt
= QI

AIH + QI
GIG − QI

LIL

+(1 − αs)rPIR − rLIC

(A.10d)  

VI
K

dIK

dt
= QI

K(IH − IK) − rKIC (A.10e)  

VI
PC

dIPC

dt
= QI

P(IH − IPC) −
VI

PF

TI
P
(IPC − IPF) (A.10f)  

VI
PF

dIPF

dt
=

VI
PF

TI
P
(IPC − IPF) − rPIC + rInj (A.10g)  

Where rLIC, rKIC, and rPIC are the liver, kidney, and peripherals insulin clearance rates respectively and are defined as following: 

rLIC = 0.4
[
QI

AIH + QI
GIG − QI

LIL + rPIR
]

(A.11a)  

rKIC = 0.3QI
KIK (A.11b)  

rPIC =
IPF

[(
1− 0.15
0.15QI

P

)

− 20
VI

PF

] (A.11c)  

the pancreas insulin release is calculated by the following: 

rPIR =
S
Sbrb

PIR (A.12)  

Where S [U min− 1] is the pancreas secreted insulin rate, and Sb, rb
PIR are the basal values. The model for S and Sb is described in subsection Appendix 

A.5. 

A.5. Pancreas Sub-Model 

The model consists of two main compartments: a large insulin storage compartment ms [μg] and a small labile insulin compartment ml [μg]. The 
flow of insulin from the storage compartment to the labile insulin compartment is dependent on a dimensionless factor P with a proportionality 
constant γ [μg min− 1]. The factor P depends on a dimensionless glucose-enhanced excitation factor represented by X and GLP-1 through a linear 
compartment with constant first order rate α [min− 1]. Upon a glucose stimulus, the glucose-enhanced excitation factor X will increase instantaneously 
depending on the glucose increase in the plasma GH. In addition, a dimensionless inhibitor R for X will increase in response to X through a linear 
compartment with a first order constant rate β [min− 1]. During that increase, the secreted insulin S will depend directly on both X and its inhibitor R 
together with GLP-1. Afterwards when R reaches X or X starts decreasing after R reaching it, the insulin secretion rate will only depend on X and GLP-1. 
The following are the equations of the model: 

dms

dt
= Klml − Ksms − γP (A.13a)  

dml

dt
= Ksms − Klml + γP − S (A.13b)  

dP
dt

= α(P∞ − P) (A.13c)  

dR
dt

= β(X − R) (A.13d)  
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S =

{
[N1P∞ + N2(X − R) + ζ2Ψ ]ml X > R
(N1P∞ + ζ2Ψ)ml X ≤ R

}

(A.13e)  

P∞ = X1.11 + ζ1Ψ (A.13f)  

X =
G3.27

H

1323.27 + 5.93G3.02
H

(A.13g)  

Where Kl [min− 1] and Ks [min− 1] are the rates for the flow between the labile and storage insulin compartments independently of P, N1[min− 1] and 
N2 [min− 1] are constant parameters that represent the effect of P and (X − R) on the insulin secretion rate respectively, and ζ1 [L pmol− 1], 
ζ2 [L (pmol min)− 1

] are constant parameters to represent the effect of GLP-1 on P∞ and the insulin secretion rate. For initializing the model and 
calculating the basal values, the storage compartment is assumed to be large enough for it to be constant. Therefore, writing the mass balance for the 
storage compartment at zero glucose concentration will yield the following: 

Ksms = Klml0 (A.14)  

Where ml0 is the labile insulin concentration at zero glucose concentration. This parameter in [33] is provided with a value of 6.33[U] for a healthy 
70 kg male. 

A.6. Vildagliptin 

The vildagliptin model is based on [21]. The absorption of orally ingested vildagliptin is modelled by two compartments as following: 

dAG1

dt
= − ka1AG1 +

∑Nv(t)

i=1
δ(t − ti)fvuvi (A.15a)  

dAG2

dt
= ka1 × AG1 − ka2 × AG2 (A.15b)  

Where AG1, AG2 [nmol] are the amount of vildagliptin in the gut and absorption compartments respectively, Nv(t) is the number of oral vildagliptin 
doses until time t, uvi [nmol] is the amount of consumed vildagliptin, fa is the bioavailability of vildagliptin, and ka1, ka2 [min− 1] are rate absorption 
parameters. After that, the model contains a central and a peripheral compartment for the vildagliptin and the vildagliptin-DPP-4 complex (deacti-
vated DPP-4): 

dAc

dt
= ka2AG2 −

CL + CLic

VC
AC +

CLic

Vp
Ap

−

(RmaxC − DRC)kv2
Ac

VC

Kvd +
Ac

Vc

+ koff DRC

(A.16a)  

dAp

dt
= CLic

(
Ac

Vc
−

Ap

Vp

)

−

(
RmaxP − DRp

)
kv2

Ap

Vp

Kvd +
Ap

Vp

+ koff DRp

(A.16b)  

dDRC

dt
=

(RmaxC − DRC)kv2
AC

VC

Kvd +
AC

VC

−
(
koff + kdeg

)
DRC

(A.16c)  

dDRP

dt
=

(RmaxP − DRP)kv2
AP

VP

Kvd +
AP

VP

−
(
koff + kdeg

)
DRP

(A.16d)  
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Where AC, APnmol are the amounts of vildagliptin in the central and peripheral compartments respectively, CL [L min− 1] is a non-saturable clearance, 
CLic [L min− 1] is the inter-compartmental clearance, Vc, Vp [L] are the volumes of the central and peripheral compartments respectively, kv2 [min− 1] is a 
parameter added for the slow tight binding of vildagliptin to DPP-4, Kvd [nmol L− 1] is the equilibrium dissociation constant, koff [min− 1] is a rate 
constant for the dissociation of intact vildagliptin from DPP-4, RmaxP [nmol] is the maximum possible amount of DPP-4 in the peripheral compartment, 
kdeg [min− 1] is a rate constant for the hydrolysis of vildagliptin by DPP-4, and DRP [nmol] is the amount of deactivated DPP-4 in the peripheral 
compartments. 

Appendix B. Parameter mean values 

Table B.3 includes the values of the parameters which were used in the simulation. 

Table B.3 
Parameter values.  

Parameter Value Parameter Value Parameter Value 

VG
BC [dL] 3.5 VG

BF [dL] 4.5 VG
H [dL] 13.8 

VG
L [dL] 25.1 VG

G [dL] 11.2 VG
K [dL] 6.6 

VG
PC [dL] 10.4 VG

PF [dL] 67.4 VI
B [L] 0.26 

VI
H [L] 0.99 VI

G [L] 0.94 VI
L [L] 1.14 

VI
K [L] 0.51 VI

PC [L] 0.74 VI
PF [L] 6.74 

VΓ[mL] 6.74 QG
B [dL min− 1] 5.9 QG

H [dL min− 1] 43.7 

QG
A [dL min− 1] 2.5 QG

L [dL min− 1] 12.6 QG
G [dL min− 1] 10.1 

QG
K [dL min− 1] 10.1 QG

P [dL min− 1] 15.1 QI
B [L min− 1] 0.45 

QI
H [L min− 1 ] 3.12 QI

A [L min− 1] 0.18 QI
K [L min− 1] 0.72 

QI
P [L min− 1] 1.05 QI

G [L min− 1] 0.72 QI
L [L min− 1] 0.9 

TG
B [min] 2.1 TG

P [min] 5.0 TI
P [min] 20.0 

fq [⋅] 0.9 kϕ1 [⋅] 0.68 kϕ2 [⋅] 0.00236 
k12q [min − 1] 0.08 kmin[min− 1] 0.005 kmax [min− 1] 0.05 

kabs [min − 1] 0.08 c1 [⋅] 0.067 c2 [⋅] 1.59 

c3 [⋅] 0.62 c4 [⋅] 1.72 c5 [⋅] 2.03 
d1 [⋅] 1.126 d2 [⋅] 0.683 d3 [⋅] 0.14 
d4 [⋅] 0.023 d5 [⋅] 1.59 ml0 [U] 6.33 
ζ1[Lpmol− 1] 0.0026 ζ2 [L (pmolmin− 1)] 0.99e− 4 Kl [min − 1] 0.3621 

Ks [min− 1] 0.0572 γ [μg min− 1] 2.366 α [min− 1 ] 0.615 

β [min− 1] 0.931 N1 [min− 1] 0.0499 N2 [min− 1 ] 0.00015 

VΨ [dL] 11.31 Kout [min− 1] 68.3041 Cf2 [min− 1 nmol− 1] 21.1512 

τψ [min− 1 ] 35.1 RmaxC [nmol] 5.0 ζ [⋅] 8.248 

fv [⋅] 0.772 ka1 [min− 1] 0.021 ka2 [min− 1] 0.0175 

CL [L min− 1] 0.6067 CLic [L min− 1] 0.6683 Vp [L] 97.3 

koff [min− 1] 0.0102 RmaxP [nmol] 13 kdeg [min− 1] 0.0018 

Vc [L] 22.2 Kvd [nmol L− 1] 71.9 kv2 [min− 1] 0.39 

kgo [min− 1] 1.88e–4 kgg [min− 1] 1.85e–4 kpg [min− 1] 4.13 

kgl [min− 1] 0.46 kpl [min− 1 ] 0.00101 klp [min− 1] 0.91 

kpo [min− 1] 0.51 νGW,max [⋅] 0.9720 νL,max [⋅] 0.7560 

νP,max[⋅] 0.2960 nGW [⋅] 2.0 nL [⋅] 2.0 
nP [⋅] 5.0 ϕGW,50 [⋅] 431.0 ϕL,50 [⋅] 521.0 
ϕP,50 [⋅] 1024.0 ρα [min− 1] 54 ρβ [min− 1] 54 

αM [min − 1] 0.06 βM [min− 1] 0.1 pla [min− 1] 0.5 

rla [⋅] 0.2143 qla [dL2 mU− 2] 3.04e− 10 bla [min− 1 ] 0.025 

Cmax [⋅] 15.0 kla [min− 1] 2.35e–5 pfa [min− 1] 0.5 

rfa [⋅] 0.2143 qfa [dL2 mU− 2] 1.3e–11 bfa [min− 1] 0.0068 

τHR [min] 5.0 ne [⋅] 4.0 ae [⋅] 0.8 
τe [min] 600 αe [⋅] 2.974 βe [bpm− 1] 3.39e–4  
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