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LTP Modeling of Single-phase T/4 Delay-Based
PLLs

Saeed Golestan, Senior Member, IEEE, Member, IEEE, Josep M. Guerrero, Fellow, IEEE,
and Juan C. Vasquez, Senior Member, IEEE

Abstract—A large number of single-phase phase-locked loops
(PLLs) require generating a 90◦ phase-shifted version of their
single-phase input signal. Among the wide variety of options,
using a quarter-cycle transfer delay is particularly popular. In
recent years, several single-phase transfer delay-based PLLs
(TD-PLLs) have been proposed in the literature. The major
difference between different TD-PLLs lies in the way they have
adapted to frequency changes. Regardless of this structural
difference, a common trend in investigating TD-PLLs is obtaining
a linear time-invariant (LTI) model and analyzing it. Obtaining
such a model, however, is often based on neglecting the input
signal amplitude variations and double-frequency oscillations
in the transient behavior of TD-PLLs, which results in some
inaccuracies. To deal with this problem, the linear time-periodic
(LTP) modeling of TD-PLLs is presented in this letter. It is
demonstrated that the LTP model does not have the limitations
of the LTI one and can provide much higher accuracy, but at
the cost of a higher model complexity.

Index Terms—Linear time-invariant (LTI), linear time-periodic
(LTP), modeling, orthogonal signal, phase-locked loop (PLL),
single-phase systems, synchronization, transfer delay.

I. INTRODUCTION

THE majority of single-phase PLLs try to mimic a three-
phase synchronous reference frame PLL (SRF-PLL)

structure [1], [2]. To this end, the single-phase input signal
(with or without a pre-filtering) is considered as the α-axis
input of the SRF-PLL, and a fictitious quadrature signal is
generated and used as the β-axis input. Such a fictitious signal
can be generated using different filters/algorithms/circuits,
such as the second-order generalized integrator [3], all-pass
filter [4], inverse Park Transform [5], Hilbert transform [6],
Kalman filter [7], recursive discrete Fourier transform [8], and
quarter-cycle transfer delay [9]–[12]. Here, the focus is on
using the quarter cycle transfer delay, which is a simple and
popular approach. The block diagram representation of a basic
transfer delay-based PLL (TD-PLL) can be seen in Fig. 1.

The basic TD-PLL uses a fixed-length quarter cycle delay,
which means the phase difference between its αβ-axis input
signals may not be exactly 90◦ under off-nominal frequencies.
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Fig. 1. Block diagram representation of the basic TD-PLL. vi is the single-
phase input. ωn is the nominal angular frequency of vi, and Tn = 2π

ωn
. ωo,

Vo, and θo are estimations of the fundamental angular frequency, amplitude,
and phase angle of vi, respectively. kp, ki, and ωv are the control parameters.
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Fig. 2. Block diagram representation of the VLTD-PLL. To is an estimation
of the fundamental period of the input signal. The delay length is variable.

This non-orthogonality causes offset and double-frequency
oscillatory errors in the output of the basic TD-PLL under
off-nominal frequencies [11]. To deal with this challenge,
several approaches have been proposed in the literature. A
possible method, as shown in Fig. 2, is adapting the length of
the quarter cycle delay to frequency changes, which results
in a variable-length TD-PLL (VLTD-PLL) [10], [12]. An
alternative way is keeping the delay length constant and
correcting the non-orthogonality between the αβ-axis input
signals through a feedback loop, as shown in Fig. 3 [9]. This
structure is called the adaptive TD-PLL (ATD-PLL). For a
more detailed review of the basic TD-PLL and its advanced
versions, refer to [1].

To facilitate the analysis of the basic TD-PLL and its
advanced versions, which are all nonlinear feedback control
systems, some linear time-invariant (LTI) models have been
presented in the literature [9]–[11]. Obtaining these LTI mod-
els, however, is based on some assumptions, which may cause
some inaccuracies. For instance, in developing the LTI models
in [9]–[11], the input signal amplitude variations are neglected,
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Fig. 3. Block diagram representation of the ATD-PLL.

which may not be accurate in grid applications. This letter
aims to present more accurate linear models for single-phase
T/4 delay-based PLLs. The modeling will be carried out in
the linear time-periodic (LTP) framework. First, the ATD-
PLL is considered as the case study, and its LTP modeling
is presented. Based on the obtained LTP model and following
an intuitive approach, the LTP models of the basic TD-PLL
and VLTD-PLL are also obtained. It is discussed theoretically
and demonstrated numerically that modeling in the LTP frame-
work can provide higher accuracy in investigating TD-PLLs
compared to the LTI framework.

II. ATD-PLL

A. LTP Modeling

The signal v′β in Fig. 3 is equal to

v′β(t) =
vα(t− Tn/4) + vα(t)

≈(∆ωoTn/4)︷ ︸︸ ︷
sin(∆ωoTn/4)

cos(∆ωoTn/4)︸ ︷︷ ︸
≈1

. (1)

By assuming the single-phase input signal vi = vα in Fig. 3
as (2), and defining its amplitude and phase angle as (3), (1)
can be approximated by (4).

vi(t) = vα(t) = Vi cos(θi) (2)

Vi = Vn + ∆Vi
θi = θn︸︷︷︸∫

ωndt

+∆θi (3)

v′β(t) ≈ (Vn + ∆V di ) sin(θn + ∆θdi )

+ (∆ωoTn/4)(Vn + ∆Vi)︸ ︷︷ ︸
≈Vn(∆ωoTn/4)

cos(θn + ∆θi) (4)

Notice that Vi and θi and, therefore, ∆Vi and ∆θi in the above
equations are functions of time. Notice also that ∆V di (t) =
∆Vi(t− Tn/4) and ∆θdi (t) = ∆θi(t− Tn/4).

Considering the above equations and the Park transforma-
tion in (5), in which θo = θn+∆θo is an estimation of θi, the
signals vd and vq in Fig. 3 can be expressed as (6) and (7),
respectively.[

vd(t)
vq(t)

]
=

[
cos(θo) sin(θo)
− sin(θo) cos(θo)

] [
vα(t)
v′β(t)

]
(5)
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Fig. 4. (a) LTP model of the ATD-PLL. (b) LTI model of the ATD-PLL [9].
Without loss of generality, θn = ωnt can be considered.

vd(t) ≈
Vn + ∆Vi

2
[cos(∆θi −∆θo) + cos(2θn + ∆θi + ∆θo)]

+
Vn + ∆V di

2

[
cos(∆θdi −∆θo)− cos(2θn + ∆θdi + ∆θo)

]
+
Vn(∆ωoTn/4)

2
[− sin(∆θi −∆θo) + sin(2θn + ∆θi + ∆θo)] (6)

vq(t) ≈
Vn + ∆Vi

2
[sin(∆θi −∆θo)− sin(2θn + ∆θi + ∆θo)]

+
Vn + ∆V di

2

[
sin(∆θdi −∆θo) + sin(2θn + ∆θdi + ∆θo)

]
+
Vn(∆ωoTn/4)

2
[cos(∆θi −∆θo) + cos(2θn + ∆θi + ∆θo)] (7)

By assuming that ∆θi ≈ ∆θo and ∆Vi ≈ ∆Vo, (6) and (7)
can be linearized as

vd(t) ≈ Vn +
1

2
(∆Vi + ∆V di ) +

cos(2θn)

2
(∆Vi −∆V di )

−Vn sin(2θn)

2
(∆θi −∆θdi −∆ωoTn/4) (8)

vq(t) ≈
Vn
2

(∆θi + ∆θdi )− Vn∆θo +
Vn
2

∆ωoTn/4

−Vn cos(2θn)

2
(∆θi −∆θdi −∆ωoTn/4)

− sin(2θn)

2
(∆Vi −∆V di ). (9)

Using (8) and (9), the LTP model of the ATD-PLL can be
obtained as depicted in Fig. 4(a).

In this stage, it may be interesting to see what is the
difference between the derived LTP model for the ATD-
PLL and the existing LTI one. The only input to the LTI
model of the ATD-PLL [9], as shown in Fig. 4(b), is the
phase perturbation ∆θi, because the input signal amplitude
variations have been neglected in obtaining this model [9]. The
LTP model, however, receives both the phase and amplitude

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 02,2020 at 08:54:37 UTC from IEEE Xplore.  Restrictions apply. 



0278-0046 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2020.3018046, IEEE
Transactions on Industrial Electronics

n

iV

i cos( )i i iv V = iv ATD-PLL

[Fig. 3]

o

i o −

oV

o

i o i o    −  = −

oV

n

o

oV

nV

LTP model

[Fig. 4(a)]

LTI model

[Fig. 4(b)]

i o i o    −  = −

iV

i

i

i
iV

o
o

n

nV

Fig. 5. Schematic diagram of the procedure for the numerical model
verification.

perturbations as its input signals. It implies that the LTI model,
contrary to the LTP one, may not be able to predict transient
states of the ATD-PLL in response to an amplitude change
(e.g., a voltage sag or swell) in its input. Besides, the coupling
between the upper and lower parts of the LTP model implies
that the phase and amplitude parameters in the ATD-PLL are
dynamically coupled. The existing LTI model may not be able
to predict this coupling.

B. Numerical Model Verification
This section aims to test the accuracy of the derived LTP

model for the ATD-PLL in comparison with the LTI one. To
this end, some small perturbations in the phase, frequency, and
amplitude of the single-phase input signal of the ATD-PLL are
programmed first. The same perturbations are applied to the
LTP and LTI models of the ATD-PLL. The ATD-PLL outputs
are finally compared with the prediction of its models. Fig. 5
illustrates this procedure. The control parameters kp and ki of
the ATD-PLL are selected the same as those chosen in [9],
i.e., kp = 217 and ki = 15791. The cutoff frequency ωv is set
to 2π25 rad/s. The nominal amplitude and frequency of the
input signal and the sampling frequency are considered as 1
p.u., 50 Hz, and 8 kHz, respectively.

Figs. 6-8 show the evaluation results. From these plots, the
following observations can be made.
• The LTI model cannot predict transient states in the ATD-

PLL output amplitude regardless of the cause of this
transient, which can be a change in the frequency, phase,
or amplitude [see bottom plots in Figs. 6, 7, and 8].

• The LTI model cannot predict transient states in the
output phase and frequency when a change in the input
signal amplitude happens [see Fig. 8].

• The LTI model cannot predict the damped double-
frequency oscillations that exist in the ATD-PLL transient
behavior. This inaccuracy will be more noticeable if the
ATD-PLL bandwidth is increased.

• The LTP model does not have the above limitations of the
LTI one and, therefore, provides much higher accuracy in
predicting the dynamics of the ATD-PLL.
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Fig. 6. Numerical model verification in response to +2 Hz frequency jump.
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C. Stability Analysis

The dashed box in Fig. 4(a) is the concerned feedback loop
for the stability analysis of the ATD-PLL. The signal ∆ωo
in this box, however, is multiplied by a cosine term, which
makes the concept of transfer function elusive here. To deal
with this challenge, one can simply replace the cosine term
by its equivalent expression in terms of exponentials, i.e.,
cos(2θn) = cos(2ωnt) = ej2ωnt+e−j2ωnt

2 , and obtain

∆θe(s) = −Tnki(s− j2ωn)/16

kp(s− j2ωn) + ki
∆θo(s− j2ωn)

+
s(s− VnTnki/8)

Vn(kps+ ki)
∆θo(s)

−Tnki(s+ j2ωn)/16

kp(s+ j2ωn) + ki
∆θo(s+ j2ωn). (10)

By substituting the Laplace operator s by s+ j2mωn in (10),
where m ∈ Z, one can achieve

∆θe(s+ j2mωn) =

−Tnki(s+ j2(m− 1)ωn)/16

kp(s+ j2(m− 1)ωn) + ki
∆θo(s+ j2(m− 1)ωn)

+
(s+ j2mωn)((s+ j2mωn)− VnTnki/8)

Vn(kp(s+ j2mωn) + ki)
∆θo(s+ j2mωn)

−Tnki(s+ j2(m+ 1)ωn)/16

kp(s+ j2(m+ 1)ωn) + ki
∆θo(s+ j2(m+ 1)ωn) (11)

which is corresponding in the matrix form to (12) at the top
of the next page. This doubly infinite matrix equation, which
relates the frequency components of ∆θo to ∆θe, is the inverse
of the open-loop harmonic transfer function (HTF) of the
ATD-PLL. By considering a truncated version of (12) and
obtaining its eigenloci, one can evaluate the stability of the
ATD-PLL and determine its stability margins [13]–[15].

Here, it can be interesting to see the difference between the
LTI and LTP models of the ATD-PLL in assessing its stability.
From the LTI model of the ATD-PLL in Fig. 4(b), the closed-
loop transfer function can be obtained as [9]

GLTIcl =
∆θo(s)

∆θi(s)

=
1 + e−

Tns
4

2

Vn(kps+ ki)

s2 + Vn(kp − kiTn/8)s+ Vnki
. (13)

By applying the Routh–Hurwitz stability criterion to (13), it
can be found that the LTI stability of the ATD-PLL requires
0 < ki <

8
Tn
kp or equivalently 0 < ki < 400kp. The solid

lines in Fig. 9, which show the LTI phase margin (PM) of
the ATD-PLL as a function of ki, help to better visualize this
fact. Notice that in the upper, middle, and lower plots of this
figure, which are corresponding to kp = 200, 250, and 300,
respectively, the LTI PM becomes zero when ki reaches 8e4,
10e4, and 12e4, respectively. The LTP model, however, shows
that the stability margin of the ATD-PLL and the stability
range of its control parameters are actually more limited than
what its LTI model is predicting (see dashed lines in Fig. 9).
This is particularly true when the control gains kp and ki are
large. Notice that the stability predictions of the LTP model
can be easily verified numerically. Here, to save space, the
numerical versification is not presented.

D. Modeling Extension to Other TD-PLLs

The LTP modeling of other T/4 delay-based PLLs can
be carried out by following a similar procedure as presented
in section II-A for the ATD-PLL. In some cases, however,
this mathematical procedure may be avoided. For instance,
the basic TD-PLL in Fig. 1 is corresponding to remove the
frequency feedback loop in the ATD-PLL structure in Fig.
3. Therefore, the LTP model of the basic TD-PLL may be
obtained by removing all feedback loops connected to the
signal ∆ωo in Fig. 4(a). The resulting LTP model is shown
in Fig. 10. As another example, consider the VLTD-PLL in
Fig. 2. It has been proven in [10] that the VLTD-PLL is
mathematically equivalent to the ATD-PLL. Therefore, both
of them have the same LTP model.

E. Limitations

The LTP model derived for the ATD-PLL has two lim-
itations, which need to be briefly discussed here. The first
limitation is that the accuracy of the LTP model drops with
increasing the magnitude of the input disturbance. Comparing
Fig. 11, which shows the model verification results in response
to a large voltage sag (0.5-p.u. voltage sag), with those in Fig.
8 confirms this fact. The reason behind this limitation is that
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...

∆θe(s− j2ωn)

∆θe(s)

∆θe(s+ j2ωn)

...


=



. . .
...

...
... . . .

· · · (s−j2ωn)((s−j2ωn)−VnTnki/8)
Vn(kp(s−j2ωn)+ki)

−Tnkis/16
kps+ki

0 · · ·

· · · −Tnki(s−j2ωn)/16
kp(s−j2ωn)+ki

s(s−VnTnki/8)
Vn(kps+ki)

−Tnki(s+j2ωn)/16
kp(s+j2ωn)+ki

· · ·

· · · 0 −Tnkis/16
kps+ki

(s+j2ωn)((s+j2ωn)−VnTnki/8)
Vn(kp(s+j2ωn)+ki)

· · ·

. . .
...

...
...

. . .


︸ ︷︷ ︸

HT Fi(s)



...

∆θo(s− j2ωn)

∆θo(s)

∆θo(s+ j2ωn)

...


(12)
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Fig. 9. Determining the PM of the ATD-PLL as a function of ki using its
LTI and LTP models. (a) kp = 200. (b) kp = 250. (c) kp = 300.

the LTP model is obtained by assuming small-signal perturba-
tions around a periodic trajectory. A large-signal disturbance
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Fig. 10. LTP model of the basic TD-PLL.

is not consistent with this assumption and, therefore, results
in a reduced accuracy.

The second limitation is that the derived LTP model for
the ATD-PLL neglects the presence of harmonic components,
which often exist in the grid voltage. Notice that these har-
monics result in some oscillatory ripples in the output of the
ATD-PLL, but the LTP model is not able to predict them. This
fact can be clearly observed in Fig. 12.

III. CONCLUSIONS

The primary aim of this letter was the LTP modeling of T/4
delay-based PLLs. To this end, the ATD-PLL was considered
as the case study. Thorough a mathematical procedure, an LTP
model for the ATD-PLL was obtained, and its accuracy was
evaluated through some numerical tests. To highlight the high
accuracy of the obtained LTP model, the predicted results
from the LTI model of the ATD-PLL were also shown and
considered as a reference for the comparison. The stability
assessment of the ATD-PLL using its LTP and LTI models
were also presented and compared. Finally, the limitations of
the derived LTP model and expending it to other TD-PLLs
were briefly discussed.
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