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Abstract  

 

Ground Penetrating radar (GPR) is a method widely used to study the near-surface 

subsoil. Many GPR applications require the acquisition of large volumes of data. In 

these cases, the processing and analysis of the data involve considerable amounts of 

time and human effort, and the possibility of errors increases. Considering this, the 

implementation of dependable methods for the automatic detection of GPR response-

patterns of the targeted structures becomes clear, because they can contribute to the 

efficiency and reliability of the interpretation. 

 

In this work, we present three methods for automatic detection of pipe-flange signals in 

constant-offset reflection-GPR images. These methods were obtained using well-known 

supervised machine learning techniques, and data acquired during a previous study of 

an extensive section of a pipeline. The first two methods are based on support vector 

machines (SVM), combined with the image descriptors local binary patterns (LBP) and 

histogram of oriented gradients (HOG), and the third, on artificial neural networks 

(ANN). The training and validation of these types of algorithms require large numbers 

of positive and negative samples. From the mentioned study, we had only 16 

experimental flange-patterns. Then, in this work, they were taken as references, together 

with available documentation on the geometry and materials of the pipe and flanges, for 

building a broad database of synthetic patterns corresponding to different depths of the 

pipe and characteristics of the environment. These patterns constitute the set of positive 

samples used for training and validation. They were also used for the final test of the 

algorithms. The negative samples for the three stages were directly extracted from the 

profiles. 

 

The results obtained indicate the usefulness of the proposed methodologies to identify 

the flanges. The best performance corresponded to the ANN, closely followed by SVM 

combined with HOG, and finally SVM with LBP. In particular, the ANN provided rates 

of false positive (FP) predictions for the validation and test samples of about 3%, and 

rates of false negative (FN) predictions of 1.67% for the validation samples and 18.75% 

for the test samples. Greater FN rates for the test experimental samples, in comparison 

to those obtained for the validation synthetic samples, were also observed for both SVM 

algorithms. The detection failures mainly originated in that some complex features of 
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the experimental flange responses could not be appropriately reproduced through the 

performed numerical simulations, and therefore, some of the patterns were not 

satisfactorily represented in the sets of positive samples used for training and validation. 

A first option to improve the results is to obtain a significant number and variety of 

experimental samples of flange responses and use them to train and validate the 

algorithms. Other alternatives are to use more sophisticated numerical simulation 

environments and to find more efficient attributes of the data. 

 

Keywords 

 

GPR, pipe-flange, automatic detection, SVM, ANN. 
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1. Introduction 

 

GPR is one of the geophysical methods most frequently used for detecting and 

characterizing shallow targets in the soil (Bai and Sinfield, 2018; Barraca et al., 2016; 

Booth and Pringle, 2016; Jol, 2009; Qinet al., 2018). Typical targets of GPR in civil 

engineering and related fields of application are pipes (Carcione, 1996a; 1996b; Böniger 

and Tronicke, 2012; Bullo et al., 2016), reinforcement bars and different inclusions in 

construction materials (Stryk et al., 2013; Bonomo et al., 2015), moisture and liquid 

contents in materials (Orlando and Renzi, 2014; Chen et al., 2016; Ocaña-Levario et al., 

2018), buried landmines and unexploded ordnance (Jin et al., 2012), archaeological 

structures (Bonomo et al., 2013; Azie et al., 2016) and natural layers (Okazaki et al., 

2015; Gądek et al., 2016). 

 

A relatively recent application of GPR is the detection of flanges of buried pipelines 

(Bonomo et al., 2011). Flanges are important points in a pipeline. Monitoring is often 

performed at these points to control the internal flux and to prevent leaks due to 

corrosion or fatigue. They are also relevant for maintenance and access to the interior of 

the pipelines. Nevertheless, on some occasions the positions of the flanges are 

unknown, as in old pipelines or when planes or signposts are missed. In these cases, it is 

relevant to locate them. The reflection methodology with constant-offset (CO) between 

antennae demonstrated very good detection capability for this type of targets. This 

methodology has also the advantage of not requiring altering the normal functioning of 

the pipelines, since it works from the ground surface in a noninvasive way. 

 

In general, the time required for processing and analyzing the GPR data is considerably 

longer than the time of data acquisition. This can be especially problematic when long 

sections of pipelines have to be studied in the search for flanges, obtaining large 

amounts of data. Then, the human effort associated to the processing and analysis of the 

data, as well as the monetary costs become significant. In these cases, it is particularly 

relevant to implement efficient procedures for automatically detecting the targets, so 

that the interpreter can be exempted from the most strenuous tasks and focus on relevant 

decisions, thus minimizing the possibilities of errors. 

 

Computer vision methodologies, which allow obtaining algorithms for the automatic 

detection of objects in images, have had great development during the last decades and 

are widely used in many different areas, such as traffic sign recognition, pedestrian 

detection, and gesture recognition. This type of algorithms consists of a classifier of 

image samples, which is the fundamental part, combined with a technique of search 

across the image. Their performance depends on the complexity of the objects to be 

recognized and their environment, as well as on a good selection and implementation of 

the classification algorithms and search techniques. The goal of the classifiers is to 

discriminate the samples that contain certain class of objects from other samples. They 

can be trained using supervised machine learning techniques. Ideally, the results should 

present invariance against the variability of the objects within each class and the 

changes in the environment. Common classification methods are discriminant analysis, 

k-nearest neighbors (k-NNs), Bayesian classifier, artificial neural networks (ANNs) and 

support vector machines (SVMs), among others (Bishop, 2006; James et al., 2013). 

Some of them work directly with the images, while others work with image attributes 

extracted previously by means of image feature descriptors. Two of the most 

extensively used descriptors are Local Binary Patterns (LBP) (Ojala et al., 1994; 2002) 
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and Histogram of Oriented Gradients (HOG) (Dalal et al., 2005). Regarding the search 

techniques, they are usually based on the concepts of pyramidal image and sliding 

window, and should be efficient enough as to allow quickly identifying most of the 

places containing the objects of interest, even if these objects have different scales. 

 

In recent years, the use of the aforementioned methodologies for the identification of 

characteristic signals of different types of targets in GPR images has been increasingly 

frequent. In particular, ANNs have been used to detect and classify landmines and 

unexploded ordnance (Kobashigawa et al., 2011; Núñez-Nieto et al., 2014), to extract 

information about the density of asphalt pavement (Shangguan et al., 2014), to 

characterize inclusions in concrete (Travassos et al., 2008), to evaluate moisture and 

chloride contents in concrete (Sbartaï et al., 2009; Kilic and Unluturk, 2014), to estimate 

the thickness of remnant coal seams in mines (Strange et al., 2005), to  inspect voids 

and conduits in hydro–electric power station tunnels (Kilic and Eren, 2018) and to 

locate cylindrical underground utilities (Ristić et al., 2017). On the other hand, different 

image descriptors have been used in combination with SVM algorithms. For example, 

Xie et al. (2013) used time segmentation of traces and statistical descriptors, such as the 

square root of variance, the standard absolute deviation and the fourth root of fourth 

moments, to identify air inside concrete units. Shao et al. (2011) calculated the 

magnitudes of the most important frequencies in radar traces to assess railway-ballast 

fouling conditions. Pasolli et al. (2009) calculated the amplitude spectra around the 

maximum of pre-located candidate reflections to classify different types of reflectors. 

Stone et al. (2012) and Pinar et al. (2015) used LBP, HOG and other descriptors, to 

locate and classify buried explosives. A fundamental advantage of these methodologies 

is that once a reliable algorithm for the automatic detection of a given type of target is 

obtained, it can be applied to detect similar targets in other surveys, provided that the 

characteristics of the sites are not too different. 

 

In this paper, we present methods based on SVMs combined with HOG and LBP 

descriptors, and on ANNs, for the automatic detection of reflections of pipe-flanges in 

CO-GPR images. The experimental data used for the development of these methods 

correspond to the previous work by Bonomo et al. (2011). In the next two sections, we 

briefly describe this study and the implementation of the methods. Then, we evaluate 

and compare the performances obtained from each of them, and finally, we provide 

conclusions of the work.  

 

2. Methodology 

 

In general, obtaining a method for automatic detection of objects in images comprises 

the following stages: image formation and samples generation, attributes extraction 

through feature descriptors (when necessary), training of the classification algorithms 

by using supervised learning techniques, implementation of the search procedures, and 

finally, evaluation of the obtained performance. 

 

The detection of flanges corresponds to a binary classification problem, for which the 

samples of the image can be separated into two classes: positive samples containing 

reflections at a flange, and negative samples that only contain reflections at other types 

of objects and noise. As usual in this kind of application, we had a small amount and 

variety of experimental patterns of reflections at the flanges, in comparison to what is 

required to train the classification algorithms. Then, simulated patterns were generated 
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to increase the number of positive samples. On the other hand, the negative samples 

were all extracted from regions of interest of the processed experimental data that did 

not include reflections at flanges. 

 

The feature descriptors to be used had to provide similar results, even for samples 

containing reflections of flanges at different depths and in different environments. At 

the same time, these results had to be different from those of samples not containing 

reflections at flanges. We worked with the descriptors LBP (Ojala et al., 1994, 2002) 

and HOG (Dalal et al., 2005). They are simple and efficient, and have high 

discriminative power. LBP is a texture descriptor that compares the intensity of each 

pixel in an image to that of the surrounding pixels, whereas HOG is a shape descriptor 

based on the gradient of intensity of the image. 

 

The objective of supervised learning techniques is to obtain, through the use of a set of 

labeled samples (training examples), classification algorithms capable of accurately 

predicting the class of other samples, not previously seen. Within the available 

methodologies, SVMs and ANNs were chosen (e.g. Bishop, 2006; James et al., 2013). 

The original SVM method (Vapnik and Lerner, 1963; Vapnik and Chervonenkis, 1964) 

was formulated for solving linear binary classification problems. In these problems, 

positive and negative samples, which are data points in the input space, can be separated 

by a hyperplane in this space. Among the infinite possible hyperplanes, linear SVM 

looks for the one that maximizes the separation margins between the two classes, for the 

training data. Later, this formulation was generalized by Cortes and Vapnik (1995) to 

complex non-linear problems. In these cases, the data are first projected into a higher-

dimensional feature space in which they are linearly separable, using kernel functions. 

Then, the linear solver is applied in this space. As our classification problem was non-

linear, we used this last formulation, in combination with the previous application of the 

LBP and HOG descriptors. For its part, ANNs are algorithms that attempt to mimic the 

functioning of the human brain and nervous system. These networks are able to capture 

subtle links between the data and discriminate into different classes, even if the 

underlying relationships are unknown or difficult to explain. They are composed of 

interconnected processing units called artificial neurons. During the training (or 

learning) process, the weights of the interconnections (synapses) are adjusted until a set 

of weights that produces an input-output mapping with minimum error is found. In 

particular, we used multilayer, feed-forward ANNs with backpropagation learning (e.g. 

Bishop, 2006), and employed architectures that did not require the application of 

attribute extraction procedures. 

 

Besides the training samples, validation samples are also required to obtain an 

optimized classifier of a given type. First, the parameters of a number of different 

classifier models are adjusted using the training samples. Then, the prediction errors of 

these models for validation data are evaluated and, based on the results, the best ones 

are selected. These steps are sequentially applied until a final solution is chosen. Finally, 

the real error attained with this optimized classifier is evaluated using test samples, not 

previously employed. The described process is summarized in the workflow shown in 

Fig. 1. For training, validation and testing, we used the negative samples extracted from 

the experimental GPR profiles. Regarding the positive samples, we employed the 

synthetic samples for training and validation, and the experimental ones for testing. 
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To quantify the performance of the classifiers, confusion matrices are normally used. 

For binary classification problems, these matrices have the structure shown in Fig. 2, 

where TP and TN are the numbers of correct positive and negative predictions, 

respectively, and FP and FN the numbers of false positive and negative predictions, 

respectively. For the type of application considered in this work, it was important to 

reduce the number of false negative predictions, even at the expense of increasing the 

false positive detections, since each false negative prediction implies that a flange is not 

detected. In addition, the number of data belonging to the negative class (TN + FP) was 

much greater than that of the positive class (TP + FN). In these cases, the accuracy 

tends to be similar to the true negative rate (TNR), and the true positive rate (TPR) or its 

complement the false negative rate (FNR), are also relevant. 

 

For the search across the GPR images, we used the conventional pyramidal image and 

sliding window techniques. All the algorithms were implemented using Anaconda 

Distribution, an open-source working environment for the Python language, and 

OpenCV, a free computer vision library in Python. 

 

3. Previous GPR study 

 

The experimental data were acquired along two sections of a mineral pipeline trajectory, 

8 km long each (Bonomo et al., 2011). The pipeline is metallic, with a thin coating 

around it, and an external diameter dp = 20 cm. The external diameter of the flanges is df 

= 52 cm and the length of the junction is 20 cm (Fig. 3). The surrounding soil has a 

predominantly sandy composition with moderate content of clay in a few places. During 

the prospecting, the soil water content was low, which allowed enough penetration even 

in the parts of the trajectory with higher clay contents. For the investigated sections, the 

depth to the pipeline varied in the interval 0.5 – 2.1 m, and a total of 16 flanges were 

identified, approximately one per kilometer. 

 

For the survey, we used a Sensors & Software Pulse EKKO PRO system with 500 MHz 

antennae, which ensured enough penetration of the transmitted field and good resolution 

of the reflections at the flanges. A constant trace interval of 0.02 m was used, with 

stacking 16. The main processing steps were dewow, time-zero correction, removal of 

the direct waves between the antennae and application of exponential gain. Consecutive 

constant-offset GPR profiles were acquired along the pipeline, each one 100 m long. 

Propagation velocities between 11.1 and 18.8 cm/ns were obtained by fitting hyperbolae 

to diffraction signals in the profiles. Fig. 4 shows 4 m x 20 ns images extracted from the 

acquired profiles, which provide examples of the reflection patterns obtained for the 

pipe and the flanges. The reflections at the flanges appear with approximately 

hyperbolic shapes, while the reflections at the pipe have approximately flat shapes, 

which are not perfectly horizontal because the effect of the surface topography was not 

corrected. The differences that can be observed between the characteristics of the 

reflections in Fig. 4 are mainly due to the varying soil properties, surface topography, 

surrounding clutter and pipeline depth.  

 

4. Image formation 

 

4.1. Generation of synthetic positive samples 
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For the numerical simulations, we used the software Reflex-Win V.5.0.5, which 

calculates the fields through a finite-difference code. Among the available modeling 

methods, we chose the 2D exploding reflector option, as a trade-off between quality and 

speed. It was important that the simulated patterns were as representative as possible of 

those obtained experimentally, since the performance of the classifiers depends on their 

ability to adequately distinguish flange reflections from other signals. The simulation 

models represented vertical sections through the center of the pipeline (y = 0 m in Fig. 3 

b), and had symmetry in the y-direction. The depth of the pipe varied in the interval 0.5 

– 2.1 m. We included several irregular layers and small diffractors in the models to 

simulate the ground around the pipe. We used 5 - 15 layers, with relative permittivity in 

the interval 2.5 - 7.5 and conductivity 0.1 – 100 mS/m. As background diffractors, we 

used 5 – 15 circular, square and irregular reflectors, with sizes 0.05 – 0.20 m, which 

were located randomly. The electromagnetic parameters of the diffractors varied in the 

same intervals that the layers. The inclination of the air-ground interface varied in the 

interval -6º to 6º. 800 images were generated from the models and a positive sample of 

4 m x 20 ns was extracted from each synthetic image. 560 samples were employed for 

training and 240 for validation. Some of these samples are shown in Fig. 5 a. They 

provide examples of diverse types of simulated patterns that simultaneously contain 

reflections at flanges, at the pipeline, and at different objects in the environment. 

 

4.2. Extraction of negative samples from the experimental images 

 

Negative samples are as important as positive ones, and must be representative of the 

background in which the target objects are embedded. First, we randomly extracted 

several thousands of negative samples of 4 m x 20 ns from the experimental profiles, 

between 6000 and 9000 depending on the choice of classification. Fig. 5 b shows 

examples of these samples that exhibit reflections at small diffractors, at layers with 

smooth interfaces, and at the pipe without flanges. Later, the selection of negative 

samples was refined by working with the concept of hard negative, which allows 

improving the performance of the classifiers by prioritizing the search for negative 

samples that are close to the separation boundary between classes. 

 

Comparing the images shown in Figs. 4 and 5 b, the complexity of the problem to be 

solved can be appreciated. In many cases, the reflections obtained for objects that were 

not flanges were similar to those corresponding to flanges. The image descriptors and 

classifiers had to be sensitive enough to distinguish those differences. Another problem 

was that some of the flanges were localized in complex environments, which were 

difficult to reproduce in the simulations. 

 

5. Image descriptors used with the SVM algorithms 

 

As images were in shades of gray, the data for the LBP and HOG descriptors were the 

gray intensity levels of the pixels.  

 

5.1. Local Binary Patterns 

 

In the original formulation of the descriptor LBP, a binary number is calculated for each 

pixel in the image, by comparing its gray intensity to that of its 8 nearest neighbors, 

according to the following equation (Ojala et al., 1994): 
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   (   )  ∑ (    )   
 

 

   

 (1) 

 

where (x,y) are the horizontal and vertical coordinates of the pixel, I is its gray intensity, 

In for n = 0 to 7 are the gray intensities of its neighbors, which always must be 

numbered following the same clockwise or counterclockwise sequence, and the function 

s is given by: 

 

 (    )  {
                
               

 
(2) 

 

This procedure is applied to all the pixels in the image, and the calculated values are 

stored in an output matrix (LBP image) with the same width and height as the original 

image. 

 

This formulation of the operator allows capturing extremely fine details in the image, 

but is not suitable for capturing details at different spatial scales. Taking this into 

account, we used a generalization of the algorithm, circular LBP, which solves this 

problem (Ojala et al., 2002). The formula for circular LBP is similar to that in eqn. 1, 

but instead of the 8 nearest neighbors, P neighbors are considered, equally spaced on a 

circle of radius R, centered at (x,y). Pixel intensities are bilinearly interpolated 

whenever a neighbor is not at the center of a pixel. Fig. 6 shows examples of the results 

obtained when applying this operator on both positive and negative samples, for P = 12 

and R = 3 pixels. 

 

As can be observed, it is difficult to infer characteristics providing a clear distinction 

between positive and negative samples from the LBP images directly. Hence, to obtain 

results useful to the classifier, the image is divided into blocks of m x n pixels, and a 

histogram of the LBP values for the pixels in each block is calculated and stored as a 

vector. Often, these histograms are normalized, to account for changes of brightness and 

contrast across the image. Then, the normalized histograms of all the blocks are 

concatenated into a feature vector that is the input to the classifier, and which dimension 

depends on the numbers of blocks and neighbors P. The information contained in this 

vector changes when the parameters R and P, or the size and normalization of each 

block, are varied. The combinations that provide better results depend on the classifier 

models, and are usually sought by trial and error. We employed values of R in the range 

1 – 5 pixels, values of P between 8 and 24, block sizes between 8 x 8 and 32 x 32 pixels, 

and L2 normalizations.  

 

5.2. Histogram of Oriented Gradients 

 

The HOG descriptor is especially sensitive to the shape of the objects contained in the 

image (Dalal et al., 2005). The general procedure for obtaining the feature vector 

corresponding to this descriptor is described next. First, the magnitude and orientation 

of the gradient for each pixel in the image are calculated. The magnitude is given by: 

  

| (   )|  √   (   )     (   ) (3) 
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where (x,y) is the position of the pixel, and Gx and Gy are respectively, the horizontal 

and vertical components of the gradient. 

 

The orientation of the gradient, , is calculated as: 

 

  ( (   ))  
  (   )

  (   )
 

(4) 

 

or: 

 

  ( (   ))  
|  (   )|

  (   )
 

(5) 

 

depending on whether it is “unsigned” or “signed”, respectively. In the first case, the 

values of  range from 0 to 360 degrees, while in the second case they go from 0 to 180 

degrees. 

 

As a second step in the procedure, the image is divided into cells of size m x n pixels, 

and for each cell, a kor–bines histogram of gradient orientations weighted by gradient 

magnitudes is built. Larger gradient magnitudes have greater contributions to the 

histogram. Each histogram corresponds to a vector of kor values, which are the sums of 

the contributions of the pixels in the cell to each bin. Normally kor = 9. 

 

Instead of normalizing those histograms individually, the cells are first grouped into 

blocks that partially overlap, and the normalization is done based on all the histograms 

in each block. In Dalal and Triggs (2005), each block is composed of 2 x 2 cells, so that 

the blocks overlap with each other by 50%. The histograms of the four cells within a 

block are concatenated into a vector with 4 x kor components (4 histograms x kor bins 

per histogram) and then normalized. Finally, the normalized vectors of all the blocks are 

concatenated into a vector which is the HOG descriptor of the image. 

 

In this work, we have considered unsigned gradient orientations, cell sizes between 8 x 

8 and 32 x 32 pixels, and the most usual values for the rest of the options: histograms of 

9 bines, and blocks of 2 x 2 cells with L2 normalization. Fig. 7 shows examples of the 

HOG images obtained for both positive and negative samples. The direction of each 

arrow indicates the dominant orientation of the gradient in the histogram of the 

corresponding cell. As in the case of the LBP descriptor, the direct visualization of these 

images does not allow to clearly differentiate the two types of samples (although it can 

be noted that the zones corresponding to the pipe present nearly horizontal gradients). 

 

6. Results of the classification methods 

 

6.1. Support Vector Machines 

 

As explained in Section 2, the SVM method was originally formulated for solving linear 

binary classification problems (Vapnik and Lerner, 1963; Vapnik and Chervonenkis, 

1964). Given Nt training examples of two different classes, each one consisting of a 

data vector xi of dimension p, together with its corresponding label yi (which is 1 or -1, 

if the datum belongs to the positive or negative classes, respectively), the goal of the 
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training process is to obtain a hyperplane of dimension p-1 that maximizes the 

separation margins between the two classes while reducing the errors in the 

classification.  

 

Any hyperplane in the input space can be written as the set of points x that satisfy: 

 

        (6) 

 

Where W is a vector normal to the hyperplane, with norm ‖ ‖ and dimension p, and  

is a constant such that  ‖ ‖⁄  is the signed distance of the hyperplane from the origin 

along the direction of W. 

  

Finding the hyperplane with maximum separation margins involves the minimization of 

the following error function: 

 

 

 
‖ ‖   ∑  

  

   

 (7) 

 

subject to the constraints: 

 

  (      )                     
(8) 

 

The quantities    are defined by: 

 

      (      (      ))              
 

 (9) 

 

They are slack variables for the classification of corresponding data.    is 0 if the datum 

xi lies in the correct side of the margin for its class; otherwise,    is proportional to its 

distance from this margin. C is a positive regularization parameter that determines the 

tradeoff between the maximization of the margins and the error level accepted in the 

classification. Higher values of C correspond to larger penalizations of the errors. 

 

In the case of non-linear binary classification problems, the data xi in the input space are 

first transformed to data (xi) in a feature space of higher dimension where they are 

linearly separable, and then, the described linear solver is applied to these transformed 

data. The method is computationally efficient because this transformation is implicit; 

the explicit calculation of the coordinates of the transformed data is not required, only 

the inner products of all the pairs of these data have to be obtained. These products are 

defined by means of a kernel function k, as follows: 

 

 (     )   (  )   (  ) (10) 

 

This procedure, known as the kernel trick, was first introduced for SVM by Cortes and 

Vapnik (1995). Among the most frequently used kernels, we selected polynomial and 

Radial Basis Function (RBF) kernels. Polynomial kernels are given by: 

 

 (     )  (         )
 
 (11) 
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where d is the degree of the polynomial kernel, and γ > 0 and r ≥ 0 are constants. d is 

the most important parameter, whereas r trades off the influence of the higher-order and 

lower-order terms. RBF kernels are defined by: 

 

 (     )     (  ‖     ‖
 
) 

(12) 

 

Again, γ is a constant greater than 0. Thus, kernel (12) provides a similarity measure 

between the two data points. 

 

The input data were the feature vectors obtained from the LBP or HOG descriptors. 

According to the most common approach, the parameters of each type of kernel were 

optimized by grid search, together with the corresponding regularization factor C, for 

different values of the parameters of the descriptors LBP and HOG, in the ranges 

mentioned in the former section. The kernel parameters and value of C that produced 

the best results for each type of kernel, and their respective performances for the 

validation data are summarized in Table 1. The corresponding parameters of the 

descriptors were P = 8, R = 3, block size 16 x 16 pixels and normalization L2, for LBP, 

and cell size 16 x 16 pixels, cells per block 2 x 2, 9 divisions of orientation and 

normalization L2, for HOG.  

 
Kernel  

function 

Kernel 

Parameters 

and 

Regularization 

constant  

HOG 

Accuracy 

HOG 

False 

negative 

rate 

HOG 

False 

positive 

rate 

LBP  

Accuracy 

LBP 

False 

negative 

rate 

LBP 

 False 

positive 

rate 

Polynomial  d=7 

=0.4 

C=0.5 

85.22% 5.82% 11.46% 79.19% 7.23% 15.74% 

RBF = 0.24 

C=0.1 

96.02% 2.92% 4.10% 90.94% 2.91% 9.76% 

Table 1. The two types of kernels considered, together with the kernel parameters and 

regularization constant that provided the best results in each case, and the 

corresponding performances for the validation data with the HOG and LBP 

descriptors. The best solution corresponded to the RBF kernel. The parameters for LBP 

were: P=8, R=3, block size 16 x 16 pixels and normalization L2, and for HOG: cell size 

16 x 16 pixels, cells per block 4, divisions of orientation 9 and normalization L2.   

 

The best solution corresponded to the RBF kernel with = 0.24 and C = 0.1. The 

confusion matrices for this kernel, for validation and test data, and the LBP and HOG 

descriptors with the indicated parameters, are shown in Fig. 8. 

 

For both validation and test data, the number of negative samples was much greater than 

the number of positive samples. Then, according to that explained in Section 2, the 

obtained accuracies were in the four cases similar to the TNRs, which are 

complementary of the false positive rates, FPRs. Considering this, we focused the 

analysis directly on the FPRs associated to the negative data class, and the FNRs 

associated to the positive data class. Regarding the FPRs, for the two descriptors, the 

results obtained for the validation and test data were similar. This is reasonable, 

considering that all those data were extracted from the experimental profiles; the lowest 

values corresponded to the HOG descriptor (4.10% and 4.58%, for validation and test 

data, respectively). As for the FNRs, the values obtained with both descriptors for the 
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validation data were almost coincident and very low (about 2.9%). For the test data, the 

FNRs were much greater: 37.5% for LBP and 25% for HOG, meaning respectively that 

6 and 4 of 16 flanges were not detected. Again, the performance of the HOG descriptor 

was better. The samples corresponding to the 4 flanges not detected with this descriptor 

are shown, as an example, in Fig. 9. The probable reason of the detection failures is that 

some characteristics of these experimental images were not adequately reproduced by 

the numerical simulations used for the training and validation of the algorithms. For 

instance, in Fig. 9 a, very abundant and intense clutter around the pipe and flange 

reflections can be observed, as well as large fluctuations in the correspondent reflection 

traveltimes. In Fig. 9 b, the flange reflection is markedly non-symmetrical, as its right-

side asymptote is not visible. Finally, in Fig. 9 c the flange reflection is significantly 

weaker than that of the pipe, whereas in Fig. 9 d, the pipe reflection is almost not visible 

to the right of the flange reflection.  

 

6.2. Artificial Neural Networks 

 

We used multilayer feed-forward ANNs (see e.g. Bishop, 2006). These networks consist 

of an input layer, one or more hidden layers and an output layer, each one composed of 

certain number of neurons, such that the neurons in a given layer only connect with 

those in the next layer. The basic operation of a neuron j in a layer L of the network is 

described next. First, through a propagation function fprop, the outputs of the neurons i1, 

…, in(L-1) of the layer L-1 connected to j (  
      (   )

 , respectively) are transformed 

into the network input netj, taking in consideration their connection weights with j 

(  
  
     (   )

  
, respectively) and a bias term bj. This term represents the weight of the 

connection between the neuron j and a bias neuron b, with output ob=1.  

 

The most common propagation function is the weighted sum: 

 

     (  
      (   )

    
  
     (   )

  
   )  ∑   

   
  

 (   )

   

         (13) 

 

netj is the input to an activation function, fact, also called transfer function, which 

determines the activation state of the neuron j, aj 

 

    (    )     (14) 

 
Typical choices for fact are Fermi and hyperbolic tangent functions. Finally, aj is 

transformed by an output function fout, which gives the output of the neuron oj. Usually, 

fout is the identity function, so that oj = aj. 

 

The architecture of this type of networks is determined by the number of layers, the 

number of neurons per layer, the selected propagation, activation and output functions, 

and the learning rule. The training examples consist of data vectors of two or more 

classes, which are entered to the input layer, together with the expected network outputs 

(this is the expected values of the outputs of the neurons in the output layer). The 

number of neurons in the input layer is equal to the dimension of these vectors. During 

the training, the weights of the interconnections between the neurons and the bias terms 
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are optimized to minimize certain error (or loss) function, which measures the 

difference between the expected and the obtained results. 

 

We trained a variety of architectures, using as learning rule the back propagation 

algorithm (Werbos, 1974; Rumelhart and McClelland, 1986), which is basically a 

gradient descent optimization procedure. In agreement with the approach most usually 

applied in the area, we used the propagation function given by eqn. 13, the identity 

function for fout, and started the training of each model with random weights. The data 

fed to the input layer were the vectors containing the gray intensities of the pixels of the 

training samples. We considered sets of samples with different pixel resolutions. The 

output layer consisted of two neurons, one for each labeled class. Following a trial and 

error procedure, we varied the number of hidden layers (between 1 and 6) and the 

number of neurons in these layers. Then, for each one of these cases, we varied the type 

of gradient descent procedure, the learning rate associated to this procedure in order to 

reduce the possibility of falling into local minimums, the regularization technique that 

determines when the training is stopped, to avoid over fitting, and the activation and 

loss functions, to further improve convergence. In particular, we tested the 

performances of the optimization procedures BGD (batch gradient descent) and SGD 

(stochastic gradient descent), with constant and exponential learning rates, the 

regularization techniques early stopping and Dropout, the activation functions Sigmoid, 

Softmax and ReLU, and the loss functions exponential, cross entropy and L2. 

 

Among all the tested architectures, the best performance corresponded to 4 hidden 

layers with 9454, 1140, 137 and 16 neurons, respectively, SGD optimization procedure 

with exponential learning rate, dropout regularization, Sigmoid activation function for 

the input and hidden layers, Softmax activation function for the output layer and cross 

entropy loss function. This algorithm was selected as our final ANN implementation. 

For the set of validation samples of 360 x 360 pixels, it provided an accuracy of 

97.01%, with 3.14% of FPR and only 1.67% of FNR. 

 

The following two tables provide a measure of how the performance of the classifiers 

changed when different settings were varied with respect to those of the final ANN 

model. In Table 2, the number of hidden layers and number of neurons per hidden layer 

were changed, without modifying the rest of the settings. With more than 4 hidden 

layers the convergence became unstable. 

 

Number 

of hidden 

layers 

Number of 

neurons per 

hidden layer 

Accuracy False 

negative 

rate 

 

False 

positive 

rate 

1 650 63.11% 29.58% 37.71% 

2 2307/68 75.81% 23.33% 24.28% 

3 5571/396/28 87.69% 13.33% 12.19% 

4 9454/1140/137/16 97.01% 1.67% 3.14% 

Table 2. Accuracy, FNR and FPR achieved for the validation data samples of 360 x 360 

pixels, with different numbers of hidden layers and neurons per layer. The rest of the 

settings were those corresponding to the final ANN algorithm described in the text: 

SGD procedure with exponential learning rate, Dropout regularization, Sigmoid 

activation function for the input and hidden layers, Softmax activation function for the 

output layer, and cross entropy loss function.  
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Complementary, in Table 3, the optimization algorithm, the activation function of the 

output layer and the regularization technique were varied, keeping the rest of the 

settings unchanged. 

 

Optimization 

algorithm 

Activation 

function for 

the output 

layer 

Regularization Accuracy 

 

False 

negative 

rate 

False 

positive 

rate 

BGD ReLU Early stopping 91.07% 6.35% 2.58% 

BGD Softmax Dropout 94.11% 3.48% 2.41% 

SGD ReLu Early stopping 93.86% 2.72% 3.42% 

SGD Softmax Dropout 97.01% 1.67% 3.14% 

Table 3. Accuracy, FNR and FPR obtained for the validation data samples of 360 x 360 

pixels, with different optimization algorithms, activation functions of the output layer, 

and regularization techniques. The rest of the settings are the same as in the final ANN 

model. 

 

As mentioned before, for the particular application presented in this paper, it was 

especially important to reduce the FNR as much as possible. As can be observed from 

the tables, the final ANN architecture presented the highest accuracy and lowest FNR. 

Although the models corresponding to the first two rows of Table 3 had lower FPRs, 

their FNRs were much higher. 

 

The confusion matrices for the final ANN, for validation and test data, are shown in Fig. 

10. As in the case of the SVM classifier, for the validation and test data, the number of 

negative samples was much greater than the number of positive samples. Then, in both 

cases, the accuracies obtained were similar to the TNRs. The FPRs obtained for the 

validation and test negative data were similar: 3.14% and 3.38%, respectively. These 

values are lower than those obtained for the SVM algorithm with the HOG descriptor 

(4.10% and 4.58%, for the validation and test negative data, respectively). Regarding 

the FNRs, the values obtained with the ANN (1.67% and 18.75%, for the validation and 

test positive data, respectively) were also better than those obtained with the SVM 

classifier with HOG (2.92% and 25%, respectively). Although the flanges 

corresponding to the samples shown in Figs. 9, a to c, remained undetected by the ANN, 

the one in Fig. 9 d was adequately classified. 

 

In Fig. 11 we show an example of true and false positive detections in an experimental 

image, obtained with the final ANN, using pyramidal image and sliding window 

techniques. 

 

7. Discussion and conclusions 

 

The performances of the three algorithms, SVM-LBP, SVM-HOG and ANN, for the 

validation data were very good. They exhibited low FPRs of about 9.76%, 4.10% and 

3.14%, respectively, and low FNRs of 2.9% for SVM-LBP and SVM-HOG, and 1.67% 

for the ANN. This indicates the usefulness of these methodologies to detect the flanges. 

The best results corresponded to the ANN, closely followed by SVM-HOG, which in 

turn was somewhat better than SVM-LBP. This is probably so because LBP is a texture 

descriptor, whereas HOG is especially sensitive to the shape of the objects and, 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

therefore, seems to be more suitable for adequately identifying the patterns of the 

reflections at the flanges. 

 

Regarding the test data, the obtained FPRs were almost equal to those obtained for the 

validation data. This is reasonable, considering that both types of negative samples were 

extracted from the measured profiles. On the contrary, the FNRs were significantly 

higher than for the validation data: 6, 4 and 3 of the 16 experimental positive samples 

were misclassified by SVM-LBP, SVM-HOG, and ANN, respectively. Again, the best 

performance corresponded to the ANN, followed by SVM-HOG, and SVM- LBP. The 

probable reason for these poorer performances in comparison to those obtained for the 

synthetic validation positive samples is that some characteristics of the experimental 

flange responses could not be appropriately reproduced through the numerical 

simulations, so these patterns were not satisfactorily represented in the sets of synthetic 

samples used to train and validate the algorithms. For instance, FNs occurred in cases 

with profuse clutter and significant variations of the amplitude and shape of the flange 

and pipe reflections. The last characteristics were mainly consequences of local wave-

field attenuation and deviation of the transmitted radiation lobe from the antennae-

reflectors direction due to changes in the air-soil topography (e.g. due to a pit or a 

mound), which moreover produced fluctuations in the reflection times. 

 

A main objective of this work was to explore the usefulness of the classification 

methodologies to detect the flanges. Since the number of synthetic positive samples 

required to train and validate the algorithms was quite high, there was a compromise 

between the complexity and duration of the numerical simulations and the similarity of 

the simulated patterns with the experimental ones. As a trade-off between quality and 

speed, we employed 2D models and prioritized the generation of patterns that 

reproduced the more frequent characteristics of the reflections. In this respect, the 

results obtained for the positive experimental samples with the algorithms ANN and 

SVM-HOG, have been satisfactory as a first approach to the subject, since only 

reflections with anomalous characteristics were not detected by the algorithms. 

 

In conclusion, the potential of the two methods, ANN and SVM combined with HOG, 

for reliably and efficiently detecting pipe flanges in CO-GPR data-sections is promising. 

One advantage of the SVM algorithms is that they are much simpler and faster to 

implement than ANNS. In the studied case, SVM-HOG provided results almost as good 

as the ANN. Future work is planned to refine the algorithms to improve their ability to 

identify more generally complex flange patterns. For this, the sets of positive training 

and validation samples have to be expanded to include a wider range of possible 

characteristics of the experimental signals. This could be achieved by including in these 

sets a significant number and variety of experimental samples, by using more 

sophisticated numerical modeling, and/or by calculating other types of data attributes. 
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Figure captions 

 

Fig. 1. Workflow of the process of obtaining the classifier algorithms. 

Fig. 2. Confusion matrix for a binary classification problem (Fawcett, 2006), where TP 

and TN are the numbers of true positive and negative predictions, respectively, and FP 

and FN are the numbers of false positive and negative predictions, respectively. 

 

Fig. 3. a) Photograph and b) schematic model of the investigated pipes and flanges.  

 

Fig. 4. 4 m x 20 ns images extracted from the experimental CO-GPR profiles, which 

exemplify the typical reflections at the pipe (red arrows) and at the flanges (yellow 

arrows). Surface topography is not corrected. 

 

Fig. 5. Examples of the samples used for the implementation of the classification 

algorithms. All of them have dimensions 4 m x 20 ns. a) Positive samples obtained from 

synthetic modeling, b) negative samples extracted from the experimental profiles. 

 

Fig. 6. a) Synthetic positive samples (left) of dimensions 4 m x 20 ns (448 x 448 

pixels), together with their corresponding circular LBP images (right) obtained 

considering P = 12 and R = 3 pixels. b) The same as in a), but for experimental negative 

samples. 

 

Fig. 7. a) Synthetic positive samples (left) of dimensions 4 m x 20 ns (448 x 448 

pixels), together with their corresponding HOG images (right) obtained considering 

cells of 32 x 32 pixels, cells per block 4, 9 divisions of orientation and normalization 

L2. (b) The same as in (a), but for experimental negative samples. 

 

Fig. 8. Confusion matrices corresponding to the RBF kernel with = 0.24 and C = 0.1, 

for validation and test data, and the LBP and HOG descriptors with the parameters 

indicated in Table 1. The structure of these matrices is shown in Fig. 2. 
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Fig. 9. 4 m x 20 ns samples of the flanges that were not detected with the RBF kernel 

with = 0.24 and C = 0.1, and the HOG descriptor with the parameters indicated in 

Table 1. 

 

Fig. 10. Confusion matrices obtained for validation and test data samples of 360 x 360 

pixels, with the final ANN architecture. The structure of these matrices is shown in Fig. 

2. 

 

Fig. 11. Example of true positive (TP) and false positive (FP) detections in a profile, 

obtained with the final ANN architecture, using sliding window and pyramidal image 

techniques. Only 40 m of the original 100 m-long profile are shown, for a better 

visualization of the pipe and flange signals. Different horizontal artifacts are visible in 

the image, due to the basic filtering procedure applied to the data. 
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 Automatic detection of pipe-flange signals in simple-offset GPR images is 

explored.  

 Support vector machines is combined with local binary patterns and histogram 

of oriented gradients 

 Artificial neural networks are also evaluated 

 Synthetic sections are used as positive samples in training and validation 

 Experimental data are used as negative samples in training and validation, and 

also in testing 

 The capabilities of these methods for detecting pipe flanges is shown 
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