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Full Length Article 
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A B S T R A C T   

Green methanol production, based on intermittent renewable energy sources, requires a more flexible operation 
mode and close integration with other sections, such as, the electrical grid and electrolysis processes. In this 
study, methanol synthesis and distillation processes (MSD) for pilot-scale green methanol production (corre-
sponding to 22,236 tons/year) were investigated by dynamic modeling, focusing on energy analysis and dynamic 
characteristics during load change (LC) operations. The dynamic simulation results with a ramp rate of 50% load 
/ h indicated energy efficiencies of 87.7% (at full-load) and 90.2% (at half-load) for the methanol synthesis 
process, 86.8% (full-load) and 82.4% (half-load) for the methanol distillation process, and 77.1% (full-load) and 
75.4% (half-load) for the MSD process. Relatively small fluctuations were achieved with a ramp time of 1 h for 
the LC operations. Based on the constructed dynamic model, a surrogate modeling for the MSD process was 
conducted using the nonlinear autoregressive exogenous model (NARX) model, which exhibited good accuracy 
with the evaluated performance for the testing data of the root-mean-square error (RMSE) = 3.09 × 10-5, mean 
absolute error (MAE) = 2.30 × 10-4, and R2 = 1.0. The constructed NARX model can be further integrated with 
models for other sections of the power-to-methanol process.   

1. Introduction 

Global warming due to the greenhouse effect is an urgent issue for 
human civilization. The reduction of CO2 emissions from human activ-
ities is one of the most important steps for achieving the 1.5 ◦C and 2 ◦C 
temperature targets established by the Paris Agreement [1]; this ne-
cessitates the green transition of the energy sector. Increasing shares of 
intermittent renewable energy sources, such as solar and wind power, 
will be the primary challenge in balancing the electrical grid. Power-to-x 
technology, where “x” can represent heat [2], power (e.g., batteries and 
electric vehicles [3]), gases (e.g., hydrogen and methane [4,5]), or liquid 
fuels. (e.g., methanol and diesel [6,7]), provides potential energy stor-
age solutions to this issue; using this technology, surplus power can be 
converted to different forms of energy or energy carriers. 

In particular, power-to-methanol (hereinafter refer to as P2M) is a 
technology with significant potential; green methanol is produced from 
CO2 (or CO2-rich gas) obtained from renewable carbon sources (e.g., 
biogas) or captured from manufacturing processes involving heavy CO2 
emissions (e.g., cement plants) and H2 is produced from electrolysis 
technologies using renewable electricity [8–10] instead of conventional 

fossil fuels [11–13]. This process has attracted growing interest since the 
concept of the “methanol economy” was proposed by Nobel laureate 
George A. Olah [14,15]. 

Green methanol production typically involves the processes of 
hydrogen production, CO2 capture or biogas production, storage and 
purification of the gases, methanol synthesis and distillation. The pre-
sent study investigated the latter two processes. Heterogeneous catalytic 
fixed-bed reactors with commercial Cu/Zn/Al2O3 catalysts are widely 
employed in conventional methanol industries under typical operating 
conditions of 50–100 bar and 200–300 ◦C [16,17]. The improvement of 
these industries is crucial for the methanol synthesis process. The main 
reactions for this process are described by the following equations: 

CO + 2H2 ↔ CH3OH (1)  

CO2 + 3H2 ↔ CH3OH +H2O H298K = 49 kJ/mol (2)  

CO2 + H2 ↔ CO +H2O H298K = + 41 kJ/mol (3) 

Copper-based commercial catalysts also exhibit good potential for 
green methanol production based on CO2 or CO2-rich carbon sources 
[18]. Heterogeneous catalytic methanol synthesis has been employed in 
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project demonstrations, for example, MefCO2 [10] in Germany and 
Power2Met [18] in Denmark, and a small-scale commercial methanol 
plant (4000 tons/year) in Iceland [19]. Larger-scale green methanol 
production has been recently proposed, by the Danish company REin-
tegrate ApS (8000 tons/year) [20], North-C-Methanol project in 
Belgium (45000 tons/year) [21], and Norwegian companies Statkraft, 
Finnfjord, and CRI(100000 tons/year) [22]. 

With the growing deployment of green methanol (MeOH) produc-
tion, its integration with the electrical grid (also called the P2M process; 
Fig. 1) based on intermittent renewable energy sources such as solar and 
wind power brings new challenges. More flexible system operations are 
required for green methanol production (also for other green chemical 
production e.g., ammonia [23]), which necessitates more frequent dy-
namic operations for the methanol synthesis and distillation processes 
[24–27]. To overcome the challenges related to the dynamic operations 
for green methanol production, two primary aspects need to be 
researched: (1) the dynamic characteristics of the green methanol 

production system (e.g., energy efficiencies and operational constraints 
during different dynamic operations) and (2) system integration be-
tween green methanol production and the electrical grid (e.g., decision- 
making of plant operations according to the different conditions of the 
renewable energy sources). 

Factors at different scales ranging from catalyst pellets, reactors, and 
distillation columns to process [28,29], may influence the dynamic 
characteristics of the complex methanol production system. The present 
study focuses on the reactor and process aspects through a modeling 
study. The dynamic modeling of conventional methanol production has 
not been widely studied. Rezaie et al. [30] conducted long-term (4 y) 
dynamic simulations of an industrial methanol reactor, focusing on the 
influence of catalyst deactivation. Abrol and Hilton [31] developed a 
methanol synthesis loop model and investigated the methanol loop 
performance under open-loop and isolated reactor conditions. Manenti 
et al. [32] developed a pseudo-homogeneous dynamic model for a fixed- 
bed reactor for conventional methanol synthesis, focusing on the 

Nomenclature 

b Bias 
du Time delays for input value 
dy Time delays for output value 
f Activation function 
IW Input weight 
LHV Lower heating value for the gases 
LW Output weight 
MAE Mean absolute error 
ṁ Mole flow rate of the streams 
P Duty of the heat exchangers or power of the compressor 

and pumps 
R Ramp rate of load change operation 

R2 R-squared 
RMSE Root-mean-square error 
t Time step 
T Ramp time of load change operation 
TDL Tapped delay lines 
u Input value 
y Output value 
ŷ Predicted output value 

Greek letters 
ηMS Energy efficiency of the methanol synthesis process 
ηMD Energy efficiency of the distillation process 
ηMSD Energy efficiency of the methanol synthesis and distillation 

process  

Fig. 1. Scheme of the P2M process.  
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numerical stability of the mathematical model. However, there remains 
a lack of dynamic modeling for green methanol production at either the 
reactor or system scale, and the present study aims to fill this gap. 

Different modeling strategies can be applied for system integration of 
the different sections shown in Fig. 1. (1) An overall system model can be 
developed in a single modeling tool based on the first-principle methods 
on one modeling platform, for example, with Simulink/Matlab; how-
ever, this approach is time-intensive because of the complexity of the 
methanol production system. (2) The sections can be co-simulated using 
different modeling tools with data communications, for example, co- 
simulation of Simulink/Matlab and process engineering software such 
as Aspen Plus. This approach can utilize the advantage of different 
modeling tools; however, appropriate solutions for simultaneous data 
exchange are required. (3) The strategy used in this study is based on 
employing modeling tools such as those in (2) but generating a surrogate 
model for the methanol production section based on the simulation re-
sults by process engineering software, that is, Aspen Plus; subsequently, 

the surrogate model is combined with the models of other sections on 
other modeling platforms. This approach presents an alternative method 
for data exchange between the modeling tools for the sections by using a 
surrogate model, which can be easily realized by methods such as ma-
chine learning and provide a faster computational speed than that based 
on the first-principle methods [33]. 

Surrogate models are commonly used to replace complex underlying 
models and reduce computational effort in chemical and process engi-
neering [33–35]. Additionally, they are employed under the condition 
where there are data regarding input–output relationships but without 
underlying models [33]. For dynamic processes, McBride and Sund-
macher [33] reviewed various applications (e.g., chemical reactions and 
pharmaceutical processes) of surrogate modeling, involving methods 
such as kriging and artificial neural networks (ANN). Shokry et al. [35] 
presented several surrogate models for dynamic chemical processes 
based on the nonlinear autoregressive exogenous model (NARX), where 
different metamodel types (ANN and ordinary kriging) were integrated 

Fig. 2. Scheme of the MSD process.  
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into the NARX models. Case studies on the dynamic processes involving 
a bioreactor, three-tank, and oil-shale pyrolysis batch reactor were 
conducted based on the design of the computer experiment, and the 
NARX models exhibited good prediction accuracies. Tahkola [36] 
demonstrated four surrogate models (linear autoregressive model, 
NARX, Long Short-Term Memory, and Gated Recurrent Unit) for the 
dynamic power-to-gas process, and the accuracies achieved by all four 
models seem favorable. Khaleghi et al. [37] developed a NARX model 
for online health diagnostics of lithium-ion batteries. A high estimation 
accuracy was achieved by the model, using the health indicators 
extracted from the voltages as input data. 

In the present study, the processes of methanol synthesis and distil-
lation (hereafter referred to as MSD) for green methanol production 
were investigated by dynamic modeling, which was conducted using the 
software Aspen Plus Dynamics V9. The load change (LC) operations of 
the system and key performance indicators (KPIs), such as the energy 
efficiency and dynamic characteristics of the MSD process, were inves-
tigated. Furthermore, surrogate modeling for the MSD process was 
conducted using the NARX model based on the data generated by the 
constructed dynamic model. 

2. Modeling approach 

2.1. Dynamic model of the MSD process 

The dynamic modeling of the MSD process was conducted using 
Aspen Plus Dynamics, in which the initial state of the process was 
extracted from steady-state simulations using the Aspen Plus software. 
The flowsheet of the MSD process including the methanol synthesis and 
distillation processes, is shown in Fig. 2. 

2.1.1. Methanol synthesis 
For the methanol synthesis process shown in Fig. 2, the feed gases of 

H2 and CO2 (provided from other sections) were mixed with a molar 
ratio of H2/CO2 = 3 (stoichiometric value), and further mixed with the 
recycle stream (REC). Before being introduced into the methanol reactor 
(R1), the feed gas (S1) was preheated to 220 ◦C by heat exchangers HX1 
and HX3. HX3 is mainly used for the system start-up (not included in this 
study), and its duty is zero under the investigated conditions. The hot 
effluent stream was cooled by heat exchangers HX2 and HX1. The heat 
exchanged from HX2 was used to heat the reboiler of the distillation 
column (D1) in the methanol distillation section. The stream (S32) after 
HX1 was further cooled by CL to 30 ◦C. Crude methanol (PRO2, con-
taining methanol and water) was obtained in the liquid phase of the 
gas–liquid separator (SEP and SEP1), which was further purified in the 
distillation section. Most of the gas phase (VAP) was recycled by a 
recycle compressor (CMP). A very small ratio (0.1% of VAP) of purging 
gas (stream PUR1) was set, which aims to minimize the CO2 emission for 
the green methanol production. A value lower than 0.1% may cause 
convergence problem. Using a larger purge ratio can result in lower flow 
rate of the recycle stream as well as a smaller reactor size but a higher 
CO2 loss, e.g., 5.8% of the feed CO2 is purged with a purge ratio of 1%. 
The optimal design of this value may need further investigations for both 
the economic and environmental aspects, which is not included in this 
study. 

A quasi-adiabatic 1D plug-flow model was employed for the fixed- 
bed methanol reactor (R1). The adiabatic fixed-bed reactor showed 
good potential for green methanol production, which has a lower capital 
cost than other options, for example, water-cooled and gas-cooled re-
actors [18]. The heat capacities and weight of the catalyst bed and 
reactor vessel were considered, which could influence the rate of tem-
perature change due to thermal inertia. The reaction kinetics presented 
by Vanden Bussche and Froment [38] were employed to calculate the 
reaction rates under different conditions (validated in Fig. S1 in Ap-
pendix A. Supplementary data). The Predictive Soave–Redlich–Kwong 
(PSRK) model was used as for the equation of state considering the both 

the methanol synthesis process in the methanol reactor and the two- 
phase system in the gas–liquid separator (SEP) with polar molecules at 
the high operating pressure, which also showed a better fit when 
compared to the RKS-MHV2 model [39] and reasonable agreement with 
the experimental data regarding CO2 solubility in methanol/CO2/water 
system (Fig. S2 in Appendix A. Supplementary data). An average 
effectiveness factor of 0.7 for reactions (2) and (3) was approximately 
evaluated according to a previous study [18]. A typical catalyst tablet of 
Φ6 mm × 4 mm (e.g., Topsøe MK-121) was packed in the catalyst bed, 
and the pressure drop through the catalyst bed was calculated using the 
Ergun equation [40] (Appendix A. Supplementary data). 

Table 1 lists the primary operating and reactor parameters for the 
methanol synthesis section; these parameters are based on the scaling- 
up design (22236 tons/year methanol production) for the pilot plant 
in the Power2Met project [18]. The hydrogen flow rate for the feed gas is 
close to 6000 m3/h corresponding to electrolysis power consumption of 
approximately 25 MW. The volume of the main pipeline for this section 
was considered and added to the design of the SEP volume in the model. 
A heat transfer coefficient of 0.5 W/m2∙K was considered for the heat 
loss of the reactor to the environment, assuming a well-insulated 
reactor; the heat losses for other parts were not considered. The heat 
transfer coefficient and heat exchanger area for HX1 were calculated 
using Aspen EDR (Appendix C. Supplementary data). The heat transfer 
coefficients for R1 (shown in Table 1) were approximated using corre-
lations (Appendix C. Supplementary data). The coefficients obtained 

Table 1 
Key operating and parameters for the methanol synthesis section.   

Parameter Value 

Operating 
conditions 

H2 flow rate (H2), kmol/h 267 
CO2 flow rate (CO2), kmol/h 89 
Temperature of feed gases (H2 and CO2), ℃ 25 
Pressure of feed gases (H2 and CO2), bar 35 
Reactor inlet (S21) temperature, ℃ 220 
Reactor inlet (S21) pressure, bar 31 
SEP temperature, ℃ 30 
SEP pressure, bar 27.9 
Ratio for purging gas (RATIO) 0.1% 
Gas hourly space velocity (GHSV) at full-load, h− 1 9063 

Methanol reactor 
(R1) 

Inner diameter, m 1.4 
Length, m 7 
Thickness, m 0.0127 
Density, kg/m3 7700 
Total weight with flanges, kg 25,000 
Heat capacity, kJ/(kg∙K) 0.5 
Heat transfer coefficient (gas phase to reactor 
wall, hw) at full-load, W/(m2∙K) 

69 

Heat transfer coefficient (gas phase to solid 
catalyst, hs) at full-load, W/(m2∙K) 

2004 

Heat transfer coefficient (reactor wall to 
environment), W/(m2∙K) 

0.5 

Catalyst Volume, m3 7.92 
Density of catalyst tablet, kg/m3 1950 
Porosity of catalyst bed 0.385 
Weight, kg 12,923 
Heat capacity, kJ/(kg∙K) 1.0 

Gas-liquid separator 
(SEP) 

Diameter, m 1.0 
Height, m 5.5 

Gas-liquid separator 
(SEP1) 

Diameter, m 0.7 
Height, m 3.0 

Compressor Isentropic efficiency 0.75 
Mechanical efficiency 1.0 
Discharge pressure, bar 32 

Heat exchanger 
(HX1) 

Heat exchange area, m2 1900 
Weight, kg 30,000 
Volume, m3 12 

Heat exchanger 
(HX2) 

Weight, kg 6000 
Volume, m3 2.4 

Heat exchanger 
(HX3) 

Weight, kg 12,000 
Volume, m3 4.8 

Heat exchanger (CL) Weight, kg 18,000 
Volume, m3 7.2  
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under the full-load condition were employed for all simulations, because 
the calculated coefficients under the investigated load conditions 
(50–100%) had a small influence on the reactor outlet temperature. The 
steady-state simulation under full-load operation was set as the initial 
state of the dynamic modeling for the LC operations (Appendix B. 
Supplementary data). 

Signal generators (RAMP1–2) were used for dynamic operations, to 
alter the rates of flow change (i.e., LC) for the feed gases; furthermore, 
ten proportional–integral (PI) controllers were used for this section, as 
shown in Fig. 2 and Table 2. The proportional and integral gains were set 
based on the Ziegler-Nichols and Tyreus-Luyben tuning rules by using 
the automatic controller tuning in Aspen Plus Dynamics. 

2.1.2. Methanol distillation 
The crude methanol (stream CRD in Fig. 2) from the methanol syn-

thesis section primarily contained water and methanol with a mole ratio 
of approximately 1:1, and a small amount of dissolved light gases 
(mainly CO2). To obtain high-purity methanol, processes with 2–4 
distillation columns are commonly employed in conventional methanol 
plants. For green methanol production, there are much less impurities in 
the crude methanol [41], and processes with 1–2 distillation columns 
are sufficient to produce fuel-grade methanol products [19]. This study 
employed a single distillation column with 28 equilibrium stages. The 
crude methanol (stream CRD) was preheated to 75 ◦C by HX4 before 
entering the distillation column D1. The effluent stream from the top of 
D1 was cooled by HX5 to 55 ◦C, where most of the methanol product 
(MOH) in the gas phase condensed. The light gases were purged after 
separation from the MOH in the liquid phase in the drum (SEP2). Part of 
the liquid phase was fed back to the top of the column, and the 
remaining portion was obtained as the MOH. Waste water (WST) was 
obtained as the bottom product of the column. The main operating and 
process parameters for the methanol distillation section are listed in 
Table 3. Seven PI controllers were used for dynamic operations in this 
section, as shown in Fig. 2 and Table 4. The purities of the products MOH 
and WST were mainly adjusted by controlling the flow rate of MOH (i.e., 
reflux ratio) for the distillation column through valve 13, and the heat 
duty of the reboiler. The heat duty of the reboiler was adjusted by 
controlling the temperature (87.6 ◦C) of the sensitive stage (22). Addi-
tionally, lags of 1 min for the temperature measurement were assumed 
for the control loops [42] in the MSD process. 

2.2. Surrogate modeling 

The framework for developing the surrogate model for the MSD 
process is shown in Fig. 3, which is based on the dynamic model (step 1) 
described in Section 2.1. For further integration with other sections in 
the P2M system, such as electrolysis and electrical grid, the MSD process 
can be considered as a load for the KPIs, such as energy efficiency and 

Table 2 
Controller settings and parameters for the methanol synthesis section.  

No. Controlled objectives Actuator Range of 
change 

P 
%/% 

I 
(min) 

B1 CO2 flow rate Valve V2 0–100% 1 0.5 
B2 H2 flow rate Valve V3 0–100% 1 0.5 
B3 Temperature of stream 

S2 
HX2 − 1.4–0 MW 25 20 

B4 Reactor (inlet) 
temperature 

HX3 0–2 MW 25 20 

B5 Ratio of purging flow for 
PUR1 

Valve V6 0.1% 1 4 

B7 Reactor (inlet) pressure Valve V5 31 bar (fixed) 8 5 
B14 Temperature of stream 

S4 
CL − 6.6–0 MW 8 2 

B22 Liquid level of SEP Valve V4 0–100% 14 4 
B23 Pressure of SEP1 Valve V9 0–100% 50 4 
B24 Liquid level of SEP1 Valve V8 0–100% 60 4  

Table 3 
Key operating and parameters for the methanol distillation section.   

Parameter Value 

Distillation column (D1) Feed inlet temperature, ℃ 75 
Number of stages 28 
Stage number for feed 21 
Pressure of stage 1, bar 1.1 
Pressure of stage 28, bar 1.105 
Height of column sump, m 0.4 
Inner diameter of column 1.2 
Packed height, m 2.7 
Height equivalent to a theoretical plate, m 0.1 

Gas-liquid separator (SEP2) Diameter, m 1 
Height, m 2.2 

Pump (P1/P2) Efficiency 0.8 
Discharge pressure, bar 2.0 

Heat exchanger (HX4) Weight, kg 3000 
Volume, m3 1.2 

Heat exchanger (HX5) Weight, kg 10,000 
Volume, m3 6.0  

Table 4 
Controller settings and parameters for the methanol distillation section.  

No. Controlled objectives Actuator Range of 
change 

P 
%/% 

I 
(min) 

B8 Temperature of S5 HX4 0–0.66 MW 250 4 
B9 Liquid level of column 

sump 
Valve 
V12 

0–100% 15 4 

B10 Temperature of stage 22 Reboiler 0–3.6 MW 5 3 
B11 Temperature of S8 HX5 − 3.7–0 MW 27 4 
B12 Liquid level of SEP2 Valve 

V11 
0–100% 18 4 

B13 Reflux ratio for D1 Valve 
V13 

0–100% 1 4 

B25 Pressure of SEP2 Valve 
V10 

0–100% 22 4  

Fig. 3. Framework for developing the surrogate model of MSD.  
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methanol production. The input variables and output KPIs (step 2) are 
provided in Table 5 (Section 3.2). Steps 3 and 4, shown in Fig. 3, are also 
described in Section 3.2. 

The NARX model is a type of recurrent dynamic neural network [43] 
that has been widely used for the prediction of time-series data [43–46]. 
The NARX model predicts the target output using the following equation 
[45]: 

ŷ(t+ 1) = F
(
y(t + 1), y(t), y(t − 1),⋯y

(
t − dy

)
, u(t + 1), u(t), u(t

− 1)⋯, u(t − du)
)

(1)  

where the output ̂y(t+1) is the predicted output value, F is the nonlinear 
mapping function, and du and dy are the time delays for the input u (∙) 
and output y (∙) values, respectively. The detailed architecture of the 
NARX neural network is shown in Fig. 4, where IW, LW, b, and f 
represent the input weight, layer weight, bias, and activation function, 
respectively, and TDL is the tapped delay lines of both the exogenous 
input u (∙) and output y (∙) values, which are expressed by [46]: 

i(t + 1) =

[
(u(t), u(t − 1)⋯, u(t − du) )

T
(
y(t), y(t − 1),⋯y

(
t − dy

) )T

]T

(2) 

The input portion of the NARX model includes the past and present 
values of u (∙) and past value of a real output target y (∙) or the predicted 
target feedback ŷ (∙); this generates the two architectures shown in 
Fig. 5 with open- and closed-loops, respectively. In the present study, the 
NARX model was developed using an open-loop architecture, including 
training, validation, and testing. The developed model can be trans-
formed into a closed-loop form for predictions that are multi-step ahead 
of the target output; furthermore, the closed-loop state can be switched 
back to the open-loop form when real target output values are known. 

The commonly used Levenberg–Marquardt function was selected for 
the training of the NARX model. The model performance was evaluated 
by the RMSE, MAE, and R2, which are given by the following equations 
[37]: 

RSME =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1

(
Ŷi − Yi

)2
√

(3)  

MAE =
1
N

∑N

i=1

⃒
⃒
⃒Ŷi − Yi

⃒
⃒
⃒ (4)  

R2 = 1 −

∑N
i=1

(
Ŷi − Yi

)2

1
N

∑N
i=1

(
Yi − Yi

)2 (6) 

where N represents the number of data points, and Ŷi and Yi are the 
predicted and real target output values, respectively. 

3. Results and discussion 

3.1. Energy analysis 

The MSD process is a part of green methanol production (as shown in 
Fig. 1), which can be considered as a load in the P2M system and 
evaluated by KPIs such as energy efficiency, upper and lower power 
limits, and ramp limits. In the following sections, the energy efficiency 

and other performance indices for the MSD process under different dy-
namic operations are investigated. 

A schematic diagram of the power inputs and outputs for the MSD 
process is shown in Fig. 6; the hydrogen produced by renewable elec-
tricity and methanol produced represent the main power input and 
output, respectively. Other power inputs include heat exchangers, 
recycle compressor, and pumps. The purging gases from stream PUR1, 
which contain a high content of hydrogen, were assumed to be used for 
combustion and heating other systems. The heat duty of the reboiler was 
provided by the heat from the HX2 and the possible utilities. The power 
required for pumping the cooling water for the MSD process was not 
considered. The energy efficiencies for the methanol synthesis (MS), 
methanol distillation (MD), and MSD processes were calculated by the 
following expressions, respectively: 

ηMS =
ṁCRDLHVCRD + ṁPUR1LHVPUR1 − PHX2

ṁH2LHVH2 + PHX3 + PCMP
(6)  

ηMD =
ṁMOHLHVMOH

ṁCRDLHVCRD + (PReb + PHX4) + (PP1 + PP2)
(7)  

ηMSD =
ṁMOHLHVMOH + ṁPUR1LHVPUR1

ṁH2LHVH2 + (PHX2 + PHX3 + PReb + PHX4) + (PCMP + PP1 + PP2)

(8)  

where ṁ (kmol/h) is the mole flow rate of the streams, LHV is the lower 
heating value for the gases, and P represents the heat duty of the heat 
exchangers (the duty is negative for cooling process, e.g. HX2) or the 
power inputs for the recycle compressor and pumps. 

3.1.1. Methanol synthesis process 
Frequent LC is potentially the main operation scenario involved in 

the flexible production of green methanol, where the flow rates of the 
feed gases (H2 and CO2) require adjustment. In the present study, LC 
operations between full- and half-load were conducted with a ramp rate 
(R) of 50% load per hour (considered as the condition for a basic case) 
and a total on-stream operation time of 15 h with load up and down. 

The results of the dynamic simulations of the MS process are shown 
in Fig. 7. The flow rates of the feed streams (H2 and CO2) and product 
streams (CRD and PUR1) for the LC operation conditions are shown in 
Fig. 7(a). The operation load linearly decreased during t = 1–2 h and 
increased during t = 8–9 h. The trends of the flow rate change for CRD 
and PUR1 agreed with those of the LC. The main aim of PUR1 is to 
remove the redundant reactants and/or possible inert gases accumu-
lated in the process (with the recycle stream); for example, the CO2 
source based on biogas production could contain inert gases such as 
nitrogen and methane. The gas in PUR1 contains a high concentration of 
H2 (>85 mol%) and is assumed to be a fuel product in this study, which 
could be further utilized for other purposes such as combustion. Fig. 7(b) 
presents the gas composition at the reactor inlet (stream S21) for the LC 
operation conditions. As mentioned above, there was a high H2 con-
centration in the system, and the remaining gases were primarily 
carbon-based (CO and CO2). As shown in Fig. 7(b), after the load 
reduction during t = 1–2 h, slightly increasing and decreasing trends 
were observed during t = 2–8 h for hydrogen and carbon, respectively. 
Opposite trends were observed during t = 9–15 h after the load increased 
with faster change rates of the gas composition. The slow change rates of 
the gas composition in the system were attributed to the large concen-
tration inertia of high-pressure gas present in the system (e.g., in the 
gas–liquid separator) compared with the small change in the gas 
composition. It takes more than 20 h for the gas composition to achieve a 
steady state (shown in Fig. S3, Supplementary data), but its influence on 
the system energy efficiency can be neglected within a shorter duration 
for steady operation (e.g., 2 h) after the LC operations (shown in Fig. 7d), 
and a quasi-steady-state can be assumed. Additionally, the half-load 
operation exhibited a slightly higher one-pass conversion of (CO +
CO2) in the MS reactor (R1) than that in the full-load operation; an 

Table 5 
Input and output variables for the surrogate model.  

No. Variables Range 
1 Hydrogen feed, kmol/h 44.5–89.0 
2 Energy efficiency, % 73.3–78.5 
3 Flow rate of MOH, kmol/h 41.9–89.3 
4 Inlet SN value for R1 5.95–6.41 
5 Outlet temperature for R1, ℃ 258.2–260.2 
6 Duty of the reboiler, MW 1.31–2.02  
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increase from 15.7% at t = 1 h to 16.5% at t = 7 h was noted. The slight 
difference of one-pass conversion could be attributed to the lower 
pressure drop (ΔP = 1.6 and 0.4 bar at full-load and half-load, respec-
tively) through the methanol reactor at half-load operation, which 
resulted in a higher average operating pressure and is favored by the 
methanol synthesis reactions. 

Fig. 7(c) shows the duty changes of the heat exchangers (HX1, HX2, 
and CL), and the power required of the recycle compressor (CMP) for the 
LC operation conditions. The duties of HX1 and CL, and the CMP power 
demonstrated approximately linear changes during the LC operations, 
which also corresponds to the trend of the feed gases shown in Fig. 7(a). 
The inlet cold stream and outlet hot stream of the MS reactor were well 
integrated by HX1 with duties of 6.21 MW at full-load and 3.10 MW at 
half-load. The stream S32 after HX1 (hot stream side) was cooled to 79.2 
℃ at full-load and 74.9 ℃ at half-load. However, the molar vapor 
fraction of S32 remains >99%; the cooler CL is necessary for further 
condensing the methanol and water in the gas phase of S32 with the 
cooling duties of 3.29 MW and 1.40 MW at full- and half-load, respec-
tively. Additionally, the cooling of the stream S32 with low-grade heat is 
the main energy loss for the MS process. The objective of the heat 
exchanger HX2 connected to the reactor R1 was to partially exchange 
the high-grade heat from the hot stream S3 to the reboiler in the MD 
process. The heat duty of HX2 displayed small fluctuations at the minute 
level during the LC operations, which are attributed to the thermal 
inertia of the reactor (for instance, the reactor tube with stainless steel 

and solid catalyst) and the temperature change at the reactor (R1) 
outlet. Fig. 7(d) shows the energy efficiency for the MS process during 
the LC operations with different ramp rates (ramp time of T = 0.25–2 h). 
The energy efficiency for the MS process slightly increased with a 
decrease in load (from 87.7% at t = 0 h to 90.2% at t = 7 h), which is 
mainly attributed to a lower mean temperature difference (MTD) ach-
ieved for HX1 at half-load. The design of HX1 is based on the condition 
of 100% load with a MTD value of 24.0 ℃. The MTD value was lower 
(19.0 ℃) for the half-load operation, which indicated that a lower inlet 
temperature (hot side) for HX1 can be set to preheat the cold stream (S1) 
to 220 ℃. The inlet temperature for HX1 was adjusted from 240 ℃ at 
full-load to 232 ℃ at half-load, which resulted in a lower outlet tem-
perature (hot side), and relatively lower energy loss through the cooling 
process in CL. In addition, conditions with different ramp time (T =
0.25–2 h) for the LC operations were also investigated, which displayed 
similar trends. Larger fluctuations were observed for the conditions with 
a smaller ramp time, for instance, an efficiency range of 79.3–94.1% 
with T = 0.25 h (corresponding to R = 200% load / h), which is 
attributed to the fluctuations of HX2 as mentioned above for Fig. 7(c). 

3.1.2. Methanol distillation process 
The dynamic simulation results for the MD process following MS are 

shown in Fig. 8. The flow rate changes of the product streams (MOH and 
WST) during the LC operations are shown in Fig. 8(a), and the flow rate 
of the feed stream CO2 is also shown for comparison. The trends of the 

Fig. 4. Architecture of the NARX model.  

Fig. 5. NARX neural networks: (a) series–parallel architecture; (b) parallel architecture.  
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product streams were close to that of the feed stream CO2, which 
changed linearly during the LC operations. Small lags were observed for 
the product streams after the LC operations t = 2 h and t = 9 h. The total 
CO2 conversion for the MSD process was found to be 97.6% at both full- 
load and half-load. 

Fig. 8(b) presents the purity changes of the MOH and WST from the 
MD process and the change in the reflux ratio (flow rate ratio of REF/ 
MOH) for D1. The purity requirements of 99.7 wt% for the MOH was set, 
assuming fuel-grade methanol can be obtained for fuel blending. For 
example, a water content < 0.5 wt% is required in the methanol fuel 
standard ASTM 5797 [47]. A high mass fraction of water (>99.9 wt%) 
was also set, to avoid wastage of MOH from the bottom of the distillation 
column and to reduce the load on possible downstream water treatment. 
As shown in Fig. 8(b), the product purities (for MOH and WST) were 
well-controlled with only small fluctuations during the LC operations. 
The reflux ratio for the distillation column linearly increased from 
approximate 1.2 at full-load to 2.2 at half-load (adjusted by RAMP 3 in 
Fig. 2), which can be primarily attributed to the hydraulic concern of the 
distillation column. Compared with the condition at full-load operation, 
the vapor and liquid flow in the column were much lower at half-load; 
however, lower limits for the vapor (represented by pressure drop) 
and liquid flow were required to maintain efficient heat and mass 
transfer in the column. Consequently, a higher reflux ratio was required 
when the vapor or liquid flow was close to the minimum limit. In this 
study, commercial SULZER CY gauze packing, typically used for the MD 
process, was employed for the hydraulic evaluations of the distillation 
column (D1). The higher reflux ratio at half-load also resulted in a 

relatively higher reboiler duty (as shown in Fig. 8(c)), which was 1.40 
MW compared with the full-load value of 1.91 MW. Additionally, under 
both full-load and half-load operations, 36% of the heat duty of the 
reboiler could be covered by the heat exchanged from HX2 (shown in 
Fig. 7(c)) in the MS section. Fig. 8(d) presents the energy efficiencies for 
the MD process during the LC operations with a ramp time of T = 0.25–2 
h. Compared with the MS process, the MD process, as a traditional en-
ergy consumption process, exhibited lower energy efficiencies; more-
over, the energy efficiency was lower at half-load (decreasing from 
86.8% at t = 0 h to 82.4% at t = 7 h) due to the relatively higher reboiler 
duty required as mentioned above. Similar to the trends of the MS sec-
tion, larger fluctuations of energy efficiency were observed for shorter 
ramp durations, for instance, the efficiency range of 78.9–92.3% with T 
= 0.25 h. After the LC operations, it took approximately 1–2 h for the 
methanol distillation system to reach a quasi-steady-state. 

3.1.3. Methanol synthesis and distillation process 
Based on the simulation results for the MS and MD processes, the 

total energy efficiencies of the MSD process are presented as shown in 
Fig. 9(b) for the LC operations with T = 0.25–2 h. The trends of the 
energy changes are similar to those for the MD process because of the 
larger fluctuations compared with those for the MS process. Storage of 
crude methanol (CRD) can be considered to decouple the MS and MD 
processes to some extent, which can improve the efficiency of the MSD 
process but with additional capital and operating expenses. For the basic 
case of T = 1 h, the efficiencies for the MSD process were 77.1% and 
75.4% at full- and half-scales, respectively, corresponding to input 

Fig. 6. Schematic diagram of the power inputs and outputs for the MSD process.  
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powers of 20.3 MW and 102 kW, as shown in Fig. 9(a), and a quasi- 
steady-state regarding energy efficiency of the whole system was ach-
ieved within 1 h after each LC operation. 

3.2. Surrogate modeling 

3.2.1. Design of computer experiments 
The surrogate modeling for the MSD process with LC operations was 

based on the dynamic model developed in Section 3.1. The KPIs for the 
process selected as the input (i.e., hydrogen feed flow rate, which rep-
resents the operating load) and output variables of the surrogate model 
are listed in Table 5. A ramp rate of R = 50% / h was set for each LC 
operation. The computer experiment was designed, which generated 
data through dynamic operations at different operating loads (full- and 
half-load), as shown in Fig. 10(a). The duration of steady operation after 
each LC operation is 2 h, assuming that a quasi-steady-state was 
approached based on the simulation results in Section 3.1. The total 
duration for the dynamic simulation, containing 34 LC operations and 
32,406 data points (including the input and output variables), was 108 h 
with a sampling time of 72 s. The data from the operating time of t =
0–64.2 h (including 25 LC operations), t = 64.2–86 h (including 9 LC 
operations), and t = 86–108 h (including 9 LC operations) were used for 
the training, validation, and testing datasets (herein referred to as 

condition 1), respectively. Additionally, a testing dataset (condition 2) 
generated under continuous LC operations, as shown in Fig. 10(b), was 
also considered. 

3.2.2. Surrogate modeling using the NARX model 
The surrogate modeling was conducted for the MSD process based on 

the datasets generated in Section 3.2.1, and the NARX model described 
in Section 2.2. The values of 2 and 6 were selected for the input and 
feedback delays and size of the hidden neurons for the NARX model, 
respectively, considering the balance between model accuracy and 
computational time. The NARX model was trained, validated, and tested 
using Matlab. The modeling results exhibited good accuracy by the 
NARX network, and the evaluated performance for the testing data 
(condition 1) showed values of RMSE = 3.09 × 10-5, MAE = 2.30 × 10-4, 
and R2 = 1.0. Fig. 11(a) provides a comparison of the estimated energy 
efficiency by the NARX model against the untrained testing dataset 
(condition 1), where good accuracy was achieved. Similar trends were 
also observed for other output variables, as shown in Table 5. 

Furthermore, the constructed NARX network was tested for the 
extended condition with continuous LC operations, under which there 
was no time for the system to achieve a quasi-steady-state after each LC 
operation. The testing results shown in Fig. 11(b) demonstrate that the 
constructed NARX model is possible to track the untrained testing data 

Fig. 7. (a) Flow rates of feed and product streams; (b) gas composition for stream S21; (c) heat duties of the HX1, HX2, and CL, and power required of CMP during 
the LC operations with T = 1 h; and (d) energy efficiencies for the methanol synthesis process during the LC operations with T = 0.25–2 h. 
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Fig. 8. (a) Flow rates of feed and product streams; (b) mass fractions of methanol and water for stream MOH and WST, respectively, and the reflux ratio of D1; (c) 
duties of the exchangers HX2, HX4, and the reboiler; and (d) energy efficiencies for the MD process during the LC operations with T = 0.25–2 h. 

Fig. 9. (a) Power inputs and (b) energy efficiencies for the MSD process during the LC operations with T = 0.25–2 h.  
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under condition 2 with relatively acceptable performance (RMSE =
0.075, MAE = 0.015, and R2 = 0.976). Although condition 2 may not be 
the regular operating condition for the MSD process, there is potential 
for the constructed NARX network to capture its dynamic characteristics 
with good accuracy by adding additional training data under this 
condition. 

4. Conclusions 

In the present study, the MSD processes for a pilot-scale green 
methanol production (corresponding to 22,236 tons/year) were inves-
tigated by dynamic modeling and simulations. The LC operations for the 
MSD process were investigated, focusing on the energy analysis and 
dynamic characteristics of the system. Based on the constructed dynamic 
model, surrogate modeling for the MSD process was conducted using the 
NARX model. 

For the MS process, the energy efficiency was between 87.7% and 
90.2% during the LC operations (between full- and half-load) with a 
ramp time of T = 1 h (ramp rate of R = 50% / h). Relatively lower energy 
loss was achieved through the cooling process for the half-load opera-
tion, owing to the lower MTD value of the main heat exchanger HX1. 
Larger fluctuations were observed for the conditions with a smaller ramp 
time (e.g., energy efficiency with a range of 79.3–94.1% under the 
condition of T = 0.25 h), which was primarily attributed to the thermal 
inertia of the reactor. 

For the MD process, the product purities for the MOH and WST can 
be well-controlled during the LC operations by adjusting the reflux ratio. 
Compared with MS, the MD process exhibited lower energy efficiencies 
of 86.8% at full-load and 82.4% at half-load; moreover, the energy ef-
ficiency was lower at half-load due to the relatively higher reboiler duty 
required; additionally, larger fluctuations of energy efficiencies (effi-
ciency range of 78.9–92.3%) were observed for shorter ramp durations 
(T = 0.25 h). The total efficiencies for the MSD process under the con-
dition of T = 1 h were 77.1% and 75.4% at the full- and half-scales, 
respectively. 

The surrogate modeling for the MSD process by the NARX network 
exhibited good accuracy with the RMSE = 3.09 × 10-5, MAE = 2.30 ×
10-4, and R2 = 1.0. Additionally, the developed NARX model can track 
the untrained testing data for an extended condition with continuous LC 
operations with relatively acceptable performance (RMSE = 0.075, 
MAE = 0.015, and R2 = 0.976), which can be further improved. The 
constructed NARX model can be further integrated with the models for 
other sections of the power-to-methanol process. Similarly, the appli-
cations of surrogate modeling also have potential for other power-to-x 
processes. 
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[1] Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, et al. Paris 
Agreement climate proposals need a boost to keep warming well below 2 ◦C. 
Nature 2016;534(7609):631–9. https://doi.org/10.1038/nature18307. 

[2] Bloess A, Schill W-P, Zerrahn A. Power-to-heat for renewable energy integration: A 
review of technologies, modeling approaches, and flexibility potentials. Appl 
Energy 2018;212:1611–26. https://doi.org/10.1016/j.apenergy.2017.12.073. 

[3] Ren G, Ma G, Cong N. Review of electrical energy storage system for vehicular 
applications. Renew Sustain Energy Rev 2015;41:225–36. https://doi.org/ 
10.1016/j.rser.2014.08.003. 

[4] Sternberg A, Bardow A. Power-to-What?-Environmental assessment of energy 
storage systems. Energy Environ Sci 2015;8(2):389–400. https://doi.org/10.1039/ 
C4EE03051F. 

[5] Thema M, Bauer F, Sterner M. Power-to-Gas: Electrolysis and methanation status 
review. Renew Sustain Energy Rev 2019;112:775–87. https://doi.org/10.1016/j. 
rser.2019.06.030. 

[6] Schmidt P, Batteiger V, Roth A, Weindorf W. Power-to-liquids as renewable fuel 
option for aviation: a review 2018:127–40. 10.1002/cite.201700129. 

[7] Schemme S, Samsun RC, Peters R, Stolten D. Power-to-fuel as a key to sustainable 
transport systems – an analysis of diesel fuels produced from CO2 and renewable 
electricity. Fuel 2017;205:198–221. https://doi.org/10.1016/j.fuel.2017.05.061. 

[8] Lonis F, Tola V, Cau G. Assessment of integrated energy systems for the production 
and use of renewable methanol by water electrolysis and CO2 hydrogenation. Fuel 
2021;285:119160. https://doi.org/10.1016/j.fuel.2020.119160. 

[9] Bergins C, Tran K, Koytsoumpa E, Kakaras E, Buddenberg T, Sigurbjörnsson Ó. 
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