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Genetic polymorphisms of IL17A 
associated with Chagas disease: 
results from a meta-analysis in 
Latin American populations
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Network†, Javier Martín2* & Marialbert Acosta-Herrera2*

Genetic factors and the immunologic response have been suggested to determine the susceptibility 
against the infection and the outcome of Chagas disease. In the present study, we analysed three IL17A 
genetic variants (rs4711998, rs8193036 and rs2275913) regarding the predisposition to Trypanosoma 
cruzi infection and the development of chronic Chagas cardiomyopathy (CCC) in different Latin 
American populations. A total of 2,967 individuals from Colombia, Argentina, Bolivia and Brazil, 
were included in this study. The individuals were classified as seronegative and seropositive for T. 
cruzi antigens, and this last group were divided into asymptomatic and CCC. For T. cruzi infection 
susceptibility, the IL17A rs2275913*A showed a significant association in a fixed-effect meta-analysis 
after a Bonferroni correction (P = 0.016, OR = 1.21, 95%CI = 1.06–1.41). No evidence of association 
was detected when comparing CCC vs. asymptomatic patients. However, when CCC were compared 
with seronegative individuals, it showed a nominal association in the meta-analysis (P = 0.040, 
OR = 1.20, 95%CI = 1.01–1.45). For the IL17A rs4711998 and rs8193036, no association was observed. 
In conclusion, our results suggest that IL17A rs2275913 plays an important role in the susceptibility 
to T. cruzi infection and could also be implicated in the development of chronic cardiomyopathy in the 
studied Latin American population.

Chagas disease caused by the protozoan Trypanosoma cruzi is a parasitic infection endemic in Latin American 
countries, which is nowadays increasingly becoming a global health problem, due to migration to non-endemic 
areas1,2. Around 6 to 7 million people are estimated to be infected worldwide, mostly in Latin America1,3. During 
the acute phase of the disease, the increase of parasitic load induces an inflammatory process for the control of 
the pathogen4. Ten to thirty years after infection, around 30 to 40% of chronically infected patients can develop 
cardiomyopathy or/and megaviscera. The symptoms include cardiac conduction abnormalities, myocardial con-
tractile dysfunction, arrhythmias, dysphagia, regurgitation, and severe constipation, among others. The cardiac 
involvement is the most frequent manifestation of the disease5,6. The characteristics of this phase vary in different 
patients and in different regions of the endemic area7.

After the infection with T. cruzi, interleukin-17A (IL-17A) is produced by T helper 17 (Th17) cells, subset of 
CD4+ T cells, and innate lymphoid cells8,9. More recently, it has been described that B cells are also an important 
source of IL-17A and IL-17F, produced as well after T. cruzi infection10,11. In response to the infection, IL17-A, 
induces a rapid proinflammatory cascade of chemokines and cytokines that facilitates the recruitment and acti-
vation of neutrophils and monocytes required for the early control of the pathogen by the immune system12,13. In 
the chronic phase of the disease, several studies suggest that the clinical progression of Chagas cardiomyopathy 
involves the overexpression of IL-17 by Th17 cells and B cells14,15.
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It’s well known that, genetic factors and immunologic response may determine the susceptibility against 
the infection and the outcome of Chagas disease16–19. Thus, polymorphisms in genes encoding cytokines may 
influence the level of cytokines production and, consequently, cause different immunological responses20–22. 
Specifically, IL17A polymorphisms, located in the promoter region of the gene, have been associated with plasma 
IL-17A levels in cell cultures20 and in healthy infants23. Several studies have found associations between the IL17A 
gene polymorphisms with infectious diseases, such as, cutaneous leishmaniasis24, brucellosis25, and tuberculosis26.

A previous study performed, by our group, in a Colombian cohort, observed nominal significant associa-
tions between variants of IL17A gene with the susceptibility to T. cruzi infection and with the development of 
chronic cardiomyopathy27. An additional study conducted in the South and Southeast regions of Brazil also 
found an association with IL17A and IL17F variants and the susceptibility to the development of chronic Chagas 
cardiomyopathy28.

Given the limited information about the role of IL17A gene variants in Chagas disease, this study aimed to 
analyse the association of three IL17A genetic variants with the predisposition to T. cruzi infection, the develop-
ment of chronic cardiomyopathy and chronic Chagas cardiomyopathy, in different Latin American populations.

Results
A total of 2,967 patients were included in the study. The demographic characteristics of the studied cohorts are 
reported in Table 1.

The three single nucleotide polymorphisms (SNPs) of IL17A gene: rs4711998, rs8193036 and rs2275913, 
selected for this study, were in Hardy-Weinberg equilibrium in all the analysed cohorts (P > 0.01). The genotyping 
success rate was over 95% and the allele frequencies in all cases were similar to those described for the Americans 
sub-populations of the 1000 Genomes Project phase III (http://www.1000genomes.org)29 (Table S1).

T. cruzi infection susceptibility.  The allelic and genotypic frequencies of seronegative and seropositive 
individuals from the Colombian cohort were compared in Tables S3–1 The minor allele frequency (MAF), in 
rs8193036*C was higher in seronegative than in seropositive individuals, being nominally significant after the 
adjustment by sex and age [P = 0.043, odds ratio (OR) = 0.83, 95% confidence interval (CI) = 0.70–0.99]. No 
associations between the three IL17A genetic variants and susceptibility to T. cruzi infection were found after 
performing logistic regression adjusted by sex and age in the Argentinian cohort (Tables S3–2). In contrast, inter-
estingly, the SNP IL17A rs2275913*A, that was studied in a Brazilian cohort, was found statistically significant 
for the risk to T. cruzi infection28. Furthermore, a meta-analysis combining each individual cohort (Colombian, 
Argentinian and Brazilian) was performed (Table 2). The IL17A rs2275913*A allele effect was consistent in 
the three cohorts and the association improved after the meta-analysis, showing statistically significant results 
(P = 0.016, OR = 1.21, 95% CI = 1.06–1.41, under a fixed-effects meta-analysis) after Bonferroni correction. No 
association was observed for the IL17A rs4711998 and rs8193036.

Chronic chagas cardiomyopathy susceptibility.  To understand the genetic basis of chronic Chagas 
cardiomyopathy, we compared CCC and asymptomatic patients. The allelic frequencies of IL17A variants in 

Seropositive

Seronegative TotalCCC ASY

Sex (% males) 40%* 31%* 36%**

Median age, yr (P25–P75) 60 (51–68)* 48 (41–57)* 46 (31–62)**

Colombian 576 361 640 1,577

Argentinian 182 90 78 350

Bolivian 100 530 — 630

Brazilian28 212 48 150 410

Total 1,070 1,029 868 2,967

Table 1.  Demographic characteristics of patients included in the present study classified by Chagas disease 
serology and symptoms. CCC: chronic Chagas cardiomyopathy. ASY: asymptomatic. *Data from the 
Colombian, Argentinian and Bolivian cohorts. **Data from the Colombian and Argentinian cohorts.

Colombian cohort Argentinian cohort Brazilian cohort Meta-analysis

SNP OR (L95-U95) P OR (L95-U95) P OR (L95-U95) P OR (L95-U95) P

rs4711998*A 0.94 (0.78–1.14) 0.528 1.38 (0.90–2.12) 0.143 — — 0.99 (0.84–1.17) 0.946

rs8193036*C 0.83 (0.70–0.99) 0.043 1.34 (0.89–20.2) 0.164 — — 0.89 (0.76–1.05) 0.169

rs2275913*A 1.16 (0.95–1.4) 0.136 1.07 (0.67–1.69) 0.793 1.46 (1.05–2.05) 0.032 1.21 (1.06-1.41) 0.016

Table 2.  Meta-analysis of IL17A variants, Latin American cohorts for T. cruzi infection susceptibility 
(seropositive vs. seronegative individuals). Total number of individuals: rs4711998 and rs8193036: seropositive, 
n = 1209 and seronegative, n = 718; rs2275913: seropositive, n = 1469 and seronegative, n = 868. OR: odds 
ratios, L95-U95: confidence intervals of 95% L: lower limit; U: upper limit. Significant P value is shown in bold. 
Significant association based on the Bonferroni correction P < 0.017.
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patients from the Colombian, Argentinian and Bolivian cohorts were not statistically significant after the logistic 
regression adjusted by sex and age (Tables S4–1–3), consistent with previous findings in the Brazilian cohort28. 
Moreover, no significant associations were detected for the available SNPs when the meta-analysis was performed 
combining these cohorts (Table 3).

Finally, in order to evaluate the possible association between IL17A genetic variants and chronic cardiomyo-
pathy we compared CCC patients and seronegative individuals, as previously performed27,28. In the Colombian 
and Argentinian cohort (Tables S5–1 and 2) and no associations were found after applying logistic regression 
adjusted by sex and age. In contrast, a previous study, in the Brazilian cohort the IL17A rs2275913*A allele was 
nominally significant28. As can be observed in Table 4 the IL17A rs2275913 allele effect was consistent in the 
Colombian, Argentinian and Brazilian cohorts, and the association with chronic cardiomyopathy susceptibility 
improved after the meta-analysis showing nominally statistical differences (P = 0.040, OR = 1.20, 95% CI = 1.01–
1.45, under a fixed-effects meta-analysis). These results suggest that rs2275913*A allele was associated with the 
risk of cardiomyopathy in the analysed population.

In silico functional characterization of IL17A gene variants.  Since the IL17A rs2275913 showed a sta-
tistical association with the risk to T. cruzi infection and the development of chronic cardiomyopathy, we perform 
an in silico functional analysis of this SNP and the ones in high LD (R2 ≥ 0.8) on peripheral mononuclear blood in 
American population from the 1000 Genomes Project (Table 5). The annotation indicates that these SNPs map in 
enhancer regions and marks of histone modifications (H3K4me1, H3K4me3, H3K27ac and chromatin marks), 
potentially modulating gene expression.

Discussion
Association studies offer a potentially powerful approach to identify genetic variations that are involved in the 
immunopathogenesis of Chagas disease16–19. However, individual genetic association studies frequently have lim-
itations and the results may be specific to the population of the study. The meta-analysis approach has been pro-
posed to resolve these limitations, to increase the power of statistical analyses30,31 and to reach to more conclusive 
results in order to improve our understanding of the genetic basis underlying Chagas disease. In this study, three 
IL17A genetic variants were analysed in four Latin American populations, and our results evidenced the implica-
tion of rs2275913 associated with the risk to T. cruzi infection and the development of chronic cardiomyopathy, 
in Colombian, Argentinian and Brazilian population.

In the early stages of the infection, the IL-17A is a crucial cytokine secreted by a wide range cell types such 
as Th17, B cells, innate lymphoid cells, CD4+, CD8+, gamma-delta T and invariant NKT10-13,32. The rs2275913, 
which was associated with the risk to T. cruzi infection in the Latin American population studied, is a functional 
polymorphism that modifies the binding of the transcriptional nuclear factor of activated T cells (NFAT) in the 
IL-17A promoter. Moreover, as observed in the in silico analysis, the associated variant is located in promoter 
histone marks, potentially modulating gene expression. In addition, it has been demonstrated that the substitu-
tion of the G by an A allele in the IL17A rs2275913 gene promoter was significantly associated with autoimmune 
diseases and cancer33–36. However, controversial results have been reported regarding the levels of IL-17A in 
serum, where the A allele was associated with a higher20,36,37, lower38,39 or no significant40 levels of transcription 
and synthesis of the protein. In this work, we could hypothesized that the individuals who carry the A allele in the 
IL17A rs2275913 would be more susceptibility to the T. cruzi infection, probably due to a variation in the gene 

Colombian cohort Argentinian cohort Bolivian cohort Brazilian cohort Meta-analysis

SNP OR (L95-U95) P OR (L95-U95) P OR (L95-U95) P OR (L95-U95) P OR (L95-U95) P

rs4711998*A 0.86 (0.67–1.11) 0.259 1.08 (0.69–1.68) 0.751 0.96 (0.65–1.41) 0.831 — — 0.92 (0.76–1.11) 0.396

rs8193036*C 0.92 (0.72–1.18) 0.526 0.74 (0.49–1.29) 0.164 1.18 (0.85–1.62) 0.319 — — 0.95 (0.80–1.14) 0.616

rs2275913*A 0.8 (0.62–1.02) 0.081 0.72 (0.43–1.21) 0.217 1.14 (0.75–1.71) 0.543 1.21 (0.74–1.99) 0.463 0.89 (0.74–1.07) 0.232

Table 3.  Meta-analysis of IL17A variants, Latin American cohorts for chronic Chagas cardiomyopathy 
susceptibility (CCC vs. asymptomatic patients). Total number of individuals: rs4711998 and rs8193036: CCC, 
n = 858 and asymptomatic, n = 981; rs2275913: CCC, n = 1070 and asymptomatic, n = 1029. OR: odds ratios, 
L95-U95: confidence intervals of 95% L: lower limit; U: upper limit.

Colombian cohort Argentinian cohort Brazilian cohort Meta-analysis

SNP OR (L95-U95) P OR (L95-U95) P OR (L95-U95) P OR (L95-U95) P

rs4711998*A 0.93 (0.75–1.16) 0.541 1.47 (0.92–2.37) 0.109 — — 1.02 (0.82–1.23) 0.927

rs8193036*C 0.84 (0.67–1.05) 0.133 1.21 (0.78–1.88) 0.389 — — 0.91 (0.74–1.10) 0.323

rs2275913*A 1.14 (0.90–1.44) 0.298 0.99 (0.60–1.61) 0.955 1.52 (1.08–2.15) 0.021 1.20 (1.01–1.45) 0.040

Table 4.  Meta-analysis of IL17A variants, Latin American cohorts for chronic cardiomyopathy susceptibility 
(CCC vs. seronegative individuals). Total number of individuals: rs4711998 and rs8193036: CCC, n = 758 
and seronegative, n = 718; rs2275913: CCC, n = 970 and seronegative, n = 868. OR: odds ratios, L95-U95: 
confidence intervals of 95% L: lower limit; U: upper limit.
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expression and therefore lower IL-17A production, which would impede a rapid proinflammatory activation of 
chemokines and cytokines for the resolution of T. cruzi infection12,13. However, further studies are required to 
understand the complexity of IL17A rs2275913 polymorphism functional effect.

Several studies showed that IL-17A has an important immunomodulatory role in the chronic phase of the 
disease8,14,15,41. IL‐17 expression by Th17 cells and B cells were found in patients with cardiac involvement more 
frequently, compared to asymptomatic patients, correlating with worse cardiac function14; IL-17 exacerbated pro-
duce a proinflammatory environment in Chagas severe heart disease42,43. However controversially, others groups 
suggested a protective role of IL‐17 and Th17 in the chronic cardiac form44,45. Regarding IL17A genetic variants, 
in our study, no significant association was detected when CCC and asymptomatic patients from Colombia, 
Argentina, Bolivia and Brazil were compared. This lack of association could be a consequence of an insufficient 
statistical power (Table S1) or genetic heterogeneity among the studied cohorts. The lack of replication may 
occur if the studied polymorphism is not the causal variant but is rather in LD with it. LD patterns depend on 
the genetic background of the founder population and population history, always challenging in Latin American 
population due to their genetic diversity and recent admixture46–48.

Interestingly, at the present time IL-17A have become a relevant drug target in various forms of autoimmune 
and inflammatory diseases, mainly as negative modulators of the secreted protein13,49. Two antibodies are cur-
rently in Phase IV of drug development for the treatment of immune system diseases, namely, Secukinumab and 
Ixekizumab (Anatomical Therapeutic Chemical [ATC] code L04AC10 and L04AC13, respectively). Given the 
role of IL-17A as a key cytokine in the pathogenesis of Chagas disease, the opportunities for drug repurposing 
becomes very important for this neglected disease, as there are only two treatments available: Benznidazole and 
Nifurtimox, with high rates of adverse effects and treatment withdrawal50,51.

In conclusion, in this work, we found an association of IL17A rs2275913 with Chagas disease in a large cohort 
composed of different Latin American countries, validating previous findings27,28. Finally, further studies on this 
gene accounting for functional analyses and heterogeneity among populations, would be necessary for the com-
plete understanding of IL17A polymorphisms in Chagas disease.

Materials and Methods
Study design and patient population.  A candidate-gene case-control study was performed in 
Colombian, Argentinian and Bolivian cohorts in order to replicate previous findings27,28. In addition, to improve 
the statistical power of the study a meta-analysis was performed combining the results from all the available 
cohorts.

A total of 2,967 individuals from Latin American countries (Argentina, Bolivia Colombia and Brazil) were 
studied. In all cohorts, patients were classified as seropositive for T. cruzi antigens (n = 2,099) and seronegative 
(n = 868) on the basis of results of at least 2 of 3 independent tests. Among seropositive individuals, based on elec-
trocardiographic, echocardiographic, chest X-ray and clinical findings, patients were classified as chronic Chagas 
cardiomyopathy (CCC, n = 1,070) and asymptomatic (ASY, n = 1,029).

Colombian cohort.  A total of 406 Colombian individuals from the same population as the study by Leon 
Rodriguez et al.27 were recruited by the health care team from the Industrial University of Santander and 
Cardiovascular Foundation from Colombia. In order to increase the sample size, these individuals were included 
with the previously published Colombian cohort, making a total of 1,577 individuals. From this, 937 were classi-
fied as seropositive for T. cruzi antigens and 640 were classified as seronegative (according to the serological tests: 
recombinant antigen ELISA and commercial indirect hemagglutination test). Subsequently, and after a clinical 
evaluation, an electrocardiogram (ECG) and an echocardiogram (Echo) were recorded to detect any conduction 
and/or structural alteration in seropositive patients. Based on complementary tests and clinical findings, seropos-
itive patients were classified as CCC = 576 and ASY = 361. The mean age of participants was 45.55 ± 17.19 years 
for seronegative individuals, CCC = 61.44 ± 12.82 and ASY = 51.90 ± 14.18. The sex distribution was 58% female 
and 42% male52.

Argentinian cohort.  A total of 350 Argentinian individuals from an endemic region for Chagas disease (Cordoba 
province) were included in this study. The study subjects were recruited from the National Hospital of Clinics 
and Sucre Clinic, Cordoba city. The population in this region of Argentina is a homogeneous mixture, with no 
specific concentration of any ethnicity. All participants underwent a serological diagnosis for T. cruzi infection 

Positiona SNPs R2 Functionality
MAF 
(AMR) eQTL

Chromatin 
statesb

Chromatin 
statesc H3K4me1 H3K4me3 H3K27ac

chr6:52051033 rs2275913 1 Intergenic variant 25% — Flank Promoter Enhancer Promoter Enhancer

chr6:52087034 rs11966760 0.82 Intergenic variant 24% PAQR8 Enhancer Promoter Enhancer Promoter Enhancer

chr6:52056386 rs16882180 0.8 Intergenic variant 25% PAQR8 — — Enhancer Promoter —

Table 5.  Functional annotation. Regulatory chromatin states and histone modifications for IL17A rs2275913 
and SNPs in high LD (R2  ≥  0.8). Functional annotation from mononuclear peripheral blood specifically 
primary T helper 17 cells. aAccording to National Center for Biotechnology Genome Reference Consortium 
NCBI build GRCh37. bCore 15-state model. cChromatin states: 25-state model using 12 imputed marks. 
H3K4me1: Histone H3 lysine 4 mono-methylation, H3K4me3: Histone H3 lysine 4 tri-methylation, H3K27ac: 
Histone H3 lysine 27 acetylation. MAF: Minor Allele Frequency. AMR: American.
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by means of the enzyme-linked immunosorbent assay (ELISA) that uses recombinant antigen and a commercial 
indirect hemagglutination test. According to the results of these tests, 272 individuals were classified as seroposi-
tive for T. cruzi antigens and 78 were classified as seronegative. Based on the results of clinical findings, ECG and 
Echo, seropositive patients were classified as CCC, n = 182 and ASY, n = 90. The mean age of participants was 
53.82 ± 16.53 years for seronegative individuals, 49.30 ± 13.65 for asymptomatic individuals and 60.14 ± 10.16 for 
chronic Chagas cardiomyopathy patients. The sex distribution was 71% female and 29% male52.

Bolivian cohort.  A total of 630 Bolivian individuals residents in Barcelona, Spain were recruited from the 
Infectious Diseases Department of the Vall d’Hebron University Hospital. In this cohort only seropositive patients 
were classified as CCC, n = 100 and ASY, n = 530 based on the results of clinical findings, ECG and Echo. The 
sex distribution was 69% female and 31% male. The mean age of the participants was ASY: 46.93 ± 9.49 CCC: 
50.71 ± 9.4152.

Brazilian cohort.  Data from 410 Brazilian individuals drawn from Reis et al. 2017, originally from South and 
Southeast regions of Brazil were included in the meta-analysis28. From this, 260 were classified as seropositive 
for T. cruzi antigens and 150 were classified as seronegative. Based on complementary tests and clinical findings, 
seropositive patients were classified as CCC = 212 and ASY = 48.

Ethics statement.  The study was accepted by the Ethics Committees from the Industrial University of 
Santander and Cardiovascular Foundation, Colombia [Act No. 15/2005]; the Vall d’Hebron University Hospital, 
Barcelona, Spain and the National Hospital of Clinics [PR (AMI) 297/2016], National University of Cordoba, 
Argentina [CIEIS HNC 118/2012 and 2/16/2017]. Written informed consent was obtained from all subjects prior 
to participation. The research protocols followed the principles of the Declaration of Helsinki and informed con-
sent was obtained from all individual participants included in the study.

Selected polymorphisms and genotyping.  Three SNPs of IL17A gene (rs4711998, rs8193036 and 
rs2275913) were selected for this study. These SNPs were previously assessed in Chagas disease in a Colombian 
cohort and in a Brazilian cohort28. These SNPs are independent intergenic variants mapping to the promoter 
region of IL17A53 (linkage disequilibrium [LD], r2 < 0.2 estimated using LDlink website tool [https://ldlink.nci.
nih.gov/?tab=ldmatrix]).

Genomic DNA from blood samples was isolated following standard procedures and the genotyping was per-
formed using TaqMan assays (Applied Biosystems, Foster City, California, USA) on a real-time PCR system 
(7900HT Fast Real-Time PCR System), SNPs were determined by TaqMan 5´ allelic discrimination assay method 
performed by Applied Biosystems52.

Statistical analysis.  For the candidate gene study, the statistical analyses were performed with the software 
Plink V1.9 (https://www.cog-genomics.org/plink2)54. Deviance from Hardy-Weinberg equilibrium was deter-
mined at the 1% significance level in all groups of individuals. Individuals that did not achieved an SNP comple-
tion rate of 95% were filtered out. To test for possible allelic association, logistic regression model and Fisher’s 
exact test were assessed in seronegative vs. seropositive individuals and asymptomatic vs. chronic Chagas cardi-
omyopathy individuals, using age and sex as covariates; and odds ratios (OR) and 95% confidence intervals (CI) 
were calculated. P-values lower than 0.05 were considered as statistically significant.

To assess the consistency of effects across the cohorts, a meta-analysis was performed with METASOFT 
(http://genetics.cs.ucla.edu/meta/) based on inverse-variance-weighted effect size. Heterogeneity across studies 
was assessed using the Cochran’s Q statistic (Q test P < 0.05) and I2 heterogeneity index55. A fixed-effects model 
was applied for those SNPs without evidence of heterogeneity (Cochran’s Q test P  >  0.05), and a random-effects 
model was applied for SNPs displaying heterogeneity of effects between studies (Cochran’s Q test P  ≤  0.05). The 
significance threshold for the meta-analyses was estimated based on the Bonferroni correction (0.05/3 = 0.017)56.

The statistical power of the studies was estimated with the Power Calculator for Genetic Studies 2006 (CaTS) 
software (Tables S1 and S2) (http://www.sph.umich.edu/csg/abecasis/CaTS/)57.

In silico functional characterization of IL17A gene variants.  Evaluation of functionality of the statis-
tically significant associated SNP with Chagas disease, was performed with the online software HaploReg v4.158. 
(https://pubs.broadinstitute.org/mammals/haploreg/ haploreg.php) based on empirical data from the ENCODE 
project (http://www.genome.gov/encode/). Specifically, we focused our attention on experiments performed on 
blood in the American population. Moreover, updated information related to expression Quantitative Trait Loci 
(eQTL) were inspected for IL17A rs2275913 and for SNPs in high LD (R2  ≥  0.8) (Table 5).

Data availability
All relevant data are within the paper and its Supporting Information files.
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