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Abstract: This paper offers three easy-to-use metaphor-less optimization algorithms proposed by
Rao to solve the optimal power flow (OPF) problem. Rao algorithms are parameter-less optimization
algorithms. As a result, algorithm-specific parameter tuning is not required at all. This quality makes
these algorithms simple to use and able to solve various kinds of complex constrained optimization
and engineering problems. In this paper, the main aim to solve the OPF problem is to find the optimal
values of the control variables in a given electrical network for fuel cost minimization, real power
losses minimization, emission cost minimization, voltage profile improvement, and voltage stability
enhancement, while all the operating constraints are satisfied. To demonstrate the efficacy of Rao
algorithms, these algorithms have been employed in three standard IEEE test systems (30-bus, 57-bus,
and 118-bus) to solve the OPF problem. The OPF results of Rao algorithms and the results provided
by other swarm intelligence (SI)/evolutionary computing (EC)-based algorithms published in recent
literature have been compared. Based on the outcomes, Rao algorithms are found to be robust and
superior to their competitors.

Keywords: fuel cost; optimal power flow; power losses; voltage stability; voltage profile; emission

1. Introduction

With the inclusion of different kinds of power electronic appliances and renewable
energy sources in modern inter-connected restructured power systems, the importance of
solving the OPF problem is increasing day by day. Optimal power flow results are needed
for economic operation, planning, and control of the existing electrical grid and future ex-
pansion planning. In a given electrical network, the OPF solution must regulate the control
or decision variables set in a feasible region that optimizes pre-defined objective functions.
In the formulation of the OPF problem, fuel cost minimization (FCM) is frequently used as
a primary objective function in addition to other objectives like voltage stability enhance-
ment (VSE), voltage profile improvement (VPI), real power losses minimization (RPLM),
and emission cost minimization (ECM) via readjustment of control variables, taking into
account both operational and physical constraints [1]. The mathematical formulation of
the OPF problem is complex. It is a highly non-linear, high-dimensional, non-differential,
multi-modal, and non-convex problem with discrete and continuous control variables.
Carpentier introduced a first-time OPF problem based on the economic load dispatch in
the early 1960s [2,3].
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Many classical optimization techniques (COTs) [4,5] such as linear programming,
non-linear programming, mixed integer programming, interior point method, etc., were
employed during the early decades to handle OPF problems. While some COTs have
outstanding convergence properties, many of them are often used in the industry. Their
disadvantages include the following: most of the conventional algorithms are deterministic,
except hill-climbing, thus they are unable to find the global optimal solution, and they can-
not efficiently manage binary or integer variables. In addition, conventional optimization
methods require initial points (except for linear programming and convex optimization),
thus the COTs are not appropriate for solving the OPF problem.

Various evolutionary computing-based algorithms were proposed in recent litera-
ture to overcome the demerits of classical optimization techniques and solve the complex
constrained optimization problem. In a couple of years, the EC techniques are attract-
ing power engineers and researchers to solve OPF problems because of their efficacy in
handling various types of engineering and complex optimization problems [6,7]. Some
of these techniques are the: bat search algorithm (BSA) [8]; improved colliding bodies
optimization (ICBO) [9]; back-hole-based optimization (BHBO) [10]; multi-agent-based dif-
ferential evolution approach (MADE) [11]; adaptive group search optimization (AGSO) [12];
biogeography-based optimization (BBO) [13]; moth swarm algorithm (MSA) [14]; water
evaporation algorithm (WEA) [15]; symbiotic organisms search algorithm (SOS) [16]; tree-
seed algorithm (TS) [17]; differential search algorithm (DSA) [18]; salp swarm optimizer
algorithm (SSO) [19], etc.

Rao algorithms and many modified versions of Rao algorithms have been used to
solve a wide range of optimization problems including the optimal reactive power dispatch
with renewable energy [20], multi-objective optimization of selected thermodynamic cy-
cles [21], constrained design optimization of selected mechanical system components [22],
engineering design optimization [23], estimation of photovoltaic cell parameters [24], clas-
sification of Parkinson’s disease [25], OPF problem with renewable energy sources [26],
multi-objective design optimization of selected heat sinks [27], and many more.

The authors found that all EC/SI-based algorithms have some advantages and dis-
advantages through the literature survey. Two main parts of any EC/SI-based algorithm
are exploration and exploitation, or intensification and diversification. Some algorithms
have good exploration capability but poor exploitation, and vice versa. Some algorithms
are more suitable to solve certain types of problems than others. It is logically proved
that any single EC/SI-based optimization algorithm does not have the potential to solve
various types of engineering and complex optimization problems, thus, the “No Free
Lunch” theorem encourages the development of new algorithms [28].

Meta-heuristic algorithms, notwithstanding their benefits, have several drawbacks.
They need parameter tuning to find the near-global best solution. It has been observed
that parameter tuning of meta-heuristic optimization algorithms plays a very important
role and is a very crucial and time-costly task for solving a given optimization problem.
Therefore in this paper, the authors proposed a robust optimization technique called Rao
algorithms to resolve the OPF problem. The proposed algorithms are comparatively new
meta-heuristic optimization algorithms developed by Rao [29,30].

Rao algorithms are parameter-less optimization algorithms. As a result, algorithm-
specific parameter tuning is not required at all. This quality makes these algorithms simple
to apply for solving different kinds of optimization problems. The working principle of Rao
algorithms is based on the worst and best solutions achieved throughout the optimization
and random interaction between the candidate solutions.

The main contributions of this paper are:

• To develop Rao algorithms to solve OPF problems with six objective functions, namely
FCM, VSE under normal and contingency conditions, VPI, RPLM, and ECM.

• To apply Rao algorithms to solve various multi-objective OPF problems by trans-
forming the multi-objective OPF problem into a single objective OPF problem using
weighing factors.
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• To check the efficiency and supremacy of Rao algorithms by applying these algo-
rithms to solve the OPF problem in three standard IEEE (30-bus, 57-bus, and 118-bus)
test systems.

• To compare the simulation outcomes acquired by Rao algorithms for the above-
mentioned objective functions with the results of other methods mentioned in re-
cent literature.

• The OPF results demonstrate that the suggested Rao algorithms are efficient and
robust in most of the cases over other popular methods, which are reported in re-
cent literature.

In this paper, the authors propose Rao algorithms, which are recently devolved power-
ful optimization algorithms, to solve OPF problems considering technical and economical
objective functions in three standard IEEE (30-bus, 57-bus, and 118-bus) systems. The rest
of the paper is organized as follows: Section 2 covers the representation of OPF problems;
Section 3 provides details of Rao algorithms to solve OPF problems; Section 4 provides
the OPF results attained by Rao algorithms; and in Section 6, the conclusion is provided.

2. Problem Formulation

The OPF problem formulation aims to find the optimal setting of the control variables
for a given electrical network that optimizes the pre-defined objective functions while all
operating constraints and power flows are within the operating limit [10,11]. Mathemati-
cally, the objective function, together with the operating constraints of the OPF problem
selected in this work, is given by Equations (1)–(3):

Minimize Zmin(m, n) (1)

Subject to the constraints;
g(m, n) = 0 (2)

and
h (m, n) ≤ 0 (3) (3)

Zmin(m, n) is an objective function that needs to be optimized; g is the equality con-
straints representing the non-linear load flow equations; and h is the inequality constraints
representing the system operating limits.

The dependent variables (m) and control variables (n) are described in Equations (4) and (5):

m =
[
Pg1 , V1 . . . VNLB, Qg1, . . . QgNGN , S1, . . . SNtl

]
(4)

n =
[
Pg2 . . . Pg NGN , Vg1 . . . VgNGN , QC1 . . . QCNC , T1 . . . TNTR

]
(5)

where, Pg and Qg denote the active and reactive power outputs of generator units. VL
and Vg represent the load and generator bus voltages, respectively. QC and TTR represent
the shunt VAR compensation and transformer tap-setting, respectively. Pg1 is the slack bus
active power output. NGN, NC, NTR, NLB, and Ntl correspond to the number of generators,
number of VAR compensation units, numbers of regulating transformers, number of load
buses, and number of transmission lines, respectively.

Constraints

Two types of constraints are involved in the OPF problem, namely equality and
inequality [31].

(a) Equality Constraints

The equality constraints g (m, n) represent the load flow equation and can be described
by Equations (6) and (7):

PLoss = ∑NB
i=1 Pgi −∑NB

i=1 Pdi (6)

QLoss = ∑NB
i=1 Qgi −∑NB

i=1 Qdi (7)
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where PLoss and QLoss denote the total active and reactive power loss for a given electrical
system, respectively. NB represents the number of buses. Pdi and Qdi are the active and
reactive power demands at the ith bus.

(b) Inequality Constraints

The operational limits of various power system equipment are expressed by the in-
equality constraints h (m, n), which are described by Equations (8)–(14):

• Generator Constraints:

For each generator unit, the active powers (Pgk), reactive powers (Qgk), and bus voltage
(Vgk) should lie in between their minimum and maximum limits.

Pmin
gk
≤ Pgk ≤ Pmax

gk
k = 1 . . . . . . NGN (8)

Vmin
gk
≤ Vgk ≤ Vmax

gk
k = 1 . . . . . . NGN (9)

Qmin
gk
≤ Qgk ≤ Qmax

gk
k = 1 . . . . . . NGN (10)

• Shunt VAR compensator constraints:

The controllable VAR sources (QCk ) are regulated to their lowest and maximum limits:

Qmin
Ck
≤ QCk ≤ Qmax

Ck
k = 1 . . . NC (11)

• Transformer Constraints:

Transformer tap settings (Tk) are retained within the maximum and minimum limits.

Tmin
k ≤ Tk ≤ Tmax

k k = 1 . . . . . . NTR (12)

• Security Constraints:

The voltage at load buses (VLk ) and the power flow in transmission lines (Slk ) should
be retained within their respective minimum and maximum limits.

Vmin
Lk
≤ VLk ≤ Vmax

Lk
k = 1 . . . . . . NLB (13)

Slk ≤ Smax
lk

k = 1 . . . . . . Ntl (14)

(c) Incorporation of Constraints

The penalty factor approach is used in the OPF problem to efficiently include the work-
ing limits of operating constraints, such as bus voltage constraints, line flows, and generator
constraints. The penalty factor approach penalizes each violation by multiplying it by
a large number so that infeasible solutions are rejected and only feasible solutions are
considered. To find feasible solutions [30], the above-mentioned inequality constraints are
included and the augmented objective function is obtained by Equation (15).

Zaug = Zmin(.) + C1.H
(

Pg1

)
+ C2 ∑NGN

i=1 H
(
Qgi

)
+ C3 ∑NLB

i=1 H
(
VLi

)
+ C4 ∑Ntl

i=1 H
(
Sli

)
(15)

H(xi) =


(xi − xi,max)

2 i f xi > xi,max

(xi,min − xi)
2 i f xi < xi,min

0 i f xi,min ≤ xi ≤ xi,max

(16)

where H(xi) is the penalty function of variable xi. Here, xi shows a dependent variable. In
addition, xi,max, and xi,min are the upper and lower limits of the variable xi, respectively.

The three variants of the proposed Rao algorithms are applied to solve the OPF
problems considering inherent complexities such as non-linear, multi-extremism, high
dimensionality, and non-convexity property. In this paper, all the control variables are
considered to be continuous.
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3. Rao Algorithms

The proposed Rao algorithms employ the worst and best solutions, which can be
obtained during the phases of optimization and random interaction among candidate
solutions. The key benefit of the proposed algorithms is their algorithm-specific parameter-
less property and hence these algorithms can be easily implemented for solving different
types of optimization problems [21–23,29].

Assume that there is an ‘m’ population size (i.e., candidate solutions, k = 1, 2, . . . ,
m) and ‘n’ design variables (i.e., j = 1, 2, 3, . . . , n) for any iteration i. The best candidate
will provide the best value of an objective function in all the candidate solutions, while
the worst candidate will give the worst value of the objective function. During the ith
iteration, if Ri,j,k is the jth variable value for the kth candidate, its value is updated
according to Equations (17)–(19).

Rj,k,i
′ = Rj,k,i + α1,j,i

(
Rj,best,i − Rj,worst,i

)
(17)

Rj,k,i
′ = Rj,k,i + α1,j,i

(
Rj,best,i − Rj,worst,i

)
+ α2,j,i

(∣∣∣Rj,k,ior Rj,l,i

∣∣∣− ∣∣∣ Rj,l,ior Rj,k,i

∣∣∣) (18)

Rj,k,i
′ = Rj,k,i + α1,j,i (Rj,best,i−

∣∣∣Rj,worst,i

∣∣∣) + α2,j,i

(∣∣∣Rj,k,ior Rj,l,i

∣∣∣− (
Rj,l,ior Rj,k,i

))
(19)

In Equations (17)–(19), the value of the jth variable for the best candidate is Rj,best,i
and the value of the jth variable for the worst candidate is Rj,worst,i. The modified value of
Rj,k,i is Rj,k,i

′. For the jth variable, α1,j,i and α2,j,i are the two random numbers in the range
(0, 1) during the ith iteration [29].

The term “Rj,k,i or Rj,l,i” in Equations (17)–(19) shows that the solution for candidate k
is compared with any randomly picked candidate solution l and the information is shared
based on objective function values. If the kth solution’s objective function value is better
than the lth solution’s objective function value, the term “Rj,k,i or Rj,l,i” becomes Rj,k,i and
in that case, “Rj,l,i or Rj,k,i” becomes Rj,l,i. Similarly, the term “Rj,k,i or Rj,l,i” becomes Rj,l,i
when the objective function value of the lth solution is better than the fitness value of kth
solution and in such condition, the expression “Rj,l,i or Rj,k,i” becomes Rj,k,i.

The flowchart of the Rao algorithm is shown in Figure 1. The flowcharts for the Rao-
2 and Rao-3 algorithms will be the same, except that Equation (17) will be replaced by
Equations (18) and (19) in either chart, respectively.Energies 2021, 14, x FOR PEER REVIEW 6 of 27 
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Computational Steps of Rao Algorithms for the OPF Problem

The following are the computational steps for applying Rao algorithms:

1. Randomly generate the initial population with control variables and set the stopping
criteria, i.e., It_max.

2. Set iterations count to It = 0.
3. Identify the worst and best solutions in the population by observing the value of

the augmented objective function (15).
4. Update the solutions based on the worst and best solutions (17).
5. Proceed to step 6 if the updated solution is better than the previous solution; otherwise,

proceed to step 7.
6. Replace the old solution with the new one. Go to step 8.
7. Keep the old solution.
8. If It < It_max, increase the count of iteration (i.e., It = It + 1) by 1 and go to step 3.

Otherwise go to step 9.
9. Stop and display objective function value of best results.

4. OPF Results and Discussion

Three standard test systems, IEEE (30-, 57-, and 118-bus), are used to check the efficacy
of the Rao algorithms considering various objective functions. Several trials have been
carried out but the best results obtained and presented in this paper are with the population
size (pop.) = 40 and the maximum number of iterations (It_max) = 100 for the IEEE 30-bus
system, while pop. = 50 and It_max = 150 for the IEEE 57-bus and IEEE 118-bus systems.
All the computations were carried out on a 1.7 GHz Intel Processor, 4GB RAM, Core i3, and
64-bit operating system using the MATLAB-13a computing environment on a personal
computer (PC).

In various cases of these systems, the converged solution strictly followed all the lower
and upper operating limits, which included reactive and active power generation out-
put, line loading, and load bus voltage magnitudes. Under this condition, the value of
the penalty was observed to be zero, which guarantees a feasible solution. It has been seen
that Rao algorithms’ numerical results are better in most of the cases than the reported
results as mentioned in recent literature.

Performance of Rao-1, Rao-2, and Rao-3 is found to be competitive with one another
as mentioned in [30]. In this paper, different topologies have been considered because
the different topologies have different problem dimensions and complexities. The pro-
posed Rao algorithms have been applied on three standard IEEE test systems, i.e., 30-bus,
57-bus, and 118-bus, which have 24 control variables, 33 control variables, and 130 con-
trol variables, respectively, to test the efficacy of the proposed algorithm for different
problems dimensions.

4.1. IEEE 30-Bus Test System

The system data along with control variables’ operating limits are taken from Refer-
ence [32] and given in Table 1. The emission and fuel cost coefficients of the IEEE 30-bus
system are taken from [33]. For this system, 30 runs were performed using Rao algorithms
to solve the different objective functions of the OPF problem and the best results out of
30 independent trials are given in this paper.

Table 1. Details of the IEEE 30-bus test system.

Control
Variables Nbus Ntl NGN NLB NC NTR Voltage Limit

(PQ Bus)
Voltage Limit

(PV Bus)

24
(05+06+09+04) 30 41

6 (@ G1, G2,
G5, G8, G11,

G13)
24

9 (@ Sh 10, Sh 12, Sh
15, Sh 17, Sh 20, Sh 21,

Sh 23, Sh 24, Sh29)

4 (@ Nt 11,
Nt 12, Nt

15 & Nt 36)
(0.94:1.06) (0.95:1.1)
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4.1.1. Case 1: Fuel Cost Minimization (FCM)

Here, the first objective of the OPF problem is to reduce the total cost of generation or
the fuel cost [8]. This function can be described as Equation (20):

Fcost(a, b) =
NGN

∑
i=1

fi
(

Pgi

)
($/h) (20)

All the generating units’ cost characteristics are quadratic and can be stated as
Equation (21).

fi
(

Pgi

)
= Ai + BiPgi + CiP2

gi
($/h) (21)

The minimum cost attained by the Rao-3 algorithm is 799.9683 $/h, while Rao-2
and Rao-1 algorithms provided the minimum fuel cost of 799.9918 $/h and 800.4391 $/h,
respectively. Table 2 compares the simulation results of Case 1 obtained by the proposed
algorithms and other reported algorithms listed in recent literature. The OPF results of
the proposed Rao-3 algorithm and optimal control variable settings are presented in Table 3.
Based on the outcomes, it is clear that the Rao-3 algorithm provided the least value of
the fuel cost as compared to the other methods. This demonstrates the effectiveness of
the proposed Rao-3 algorithm as compared to Rao-2 and Rao-1 algorithms, as well as other
competitors for this case. The fuel cost convergence characteristics of Case 1 are presented
in Figure 2.

Table 2. Case 1: FCM in the IEEE 30-bus system.

Algorithm Fuel Cost ($/h) Time (s)

Rao-3 799.9683 89.56

Rao-2 799.9918 89.74

Rao-1 800.4391 91.62

MSA [14] 800.5099 -

MPSO [14] 800.5164 -

MDE [14] 800.8399 -

MFO [14] 800.6863 -

FPA [14] 802.7983 -

DSA [18] 800.3887 -

EEA [34] 800.0831

Jaya [35] 800.479 -

QOJA [36] 800.352 -

MSO [37] 801.571 -

IMFO [38] 800.3848 -

MFO [38] 800.6206 -

GA [38] 800.4346 -

PSO [38] 800.4075 -

TLBO [38] 800.4104 -

ARCBBO [39] 800.5159 -

RCBBO [39] 800.8703 -

GWO [40] 801.41 -

DE [40] 801.23 -
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Table 2. Cont.

Algorithm Fuel Cost ($/h) Time (s)

MGBICA [41] 801.1409 -

GBICA [41] 801.1513 -

ABC [42] 800.66 -

SKH [43] 800.5141 -

ECHT-DE [44] 800.4148 -

SF-DE [44] 800.4131 133.1

SP-DE [44] 800.4293 -

MGOA [45] 800.4744 -

Tabu Search [46] 800.29 -

Table 3. Optimum values of control variables for Case 1, Case 2, and Case 3 of the IEEE 30-bus system.

S.
Number

Control
Variable

Case 1
(FCM)

Case 2
(VPI)

Case 3
(VSE)

Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3

Generator active power output

1 PG2 0.4869 0.4923 0.4879 0.4957 0.4855 0.4827 0.4884 0.4906 0.4873

2 PG5 0.2131 0.2134 0.2144 0.2137 0.2166 0.2176 0.2127 0.2158 0.2119

3 PG8 0.2078 0.2059 0.2093 0.2228 0.2188 0.2253 0.2044 0.2087 0.2149

4 PG11 0.1186 0.1195 0.1192 0.1253 0.1243 0.1227 0.1221 0.1143 0.1159

5 PG13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1201 0.1201

Generator voltage

6 VG1 1.1 1.0933 1.0944 1.0444 1.0504 1.0492 1.0909 1.0941 1.0948

7 VG2 1.0707 1.0751 1.0752 1.0253 1.032 1.0319 1.0748 1.0745 1.0758

8 VG5 1.0299 1.0441 1.0444 1.0078 1.0122 1.0118 1.0475 1.0435 1.043

9 VG8 1.0405 1.0491 1.0486 1.0044 1.0059 1.0072 1.052 1.0489 1.0493

10 VG11 1.1 1.1 1.0994 1.0751 1.073 1.0724 1.0999 1.0981 1.1

11 VG13 1.0592 1.0498 1.0574 0.9904 0.9696 0.9771 1.0551 1.0558 1.048

Tap settings

12 T6–9 1.1 1.0992 1.0659 1.1 1.1 1.1 1.0806 1.0382 1.1

13 T6–10 0.9 0.9 0.9267 0.9 0.9 0.9002 0.9004 0.9451 0.9014

14 T4–12 0.9763 0.9711 0.969 0.9451 0.9218 0.9229 0.9708 0.9745 0.9635

15 T28–27 0.9813 0.9735 0.9759 0.9708 0.9699 0.9713 0.9815 0.9738 0.9821

Shunt VAR source

16 QSh10 0.0369 0.05 0.0442 0.05 0.0499 0.0496 0.0457 0.0214 0.0484

17 QSh12 0.0003 0.05 0.0026 0 0.05 0.003 0.0053 0.05 0.05

18 QSh15 0.0453 0.05 0.05 0.0495 0.05 0.05 0.0481 0.0335 0.0479

19 QSh17 0.05 0.0492 0.0495 0 0.0001 0.0003 0.0499 0.0493 0.0368

20 QSh20 0.0419 0.05 0.0414 0.0496 0.05 0.05 0.0264 0.046 0.049

21 QSh21 0.05 0.0499 0.05 0.0499 0.05 0.0498 0.0499 0.0466 0.0498

22 QSh23 0.0332 0.037 0.0352 0.0496 0.05 0.0497 0.0432 0.0404 0.0418
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Table 3. Cont.

S.
Number

Control
Variable

Case 1
(FCM)

Case 2
(VPI)

Case 3
(VSE)

Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3

23 QSh24 0.05 0.0493 0.0497 0.05 0.05 0.0491 0.05 0.0489 0.0476

24 QSh29 0.0278 0.0178 0.029 0.033 0.0265 0.0285 0.0333 0.0309 0.05

Fuel cost ($\h) 800.4391 799.9918 799.9683 803.4877 803.5375 803.5304 800.0492 800.001 800.025

TVD (pu) 0.9714 1.1168 1.1356 0.1031 0.0993 0.1001 1.1481 1.1409 1.1449

Emission (ton/h) 0.3362 0.3351 0.3351 0.3315 0.3338 0.3331 0.3357 0.3355 0.3354

PLoss(MW) 9.0613 8.91 8.8872 9.7465 9.8209 9.7724 8.941 8.9086 8.9098

L-index (LI) 0.1307 0.1285 0.1281 0.1404 0.1404 0.1408 0.128 0.1278 0.1264
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4.1.2. Case 2: Voltage Profile Improvement (VPI)

The main motive of the second case is to minimize the voltage variation in all the load
buses from 1.0 pu [31] along with the fuel cost. The multi-objective function is transformed
into a single objective function by using the weighted sum method using Equation (22):

FTVD(a, b) =
NGN

∑
i=1

fi(·)$/h + ϕVD ∑
iεNLB

|Vi − 1| (22)

In the combined objective function, the value of the weighting factor (ϕVD) assigned
to voltage deviation was taken as 160.

The OPF results attained using Rao algorithms are compared with other reported
results in Table 4. As can be observed from Table 4, the Rao-2 algorithm provided the min-
imum total voltage deviation as 0.0993 pu, which is the least among the Rao algorithm
variants. In this case, the minimum total voltage deviation obtained by the proposed Rao
algorithms are slightly higher than some reported results. Such types of situations will be
there only because the different papers might have selected different weighting factors.

The optimal control variable settings are presented in Table 3, while the load (PQ) bus
voltage profile obtained by the Rao-2 algorithm in Case 2 is shown in Figure 3. Based on
the OPF results, it is clear that the Rao-2 algorithm provided the least value of the total
voltage deviation as compared to the other variants of the Rao method. This demonstrates
the effectiveness of the Rao-2 algorithm in comparison to the Rao-1 and Rao-3 algorithms
for this case.
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Table 4. Case 2: VPI in the IEEE 30-bus system.

Algorithm Fuel Cost ($/h) TVD (pu) Time (s)

Rao-3 803.5304 0.1001 88.14

Rao-2 803.5375 0.0993 87.36

Rao-1 803.4877 0.1031 89.91

MSA [14] 803.3125 0.1084 -

MPSO [14] 803.9787 0.1202 -

MDE [14] 803.2122 0.1265 -

MFO [14] 803.7911 0.1056 -

FPA [14] 803.6638 0.1366 -

IMFO [38] 803.5715 0.0954 -

MFO [38] 803.5173 0.1007 -

GA [38] 803.2347 0.1018 -

PSO [38] 803.4736 0.0978 -

TLBO [38] 803.5675 0.0939 -

ECHT-DE [44] 803.7198 0.09454 123.3

SF-DE [44] 803.4241 0.09772 -

SP-DE [44] 803.4196 0.09776 -

MGOA [45] 803.4176 0.1107 -

GOA [45] 803.4488 0.1709 -
TVD = total voltage deviation.
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4.1.3. Case 3: Voltage Stability Enhancement (VSE)

The system voltage stability can be increased by reducing the L-index [8]. In this
paper, fuel cost minimization and voltage stability enhancement were considered using
the two-fold objective function as in Equation (23):

FLmax(a, b) = ∑NGN
i=1 fi(·)$/h + ϕLL (23)

where ϕL is the weight factor.
The control variables’ settings of this case obtained using the three variants of Rao

algorithms are given in Table 5. The OPF results of Rao algorithms and the results provided
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by other reported results published in recent literature have been compared in Table 5.
The OPF results in Table 5 prove that the Rao-3 algorithm is best among three variants of
Rao algorithms for Case 3. As can be observed from Table 5, the Rao-3 algorithm provided
a minimum L-index value of 0.1264, which is the least among the Rao variants. In this case,
the minimum L-index values obtained by the proposed Rao algorithms are slightly higher
than some reported results but the fuel cost is less. Such types of situations will be there
only because the different papers might have selected different weighting factors.

Table 5. Case 3: VSE in the IEEE 30-bus system.

Algorithm Fuel Cost ($/h) L-Index Time (s)

Rao-3 800.0250 0.1264 87.94

Rao-2 800.0010 0.1278 88.50

Rao-1 800.0492 0.1280 88.11

MSA [14] 801.2248 0.1371 -

MPSO [14] 801.6966 0.1375 -

MDE [14] 802.0991 0.1374 -

MFO [14] 801.668 0.1376 -

FPA [14] 801.1487 0.1376 -

IMFO [38] 800.4762 0.1255 -

MFO [38] 800.9415 0.1266 -

GA [38] 800.4385 0.1254 -

PSO [38] 800.5815 0.128 -

TLBO [38] 800.4738 0.1247 -

ECHT-DE [44] 800.4321 0.13739 130.4

SF-DE [44] 800.4203 0.13745 -

SP-DE [44] 800.4365 0.13748 -

Bisection method [47] 958.8330 0.1050 -
L-index = voltage collapse proximity indicator.

4.1.4. Case 4: Voltage Stability Enhancement (VSE) during Contingency

In Case 4, voltage stability has been improved considering single line outage (n − 1)
contingency [8]. The prime objective in this case is to improve voltage stability and reduce
the fuel cost under a single line (connected between bus number 2 to bus number 6) outage
condition. Table 6 compares the OPF results of Case 4 obtained by the proposed Rao
algorithms with other efficient optimization algorithms reported in the recent literature.
The results shown in Table 6 demonstrate the Rao-3 algorithm’s dominance over other
recently developed optimization methods. The control variables’ settings obtained in this
case using the three Rao algorithms are given in Table 7.

Table 6. Case 4: VSE during contingency results in the IEEE 30-bus system.

Algorithm Fuel Cost ($/h) L-Index Time (s)

Rao-3 818.5353 0.1363 90.65

Rao-2 810.3012 0.1439 92.32

Rao-1 827.3375 0.1485 91.87

MSA [14] 804.4838 0.1392 -

MPSO [14] 807.6519 0.1405 -

MDE [14] 806.6668 0.1398 -
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Table 6. Cont.

Algorithm Fuel Cost ($/h) L-Index Time (s)

MFO [14] 804.556 0.1394 -

FPA [14] 805.5446 0.1415 -

Table 7. Optimum values of control variables of Case 4, Case 5, and Case 6 of the IEEE 30-bus system.

S.
Number

Control
Variable(p.u)

Case 4
(VSE) during Contingency

Case 5
(RPLM)

Case 6
(ECM)

Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3

Generator active power output

1 PG2 0.4034 0.4515 0.4811 0.8 0.8 0.8 0.6633 0.6631 0.7421

2 PG5 0.2951 0.2132 0.214 0.5 0.5 0.5 0.5 0.5 0.4638

3 PG8 0.2935 0.2808 0.2416 0.35 0.35 0.35 0.35 0.35 0.3154

4 PG11 0.168 0.12 0.1279 0.3 0.3 0.3 0.3 0.3 0.2867

5 PG13 0.2854 0.12 0.12 0.4 0.4 0.4 0.4 0.4 0.3127

Generator voltage

6 VG1 1.0414 1.1 1.02 1.066 1.0616 1.0718 1.0737 0.9963 1.0473

7 VG2 1.0035 1.469 1.02 1.0509 1.0577 1.0679 1.0677 0.95 1.0441

8 VG5 1.0416 1.095 1.092 1.025 1.0381 1.0484 1.0477 0.956 1.0317

9 VG8 1.0799 1.095 1.08 1.0409 1.0495 1.0552 1.0539 1.0932 1.0488

10 VG11 1.0602 1.06 1.1 1.02 1.1 1.1 1.1 0.9539 1.0924

11 VG13 1.0237 1.0714 1.1 1.0452 1.07 1.063 1.0613 1.1 1.0719

Tap settings

12 T6–9 0.9602 1.0496 0.914 1.1 1.0858 1.0822 1.0445 0.9063 1.0493

13 T6–10 1.0208 1.0657 0.9747 0.9108 0.9001 0.9 0.9518 0.9054 1.0764

14 T4–12 1.0379 1.0012 0.9549 1.0307 0.9977 0.9966 0.9928 0.9762 1.0378

15 T28–27 0.9724 0.9327 0.9256 1.0072 0.9772 0.9774 0.9761 0.9156 1.0724

Shunt VAR source

16 QSh10 0.021 0.05 0.05 0.05 0 0 0.0293 0.0317 0.0217

17 QSh12 0.0324 0.05 0.05 0.045 0.0479 0.0478 0.05 0.0414 0.0429

18 QSh15 0.032 0.05 0.05 0.0495 0.039 0.0471 0.0448 0 0.0342

19 QSh17 0.0151 0.05 0.05 0.05 0.0499 0.0498 0.05 0.0349 0.0343

20 QSh20 0.0283 0.05 0.05 0.05 0.0413 0.0412 0.0413 0.0018 0.0122

21 QSh21 0.0344 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0433

22 QSh23 0.0147 0.05 0.05 0.0427 0.0371 0.0341 0.0332 0.05 0.0358

23 QSh24 0.0282 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0458

24 QSh29 0.0232 0.05 0.05 0.0205 0.0257 0.0252 0.0236 0.05 0.0383

Fuel cost ($\h) 827.3375 810.3012 818.5353 968.1496 967.6830 967.5828 942.3443 944.1722 915.2185

TVD (pu) 0.5925 0.5754 0.7439 0.4125 1.0361 1.1277 1.1261 0.821 0.5493

Emission (ton/h) 0.2792 0.3324 0.3375 0.2066 0.2066 0.2066 0.2037 0.204 0.2126

PLoss (MW) 9.2645 11.3868 14.145 3.3041 3.1086 3.0675 3.2162 3.9623 4.2325

L-index 0.1485 0.1439 0.1363 0.1391 0.1302 0.1289 0.1286 0.1328 0.1467
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4.1.5. Case 5: Real Power Loss Minimization (RPLM)

In Case 5, RPLM was selected as a prime objective function [29]. Mathematically, FLoss
can be represented by Equation (24).

FLoss(a, b) = ∑NB
i=1 Pgi −∑NB

i=1 Pdi (24)

The function FLoss is selected for the power loss as described in Equation (24). The min-
imum power loss attained by the Rao-3 algorithm is 3.0675 MW, while Rao-2 and Rao-1
algorithms provided minimum power losses of 3.1086 MW and 3.3041 MW, respectively.
The results of Rao algorithms and optimal control variable settings are presented in Table 7.
Table 8 compares the simulation results of Case 5 obtained by the proposed algorithms and
other published methods proposed in recent literature. Based on the OPF outcomes, it can
be concluded that the Rao-3 algorithm provided the least value of power loss as compared
to the other methods. The power loss convergence characteristics of Case 5 are presented
in Figure 4.
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Table 8. Case 5: RPLM in the IEEE 30-bus system.

Algorithm Power Loss (MW) Time (s)

Rao-3 3.0675 85.72

Rao-2 3.1086 90.89

Rao-1 3.3041 89.07

MSA [14] 3.1005 -

MPSO [14] 3.1031 -

MDE [14] 3.1619 -

MFO [14] 3.1111 -

FPA [14] 3.5661 -

MSO [37] 3.4052 -

IMFO [38] 3.0905 -

MFO [38] 3.139 -

GA [38] 3.118 -
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Table 8. Cont.

Algorithm Power Loss (MW) Time (s)

PSO [38] 3.103 -

TLBO [38] 3.088 -

SKH [43] 3.0987 -

ECHT-DE [44] 3.0850 -

SF-DE [44] 3.0845 -

SP-DE [44] 3.0844 136.4

4.1.6. Case 6: Emission Cost Minimization

For a given electrical network, the total emission cost [29] can be calculated using
Equation (25):

FECOST(x, u) =
NGN

∑
i=1

δi + µiPGi + γiP2
Gi
+ ξiexp

(
λiPGi

) ( ton
h

)
(25)

The objective function FECOST is selected for total emission cost minimization as
described in Equation (25). Table 9 compares the results obtained by the proposed Rao
algorithms for Case 6 with other efficient optimization algorithms reported in the recent
literature. The results shown in Table 9 demonstrate the dominance of the Rao-1 algo-
rithm over other variants of Rao techniques. The convergence characteristics offered by
the three Rao algorithms are shown in Figure 5. The control variables’ settings for Case 6
obtained using the three Rao algorithms are given in Table 7. As can be noted from Table 9,
the MGOA [45] algorithm offered the least emission value in comparison to the Rao-1
algorithm in this case, but Rao algorithm variants offered better results in most of the cases.

Table 9. Case 6: ECM in the IEEE 30-bus system.

Algorithm Emission (ton/h) Time (s)

Rao-3 0.2126 87.87

Rao-2 0.2040 85.45

Rao-1 0.2037 89.82

MSA [14] 0.2048 -

MPSO [14] 0.2325 -

MDE [14] 0.2093 -

MFO [14] 0.2049 -

FPA [14] 0.2052 -

DSA [18] 0.2058 -

MSO [37] 0.2175 -

IMFO [38] 0.2048 -

MFO [38] 0.2048 -

GA [38] 0.2048 -

PSO [38] 0.2048 -

TLBO [38] 0.2048 -

MGBICA [41] 0.2048 -

GBICA [41] 0.2049 -
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Table 9. Cont.

Algorithm Emission (ton/h) Time (s)

ABC [42] 0.2048 -

SKH [43] 0.2048 -

ECHT-DE [44] 0.2048 138.2

SF-DE [44] 0.2048 -

SP-DE [44] 0.2048 -

MGOA [45] 0.2025 -

GOA [45] 0.2050 -
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4.2. IEEE 57-Bus System

To evaluate the effectiveness of the Rao algorithms, they are applied to the IEEE 57-bus
system to solve OPF problems. The system data, shunt capacitor data, transformer data,
and control variables’ limits are taken from [48] and are shown in Table 10. The active
and reactive power demands of this system on the 100 MVA base are 12.508 and 3.364 pu,
respectively. Thirty independent runs were taken using Rao algorithms to solve the OPF
problem for this system and the best results obtained are given in this paper.

Table 10. Details of the IEEE 57-bus system.

Control
Variable Nbus Ntl NGN NLB NC NTR

Voltage
Limit

(PQ Bus)

Voltage
Limit

(PV Bus)

33
(06+07+03+17) 57 80

7 (@ G1, G2,
G3 G6, G8 G9,

G12)
50 3(@ Sh18,

Sh25, Sh23)

17 (@ Nt19, Nt20, Nt31 Nt
35, Nt 36, Nt 37, Nt 41,
Nt46, Nt54, Nt58, Nt59,
Nt65, Nt66, Nt71, Nt73,

Nt76 & Nt80)

(0.94:1.06) (0.9:1.1)

4.2.1. Case 7: Fuel Cost Minimization (FCM)

FCM is selected as the primary objective as in Case 1 and defined in Equation (20).
Table 11 compares the simulation results of Case 7 as obtained by the proposed Rao
algorithms and by other methods reported in recent literature. The minimum cost attained
by the Rao-3 algorithm is 41,659.2621 $/h, while Rao-2 and Rao-1 algorithms offered
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the minimum fuel cost of 41,872.0668 $/h and 41,771.1088 $/h, respectively. Based on
the OPF outcomes, it is clear that the Rao-3 algorithm provided the least fuel cost as
compared to other methods. This demonstrates the effectiveness of the proposed Rao-3
algorithm as compared to Rao-2 and Rao-1 algorithms, as well as other reported algorithms.
The OPF results of the proposed Rao-3 algorithm and optimal control variable settings are
presented in Table 12. The fuel cost characteristic of Case 7 is presented in Figure 6.

Table 11. Case 7 (FCM) results in the IEEE 57-bus system.

Algorithm Fuel Cost ($/h) Time (s)

Rao-3 41,659.2621 131.23

Rao-2 41,872.0668 132.94

Rao-1 41,771.1088 131.87

MSA [14] 41,673.7231 -

MPSO [14] 41,678.6762 -

MDE [14] 41,695.8123 -

MFO [14] 41,686.4119 -

FPA [14] 41,701.9592 -

TSA [17] 41,685.07 75.61

DSA [18] 41,686.82 -

SSA [19] 41,672.30 80.61

MSO [37] 41,747.20 -

IMFO [38] 41,692.7178 -

MFO [38] 41,719.8471 -

GA [38] 41,700.4162 -

PSO [38] 41,684.4009 -

TLBO [38] 41,694.7778 -

SKH [43] 41,676.9152 -

ECHT-DE [44] 41,670.562 -

SF-DE [44] 41,667.85 -

SP-DE [44] 41,667.82 219.9

MGOA [45] 41,671.0980 -

GOA [45] 41,679.6792 -

Table 12. Optimum values of control variables of Case 7 and Case 8 for the IEEE 57-bus system.

S. Number Control Variable
(p.u)

CASE 7
(FCM)

CASE 8
(VPI)

Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3

Generator active power output

1 PG2 0.8722 0.9999 0.8857 0.8822 0.8866 0.4027

2 PG3 0.42 0.5217 0.4494 0.4506 0.4497 0.42

3 PG6 0.7856 0.3264 0.7324 0.7298 0.7183 0.3135

4 PG8 4.6615 4.5567 4.6028 4.6168 4.5992 4.814

5 PG9 0.8309 0.94 0.9588 0.963 0.9726 0.962

6 PG12 3.639 3.9341 3.5953 3.5936 3.607 4.087
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Table 12. Cont.

S. Number Control Variable
(p.u)

CASE 7
(FCM)

CASE 8
(VPI)

Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3

Generator voltage

7 VG1 1.0791 1.0629 1.0603 1.0484 1.0322 0.9965

8 VG2 1.0822 1.0694 1.0637 1.0526 1.0362 1.014

9 VG3 1.0602 1.0556 1.0529 1.043 1.0255 1.0097

10 VG6 1.0611 1.0493 1.0615 1.057 1.04 1.0032

11 VG8 1.0656 1.0626 1.0741 1.0757 1.0592 1.0135

12 VG9 1.0508 1.0484 1.0541 1.0502 1.0329 1.0148

13 VG12 1.0518 1.046 1.0462 1.0342 1.0175 1.044

Tap settings

14 T4–18 1.0824 1.001 1.1 0.982 1.0872 0.9031

15 T4–18 1.0075 1.0173 0.9416 1.0113 0.9243 1.0393

16 T21–20 1.0187 1.0649 1.0154 0.9892 0.991 0.9757

17 T24–25 1.0879 1.0289 0.9447 1.017 0.9452 1.1

18 T24–25 1.0887 0.9164 1.0887 1.0503 1.0952 1.0996

19 T24–26 1.0277 0.9031 1.0327 1.1 1.0224 1.0152

20 T7–29 1.0149 1.0082 0.9954 1.034 1.014 1.0054

21 T34–32 1.0011 0.9549 0.9565 0.938 0.9356 0.9334

22 T11–41 1.0006 0.9111 0.9083 0.9 0.9008 0.9002

23 T15–45 1.01 1.1 0.9781 0.989 0.9691 0.9524

24 T14–46 0.9841 0.9489 0.9612 0.9866 0.9651 0.9798

25 T10–51 1.0997 0.9788 0.9748 1.0039 0.9848 1.0138

26 T13–49 0.9037 0.9328 0.936 0.9553 0.9357 0.9001

27 T11–43 1.0938 1.0018 0.9771 1.0047 0.9745 0.9781

28 T40–56 0.9067 0.9 0.9975 1.0041 0.9975 0.9849

29 T39–57 0.9182 0.9 0.9675 0.9415 0.9384 0.9

30 T9–55 1.0134 1.1 1.0026 1.0285 1.0115 1.0146

Shunt VAR source

31 Qsh18 0.1858 0.0559 0.1724 0.0127 0.0628 0.0003

32 Qsh25 0.2803 0.1939 0.1439 0.163 0.1747 0.3

33 Qsh53 0.2381 0.1577 0.1267 0.1705 0.1481 0.3

Fuel cost ($\h) 41,771.1088 41,872.0668 41,659.2621 41,688.4417 41,691.1102 42,043.2728

TVD (pu) 1.5465 1.6713 1.6953 0.9882 0.7645 0.5725

L-index 0.231 0.2411 0.2349 0.2438 0.2415 0.2297

PLoss (MW) 17.364 16.4837 14.7262 15.4719 15.4214 18.0100
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4.2.2. Case 8: Voltage Profile Improvement (VPI)

In Case 8, improvement of the voltage profile is considered as an objective function in
addition to the fuel cost, as defined in Equation (22). The optimal control variables’ settings
are presented in Table 12. The minimum total voltage deviation attained by the Rao-3
algorithm is 0.5725 pu, while Rao-1 and Rao-2 algorithms provided the minimum total
voltage deviations of 0.9882 and 0.9882 pu, respectively. Table 13 compares the simulation
results of Case 8 obtained by the proposed Rao algorithms and other proposed methods
reported in recent literature. Based on the OPF outcomes shown in Table 13, it can be
concluded that the Rao-3 algorithm provided the least total voltage deviation compared to
the other methods. This demonstrates the effectiveness of the proposed Rao-3 algorithm
over Rao-1 and Rao-2 algorithms, as well as other algorithms. PQ bus voltage profiles
obtained in Case 8 are shown in Figure 7.

Table 13. Case 8: VPI results in the IEEE 57-bus system.

Algorithm Fuel Cost ($/h) TVD (pu) Time (s)

Rao-3 42,043.2728 0.5725 134.25

Rao-2 41,691.1102 0.7645 136.34

Rao-1 41,688.4417 0.9882 131.87

MSA [14] 41,714.9851 0.67818 -

MPSO [14] 41,721.6098 0.67813 -

MDE [14] 41,717.3874 0.6781 -

MFO [14] 41,718.8659 0.67796 -

FPA [14] 41,726.3758 0.69723 -

TSA [17] 54,045.17 0.72 75.41

DSA [18] 41,699.4 0.762 -

IMFO [38] 41,692.7178 0.7182 -

MFO [38] 41,719.8471 0.7551 -

GA [38] 41,700.4162 0.8051 -

PSO [38] 41,684.4009 0.7624 -

TLBO [38] 41,694.7778 0.712 -
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Table 13. Cont.

Algorithm Fuel Cost ($/h) TVD (pu) Time (s)

ECHT-DE [44] 41,694.82 0.81659 -

SF-DE [44] 41,697.52 0.77572 -

SP-DE [44] 41,697.50 0.77253 203.6

MGOA [45] 41,697.9735 0.7381 -

GOA [45] 41,715.1396 0.8260 -
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4.2.3. Case 9: Voltage Stability Enhancement (VSE)

In Case 9, the VSE is considered in addition to the fuel cost, as defined in Equation (23).
The control variables’ values obtained using the three Rao algorithms are provided in
Table 14. The results of Case 9 attained by the proposed Rao methods and the optimization
algorithms mentioned in the recent literature are compared in Table 15. The OPF results
shown in Table 15 also prove the dominance of the Rao-3 algorithm over other optimization
algorithms for this case.

Table 14. Optimum values of control variables of Case 9 and Case 10 for the IEEE 57-bus test system.

S. Number Control Variable
(p.u)

Case 9
(VSE)

Case 10
(RPLM)

Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3

Generator active power output

1 PG2 0.8747 0.9749 0.9637 0.3048 0.3 0.3

2 PG3 0.4513 0.4486 0.4518 1.3241 1.322 1.3549

3 PG6 0.7085 0.7029 0.7067 0.9937 0.9999 0.9996

4 PG8 4.6141 4.5994 4.5916 3.1132 3.0842 3.0604

5 PG9 0.9998 0.9324 0.934 0.9978 0.9999 0.99998

6 PG12 3.5892 3.572 3.5912 4.1 4.1 4.0999

Generator voltage

7 VG1 1.047 1.0873 1.0873 1.0542 1.0723 1.0712

8 VG2 1.0502 1.1 1.1 1.0559 1.0722 1.0721

9 VG3 1.0425 1.0672 1.0676 1.0563 1.067 1.0666
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Table 14. Cont.

S. Number Control Variable
(p.u)

Case 9
(VSE)

Case 10
(RPLM)

Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3

10 VG6 1.0569 1.0621 1.062 1.0623 1.0633 1.0631

11 VG8 1.0717 1.0689 1.0697 1.0654 1.0697 1.0695

12 VG9 1.0465 1.0507 1.0509 1.0492 1.0576 1.0572

13 VG12 1.0328 1.0384 1.0382 1.0441 1.0572 1.0567

Tap settings

14 T4–18 1.0999 0.9016 0.9 1.1 0.9117 1.1

15 T4–18 0.9081 1.1 1.0428 1.0023 1.082 0.9014

16 T21–20 1.0138 1.0321 1.0025 0.998 1.042 1.0128

17 T24–25 1.083 1.1 1.0999 0.9036 1.0356 1.0902

18 T24–25 1.1 1.0998 1.1 1.0698 0.9704 0.9354

19 T24–26 1.0252 1.0268 1.0262 1.0086 1.0109 1.0098

20 T7–29 0.9991 0.9993 0.9986 0.9953 0.9963 0.9961

21 T34–32 0.9423 0.9522 0.9476 0.9318 0.9528 0.9526

22 T11–41 0.9112 0.9129 0.9002 0.9111 0.9174 0.9025

23 T15–45 0.9707 0.9909 0.9916 0.9733 0.9892 0.9889

24 T14–46 0.9539 0.9695 0.9686 0.9671 0.9751 0.9722

25 T10–51 0.9676 0.9709 0.9699 0.9797 0.9821 0.9819

26 T13–49 0.9076 0.9389 0.9365 0.9411 0.9449 0.9451

27 T11–43 0.9643 0.9782 0.9811 0.9776 0.9817 0.9939

28 T40–56 0.9945 0.9924 1.0152 0.9826 0.9938 0.993

29 T39–57 0.9753 0.9655 0.9639 0.96 0.9624 0.9638

30 T9–55 0.9912 0.9934 0.9978 0.9986 0.9961 0.9947

Shunt VAR source

31 Qsh18 0.1139 0.0375 0.0002 0.2771 0.0002 0.0239

32 Qsh25 0.2412 0.2613 0.2576 0.1081 0.1448 0.1554

33 Qsh53 0.1405 0.1428 0.1293 0.1445 0.1339 0.129

Fuel cost ($\h) 41,670.4726 41,692.9720 41,692.6149 44,418.4740 44,438.1623 44,600.2741

TVD (pu) 1.7637 1.7835 1.8735 1.5278 1.7464 1.793

PLoss (MW) 15.0175 15.561 15.4768 10.005 9.766 9.759

L-index 0.22 0.2191 0.2186 0.2434 0.2353 0.2330

Table 15. Case 9: VSE results in the IEEE 57-bus system.

Algorithm Fuel Cost ($/h) L-Index Time (s)

Rao-3 41,692.6149 0.2186 131.78

Rao-2 41,692.9720 0.2191 132.54

Rao-1 41,670.4726 0.2200 132.76

MSA [14] 41,675.9948 0.27481 -

MPSO [14] 41,694.1407 0.27918 -
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Table 15. Cont.

Algorithm Fuel Cost ($/h) L-Index Time (s)

MDE [14] 41,689.5878 0.27677 -

MFO [14] 41,680.1937 0.27467 -

FPA [14] 41,684.1859 0.27429 -

DSA [18] 41,761.22 0.2383 -

IMFO [38] 41,673.6204 0.23525 -

MFO [38] 41,688.6522 0.2395 -

GA [38] 41,670.0872 0.2413 -

PSO [38] 41,670.1755 0.242 -

TLBO [38] 41,685.353 0.24787 -

SKH [43] 43,937.1058 0.2721 -

ECHT-DE [44] 41,671.09 0.28152 -

SF-DE [44] 41,667.53 0.28022 214.4

SP-DE [44] 41,668.45 0.28092 -

MGOA [45] 41,682.4031 0.2297 -

GOA [45] 41,698.1175 0.2395 -

4.2.4. Case 10: Real Power Loss Minimization (RPLM)

The function FLoss is selected for the RPLM as described in Equation (24). The min-
imum power loss attained by the Rao-2 algorithm is 9.759 MW, while Rao-1 and Rao-3
algorithms provided the power losses of 10.005 MW and 9.770 MW, respectively. Results
of the proposed Rao algorithms and optimal control variable settings are presented in
Table 14. Table 16 compares the simulation results of this case as obtained by the proposed
Rao algorithms and other methods reported in recent literature. The OPF results shown in
Table 16 demonstrate the superiority of the Rao-2 algorithm over Rao-1 and Rao-3, as well
as the other competitors. The power loss convergence characteristic of Case 10 is presented
in Figure 8.
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Table 16. Case 10: RPLM results in the IEEE 57-bus system.

Algorithm Power Loss (MW) Time (s)

Rao-3 9.7590 131.26

Rao-2 9.7660 132.18

Rao-1 10.005 135.77

TSA [17] 12.473 76.17

SSA [19] 11.321 81.17

SKH [34] 10.6877 -

MSO [37] 12.7435 -

CKHA [49] 11.1224 -

4.3. IEEE 118-Bus System

To demonstrate the scalability of Rao algorithms and prove their efficacy to solve
large-scale problems, all three versions of Rao algorithms were applied to solve the OPF
problem in the IEEE 118-bus test system. The IEEE 118-bus test system has 54 generation
units, two reactors, and 12 capacitors, 186 branches, and nine tap-changing transformers.
The system data along with the control variable operating limits are given in Reference [48].
Thirty independent runs were taken using Rao algorithms to solve the OPF problem
for the proposed test system and the best results obtained out of 30 trials are shown in
this section.

Case 11: Fuel Cost Minimization (FCM)

In Case 11, fuel cost is selected as the primary objective as in Case 1. The minimum
cost attained by the Rao-3 algorithm is 129,220.6794 $/h, while Rao-2 and Rao-1 algorithms
offered the minimum fuel costs of 129,256.5242 $/h and 129,241.1787 $/h, respectively.
The OPF result of the proposed Rao-3 algorithm and the optimal control variable settings
are presented in Table 17. Table 18 compares the OPF results of Case 11 obtained by
the proposed Rao algorithms and other methods reported in recent articles. Based on
the OPF outcomes, it is clear that the Rao-3 algorithm provided the least fuel cost as
compared to the other methods. This demonstrates the effectiveness of the proposed Rao-3
algorithm over Rao-1 and Rao-2 algorithms, as well as other algorithms. The fuel cost
characteristics of Case 11 is presented in Figure 9.

Table 17. Optimum values of control variables of Case 11 for the IEEE 118-bus test system.

S.
Number

Control
Variables Initial Rao-3 S.

Number
Control

Variables Initial Rao-3 S.
Number

Control
Variables Initial Rao-3

1 PG1 0 0.07872 45 PG103 0.4 0.33181 89 VG77 1.006 1.00706

2 PG4 0 0.07685 46 PG104 0 0.24175 90 VG80 1.04 1.02122

3 PG6 0 0.0662 47 PG105 0 0.06467 91 VG85 0.985 1.03344

4 PG8 0 0.1337 48 PG107 0 0.0083 92 VG87 1.015 1.01663

5 PG10 4.5 4.27188 49 PG110 0 0.03809 93 VG89 1.005 1.02186

6 PG12 0.85 0.58259 50 PG111 0.36 0.33608 94 VG90 0.985 0.9779

7 PG15 0 0.02101 51 PG112 0 0.18375 95 VG91 0.98 0.96364

8 PG18 0 0.00159 52 PG113 0 0.00423 96 VG92 0.99 1.0142

9 PG19 0 0.00782 53 PG116 0 0.0008 97 VG99 1.01 0.98147

10 PG24 0 0.0178 54 VG1 0.995 1.02416 98 VG100 1.017 1.03575

11 PG25 2.2 2.1492 55 VG4 0.998 1.03241 99 VG103 1.01 1.05908

12 PG26 3.14 2.84427 56 VG6 0.99 1.03808 100 VG104 0.971 1.05774



Energies 2021, 14, 5449 23 of 28

Table 17. Cont.

S.
Number

Control
Variables Initial Rao-3 S.

Number
Control

Variables Initial Rao-3 S.
Number

Control
Variables Initial Rao-3

13 PG27 0 0.31058 57 VG8 1.015 0.97062 101 VG105 0.965 1.05895

14 PG31 0.07 0.09645 58 VG10 1.05 0.9431 102 VG107 0.952 1.05859

15 PG32 0 0.00434 59 VG12 0.99 1.05326 103 VG110 0.973 0.96628

16 PG34 0 0.17751 60 VG15 0.97 1.01875 104 VG111 0.98 0.95313

17 PG36 0 0.32141 61 VG18 0.973 1.0552 105 VG112 0.975 0.94652

18 PG40 0 0.46268 62 VG19 0.962 1.02694 106 VG113 0.993 1.03236

19 PG42 0 0.68702 63 VG24 0.992 1.04181 107 VG116 1.005 0.97069

20 PG46 0.19 0.25232 64 VG25 1.05 1.04186 108 T5–8 0.985 0.9002

21 PG49 2.04 1.87987 65 VG26 1.015 0.95537 109 T26–25 0.96 1.03159

22 PG54 0.48 0.30277 66 VG27 0.968 1.03944 110 T30–17 0.96 0.9885

23 PG55 0 0.74996 67 VG31 0.967 1.03063 111 T38–37 0.935 0.95581

24 PG56 0 0.35764 68 VG32 0.963 1.02981 112 T63–59 0.96 1.09927

25 PG59 1.55 1.53703 69 VG34 0.984 1.02045 113 T64–61 0.985 0.91596

26 PG61 1.6 1.65333 70 VG36 0.98 1.03052 114 T65–66 0.935 1.08267

27 PG62 0 0.09242 71 VG40 0.97 0.98601 115 T68–69 0.935 0.90129

28 PG65 3.91 3.98068 72 VG42 0.985 0.97303 116 T81–80 0.935 1.0949

29 PG66 3.92 3.33319 73 VG46 1.005 1.03671 117 QSh5 0 0.0397

30 PG70 0 0.12369 74 VG49 1.025 1.00562 118 Qsh34 0 0.13264

31 PG72 0 0.04355 75 VG54 0.955 0.96514 119 Qsh37 0 0.29284

32 PG73 0 0.01357 76 VG55 0.952 0.98114 120 Qsh44 0 0.22743

33 PG74 0 0.05 77 VG56 0.954 0.96645 121 Qsh45 0 0.16846

34 PG76 0 0.05541 78 VG59 0.985 1.04398 122 Qsh46 0 0.01255

35 PG77 0 0.05941 79 VG61 0.995 1.05939 123 Qsh48 0 0.00779

36 PG80 4.77 3.5775 80 VG62 0.998 1.05898 124 Qsh74 0 0.27942

37 PG85 0 0.12274 81 VG65 1.005 0.96444 125 Qsh79 0 0.01159

38 PG87 0.04 0.01293 82 VG66 1.05 1.05809 126 Qsh82 0 0.3

39 PG89 6.07 4.56372 83 VG69 1.035 1.04551 127 Qsh83 0 0.15625

40 PG90 0 0.06063 84 VG70 0.984 0.94113 128 Qsh105 0 0.13484

41 PG91 0 0.01788 85 VG72 0.98 0.94008 129 Qsh107 0 0.26686

42 PG92 0 0.05746 86 VG73 0.991 0.94036 130 Qsh110 0 0.01831

43 PG99 0 0.00446 87 VG74 0.958 1.00781

44 PG100 2.52 2.33746 88 VG76 0.943 0.96203

Fuel Cost ($/h) 131,220.0208 129,220.6794

TVD (p.u) 1.4389 1.5416

PLoss (MW) 132.8101 109.1203

QLoss (MW) 782.6073 745.9912

PG69 (slack bus) 513.8101 471.2005

Table 18. Case 11 (FCM) results in the IEEE 118-bus system.

Algorithm Fuel Cost ($/h) Time (s)

Rao-3 129,220.6794 164.19

Rao-2 129,256.5242 169.24
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Table 18. Cont.

Algorithm Fuel Cost ($/h) Time (s)

Rao-1 129,241.1787 167.33

GPU-PSO [1] 129,627.03 -

IMFO [38] 131.8200 -

PSOGSA [50] 129,733.58 -
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5. Statistical Comparison of Rao-1, Rao-2, and Rao-3

Table 19 presents a statistical summary of 30 independent runs performed using three
variants of Rao algorithms.

Table 19. Statistical analysis of the various cases using the Rao algorithms.

Algorithm Best Worst Mean Standard
Deviation Best Worst Mean Standard

Deviation

Case 1 Case 7

Rao-3 799.9683 801.8023 800.8813 0.0186 41,659.2621 41,674.4259 41,669.0213 1.7866

Rao-2 799.9918 801.9718 800.9032 0.0203 41,872.0668 41,894.0668 41,887.0668 2.2906

Rao-1 800.4391 802.1403 801.2391 0.0223 41,771.1088 41,782.4437 41,776.6512 2.1860

Case 5 Case 10

Rao-3 3.0675 3.1182 3.0714 0.0288 9.7590 9.8460 9.7971 0.0318

Rao-2 3.1086 3.1761 3.1271 0.0360 9.7660 9.8541 9.8065 0.0339

Rao-1 3.3041 3.4065 3.3389 0.0408 10.0050 10.9451 10.4515 0.0351

Case 6 Case 11

Rao-3 0.2126 0.2246 0.2206 0.0166 129,220.6794 129,440.3458 129,331.6023 4.0910

Rao-2 0.2040 0.2065 0.2048 0.0131 129,256.5242 129,541.2740 129,402.0961 4.7350

Rao-1 0.2037 0.2049 0.2043 0.0110 129,241.1787 129,511.7206 129,381.4028 4.5210
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6. Conclusions

In this paper, newly developed algorithm-specific parameter-less optimization tech-
niques, through Rao algorithms, are proposed to solve the OPF problem. The suggested Rao
algorithms were found to be superior to other EC/SI-based methods, as these algorithms
do not involve tuning the algorithm-specific parameters. Various objectives considered for
solving the OPF problem in this paper included the minimization of fuel cost, minimization
of total voltage deviation, enhancement of voltage stability under normal and contingency
conditions, minimization of real power loss, and minimization of emission cost.

To demonstrate the efficacy of the Rao algorithms and their capacity to solve OPF
problems in different scale power systems with complex constraints and large dimensions,
the algorithms are applied on the standard IEEE 30-bus system with 24 control variables,
the IEEE 57-bus system with 33 control variables, and the IEEE 118-bus system with
130 control variables. The simulation results achieved by the proposed Rao algorithms
were compared with recently developed optimization algorithms, which proved superiority
in most cases of the proposed Rao algorithms, particularly Rao-2 and Rao-3 algorithms
in terms of robustness and quality of solutions. The results confirm their capability to
solve complex optimization problems as well as large dimensional OPF problems. As
the proposed Rao algorithms are parameter tuning-free and are capable of solving complex
and large dimensional OPF problems, they can be employed to solve OPF problems in
practical power systems.
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Nomenclature

m state variables
n control variables
Zmin(m, n) objective function
g (m, n) equality constraint
h (m, n) inequality constraint
Pgi and Qgi are generator active and reactive power
Nbus are the set of the bus
NLB are the set of the load bus
Ntl are the set of the transmission line
NGN are the set of generators units
NC are the set shunt compensation switch
NTR are the set of regulating transformers
Pdi and Qdi are the load buses’ active and reactive power demand
PLoss and QLoss are the total real and reactive power loss
Vmax

gk
and Vmin

gk
are maximum and minimum bus voltage limit of the kth generator bus

Qmax
gk

and Qmin
gk

are the maximum and minimum limit of the reactive power output of the kth
generator bus
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Pmax
gk

and Pmin
gk

are the maximum and minimum active power limit of the kth generating units
Tmin

k and Tmax
k are the lower and upper voltage limit of the tap setting of the kth transformer

Vmin
Lk

and Vmax
Lk

are the lower and upper voltage limit of the kth load bus
Smax

lk
is the maximum MVA flow in the kth branch

C1, C2, C3 and C4 are the penalty factors
Ai, Bi, and Ci are the ith generator units’ fuel cost coefficients
δi, µi, γi, ξi and λi are the emission coefficients of the ith generator unit
PD active power load demand
NB total number of buses
MPSO modified particle swarm optimization
MDE modified differential evolution
MFO moth flame optimization
FPA flower pollination algorithm
QOJA quasi-oppositional-based Jaya algorithm
IMFO improved moth-flame optimization
ARCBBO adaptive real-coded biogeography-based optimization
RCBBO real-coded biogeography-based optimization
GWO gray wolves optimization
MGBICA multi-objective gaussian bare-bones imperialist competitive algorithm
GBICA gaussian bare-bones imperialist competitive algorithm
ABC artificial bee colony algorithm
SKH stud krill herd algorithm
ECHT-DE ensemble of constraint handling techniques—differential evolution
SF-DE the superiority of feasible solutions–differential evolution
SP-DE self-adaptive penalty–differential evolution
MGOA modified grasshopper optimization algorithm
GOA grasshopper optimization algorithm
GPU-PSO graphics processing unit’s particle swarm optimization
ALC-PSO particle swarm optimization with aging leader and challengers
PSOGSA hybrid particle swarm optimization and gravitational search algorithm
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