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Research data for this article 22 

All raw data generated in this study is deposited and accessible at PANGEA, 23 

https://doi.org/10.1594/PANGAEA.925354 (Torre et al., 2020a).  Abundance and densities of 24 

benthic organisms close to the Fourcade glacier front at Potter Cove, South Shetland Islands, 25 

Antarctica, from December 2009 to February 2010 were taken from PANGAEA, 26 

https://doi.org/10.1594/PANGAEA.879315 (Laggert et al., 2017b). Suspended particulate matter 27 

measured on water samples of two stations at Potter Cove, King George Island, Western Antarctic 28 

Peninsula (1992-2010) were downloaded from PANGAEA, 29 

https://doi.org/10.1594/PANGAEA.745596 (Schloss, 2010). Ascidians respiration rate under 30 

different TSPM concentration were extracted from PANGEA, 31 

https://doi.org/10.1594/PANGAEA.925202 https://doi.pangaea.de/10.1594/PANGAEA.925202 32 

(Torre et al., 2020b). The rest of the data that support the findings of this study are available from the 33 

corresponding author upon reasonable request. 34 

 35 

 36 

Highlights 37 

● Ascidians gut content amount and quality correlates with TSPM gradient and glacier distance. 38 

● SFG indicates currently suitable growth conditions in spite of high TSPM. 39 

● SFGTSPM allowed us to identify environmental thresholds and explain community changes. 40 

  41 

Jo
urn

al 
Pre-

pro
of



3 

Abstract 42 

Glacier melting sediment inputs affect coastal ecosystems on the Antarctic Peninsula. In Potter 43 

Cove (South Shetland Islands, Antarctica), the shift from an “ascidian dominated” to a “mixed” 44 

assemblage has been linked to sedimentation. However, in recently described newly ice-free areas 45 

ascidians became dominant in spite of total suspended particulate matter (TSPM) concentrations, 46 

which are the highest measured in Potter Cove. Here, we compared the gut content and energy 47 

reserve of three ascidian species at three stations under different TSPM regimes. All analyzed species 48 

had a higher gut content with lower %OM at these newly areas. A theoretical relationship between 49 

the scope for growth for the targeted ascidians and TSPM explained assemblages' recorded change 50 

but failed to explain current ascidians distribution. The results may indicate the existence of a TSPM 51 

threshold that allows the spatial coexistence of alternative stable states at benthic Potter Cove system. 52 

 53 

Keywords: alternative stable states, Antarctica, ascidians, glacier retreat, hysteresis, scope for 54 

growth, sedimentation, suspension feeders. 55 
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1. Introduction 57 

Along the Western Antarctic Peninsula (WAP), glacier retreat associated with climate change 58 

is opening newly ice-free areas, available to enhanced primary production and new benthic 59 

colonisation (Campana et al., 2018; Lagger et al., 2018; Peck et al., 2010; Quartino et al., 2013). 60 

These newly ice-free areas in nearshore regions are strongly influenced by the seasonal discharge of 61 

inorganic particles washed from land (Dierssen et al., 2002; Gutt et al., 2015; Kim et al., 2018; Moon 62 

et al., 2015), affecting shallow-water ecosystems functioning (Clark et al., 2017; Kim et al., 2021; 63 

Thrush et al., 2004), from population down to the level of gene expression (Abele et al., 2017; Torre 64 

et al., 2017). Key planktonic and benthic suspension feeders are massively constrained in respiration 65 

and growth and even suffer massive die outs and biomass loss as c consequence of sedimentary 66 

coverage of respiratory organs and body surfaces, and the ingestion of lithogenic particles (Dayton et 67 

al., 2016; Fuentes et al., 2016; Pakhomov et al., 2003; Philipp et al., 2011; Slattery and Bockus, 68 

1997). The inability to move and avoid local stress conditions in space and time renders sessile 69 

Antarctic organisms particularly vulnerable to the ongoing rapid Antarctic environmental changes. In 70 

this sense, it has also been hypothesised that sedimentation of TSPM per se could act as a community 71 

shaping factor based on differential sensitivities of each species present. The most tolerant species 72 

would stand better, changing competitive relationships, shaping the resulting community even from 73 

the earlier recruitment stages (Clark et al., 2017a; Kim et al., 2021; Krzeminska and Kuklinski, 2018; 74 

Torre et al. 2017). Understanding the extent to which coastal total suspended particulate matter 75 

(TSPM) dynamics affects vital functions and survival of benthic key species will help to predict 76 

future Antarctic benthic community composition, and to elucidate ecosystem thresholds (Clark et al., 77 

2017b; Gardner, 2000; Jansenet al., 2018a; 2018b). An ecological threshold is defined by a rapid 78 

non-linear change in ecosystem structure and functioning connected with changes in the 79 
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environmental conditions. Sudden ecosystem shifts are used to determine “threshold values” for 80 

environmental parameters, and to define eventual tipping points, leading to switching between 81 

alternative stable ecosystem states (Andersen et al., 2009; Folke et al., 2004; Shelkoe et al. 2015; 82 

Scheffer and Carpenter, 2003). Rapid climate-related ecological changes of West Antarctic coastal 83 

ecosystems offer ideal scenarios to get further insights into ecological concepts such as stability, 84 

resilience and sudden shifts (Barnes and Souster, 2011; Dayton et al., 2019; Fillinger et al., 2013; 85 

Gutt et al., 2011; Sahade et al., 2015).  86 

Potter Cove on South Shetland Island is one of the best investigated glacial coves of the WAP 87 

concerning both the environmental and ecological changes resulting from glacier retreat (Falk et al., 88 

2018; Rückamp et al., 2010; Sahade et al., 2015; Schloss et al., 2012). As a consequence of summer 89 

glacier melting and discharge on proglacial rivers that transport lithogenic particles from coastal 90 

erosion, forming a shallow sediment admixed freshwater plume of approximately 5m depth extension 91 

flows toward Maxwell Bay (Meredith et al., 2018) (see Fig. 1). The intensity with which these 92 

sediments are deposited within the cove differs spatially across different sections. Because internal 93 

cyclonic surface current extends residence time of the water mass (Lim et al., 2013), major 94 

deposition of fine particles occurs in the inner cove area, next to the glacier (Wölfl et al., 2014).  95 

Between 1994 and 1998, a remarkable reduction in the abundance of some ascidians and the 96 

expansion of an assemblage dominated by pennatulids, bivalves and some Porifera was observed in 97 

sediment covered areas of the cove (Sahade et al., 2015). This sudden shift from an “ascidian 98 

dominated assemblage” to a “mixed assemblage” was associated with an increase in the 99 

concentration of TSPM (Bers et al., 2013; Schloss et al., 2012) and coincided with the rates of 100 

sediment mass accumulation in Maxwell Bay (Monien et al., 2011). These two assemblages were 101 

hypothesised to represent alternative stable ecosystem states, as the sudden shift in the benthic 102 
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community coincided with a massive sedimentation event in 1995 after which the ascidian 103 

populations did not recover (Sahade et al., 2015). This interpretation was further supported by 104 

experimental evidence showing that for the same TSPM concentration, ascidians' energy demand is 105 

higher than other tested suspension feeders (Laternula elliptica, Malacobelemnon daytoni), and are 106 

therefore considered more sensitive to this factor (Philipp et al., 2011; Torre et al., 2012). Moreover, 107 

under high TSPM concentrations carbon uptake efficiency is constrained in ascidians, leading to an 108 

energetic deficit that compromises their growth and reproduction (Alurralde et al., 2019; Armsworthy 109 

et al., 2001; Torre et al., 2014). Additionally, ecological modelled predictions strongly suggest that 110 

TSPM is a key factor influencing ascidian capacity to colonise and survive, jeopardising long-term 111 

population success (Momo et al., 2008; Torre et al., 2017). Interestingly, the most TSPM sensitive 112 

ascidians (Torre et al., 2012; 2014) were able to abundantly colonise a small rocky island (<80 m 113 

long and ~30 m depth) which emerged under the retreating glacier around the early 2000s, although 114 

they were directly and massively exposed to glacier sediment discharge. Indeed, solitary ascidians 115 

were the dominant macrobenthic group (with 47.1 (±1.7 s.e.) % of coverage and a density of 308.6 116 

(±51.1 s.e.) individuals m–2) on the steep rocky walls of this island (Lagger et al., 2018). It is 117 

therefore essential to understand the actual sensitivity/vulnerability of these species and the 118 

community tipping points to effectively contribute to a broader ecological debate in the context of 119 

fast and pressing Antarctic environmental changes (Gutt et al., 2013).  120 

In such challenging environmental conditions, growing on a nearly vertical wall of a recently 121 

ice-free rocky island, could be beneficial for benthic suspension feeders i) because sediment coverage 122 

on the organisms may be less detrimental than in horizontally positioned specimens (Lagger et al., 123 

2018), ii) the current system in the water column may be more effective in surface cleaning, iii) 124 

resuspension of deposited sediments may not reach up to the midwater position of these animals. 125 
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Nevertheless, this failed to explain the dominance of ascidians on the horizontal substrate provided 126 

by the new areas next to the glacier (Lagger et al., 2017a). Similarly, in highly impacted new ice-free 127 

areas within the adjacent Marian Cove (25 de mayo/King George Island, Antarctica), ascidians of 128 

very low sizes reach high abundances as in Potter Cove (Kim et al., 2021). Such growth arrestment 129 

could be due to the scarce organic material they receive and the energy investment on processing 130 

inorganic matter. Therefore, in such a contradictory context, we aim to understand how the ascidian 131 

species are able not only to survive at high TSPM concentrations (with low orgánic matter content) 132 

but to dominate pioneering communities in glacial sedimentation areas. Another question relates to 133 

how they can maintain a positive growth under such intense inorganic sedimentation pressure. Here 134 

we propose the following hypotheses 135 

- Ascidian populations are subjected to different sedimentation pressures along the main axis 136 

of the cove, which are configured by glacier discharge. 137 

- Ascidians are in their tolerance range of TSPM concentrations. Therefore, they are still not 138 

constrained by the current environmental conditions. 139 

- TSPM concentrations are currently in the environmental range of ecological hysteresis, 140 

allowing the spatial coexistence of both described assemblages. 141 

The aim of this work was first, to determine to what extent the described summer sediment 142 

inputs from glacier discharge, and consequently the increase of TSPM, is affecting the most 143 

conspicuous ascidians species of Potter Cove, and secondly, how historical TSPM records could have 144 

shaped the ascidian populations within the cove. To do so, we analysed bulk gut content and energy 145 

reserve of collected specimens of the most conspicuous ascidians species from three sites in Potter 146 

Cove with different estimated sedimentation impact. Additionally, we estimated the scope for growth 147 

(SFG, i.e., the remaining of the energy available for growth beyond that required for maintenance) 148 
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under different TSPM scenarios. Furthermore, we tested SFG under TSPM historical data and 149 

contrasted it with ascidians biomass data, and discussed the implications of energy limitation on 150 

species abundance and distribution in different areas of Potter Cove. Our results are discussed in the 151 

frame of the potential existence of alternative states of the benthic assemblage system. 152 

 153 

2. Materials and Methods 154 

2.1. Study area and animal sampling 155 

Sampling was carried out in Potter Cove, Isla 25 de Mayo/King George Island, South 156 

Shetland Archipelago (S 62º14’, W 58º40’) during February 2011, using the facilities of the 157 

Argentine-German Dallmann laboratory on the Argentinean Carlini station. Three sampling areas, 158 

known to differ in the intensity of glacial sediment deposition (Jerosch et al., 2018; Monien et al., 159 

2017), were chosen: two related to the Long-Term Ice-Free Areas (LTIFA) historically monitored 160 

stations (Sahade et al., 2015) and one corresponding to the New Ice-Free Areas (NIFA) recently 161 

described (Lagger et al., 2017a; Wölfl et al., 2016) (Fig 1). Specifically, the Outer sampling site that 162 

corresponds to the LTIFA Outer Station (62° 14ʹ 10ʺ S; 58° 42ʹ 48ʺ W) is situated in the Northern 163 

part of the opening toward Maxwell Bay and is characterised by the presence of a hard-bottom 164 

substrate and very low TSPM as it receives the inflowing water from Maxwell Bay. This station has 165 

only low glacial influence, being considered a meltwater unaffected marine habitat (Jerosch et al., 166 

2018). The Middle Station correspond to the LTIFA Inner Station (62° 13ʹ 54ʺ S; 58° 40ʹ 06ʺ W) is 167 

characterised by soft-bottom substrate and an intermediate sedimentation influence, and it is 168 

currently considered a typical Fjord habitat (Jerosch et al., 2018). Finally, the Inner station 169 

corresponding to the NIFA Station (62° 13′ 23,6″ S, 58° 38′ 41,0″ W) comprises the rocky island 170 

mentioned above, directly in front of the glacier. It has the highest sedimentation influence being 171 
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considered a meltwater affected Fjord habitat (Jerosch et al., 2018). Detailed information of station 172 

characteristics is summarised in table 1.  173 

 174 

Figure 1: Potter Cove location on Isla 25 de Mayo/King George Island, in the northern 175 

Antarctic Peninsula. Sampling station locations are indicated as Outer, Middle and Inner Stations. 176 
The black area on Potter Cove map corresponds to the Fourcade Glacier. The white rectangle in the 177 
grey area represents Carlini station location. Colour lines mark the boundaries of benthic meltwater 178 
fjord habitats in Potter Cove: meltwater fjord habitat (yellow), fjord (light blue) and maritime (pink) 179 
habitats (less influenced by meltwater streams) according to Jerosch et al. (2018). Average spatial 180 
distribution of TSPM concentration in the surface waters of Potter Cove during summer 2010/2011 181 
(from Monien et al., 2017) is indicated in a brown colour scale.  182 
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Table 1: Summary characteristic of sampling stations at Potter Cove (South Shetland Islands, 184 
Antarctica) 185 

Station Inner Middle Outer Source 

Distance from 
glacier front (km) 

0.24 1.27 4.14  

Georeference 62º13’23.6’’S 
58º38’41’’W 

62º13’54’’S 
58º40’06’’W 

62º14’10’’S 
58º42’48’’W 

 

Substrate type Rocky island 
surrounded by 
medium silt 

Fine and very fine 
sandt 

Stone Wölfl et al. (2014) 

Age (ice-free 
exposure) 

~15 years > 60 years > 60 years Wölfl et al. (2016) 

Sediment 
Accumulation Rate 
(SAR); g cm-2 y-1 

1.14 0.55 0.0855 Monien et al. 
(2017) 

Nomenclatures 
used by other 
authors 

- 
 

IZ 
 
- 
 

New Ice-Free Areas  

E1 
 
- 
 

Inner Station  
 

Long-Term Ice-Free 
Areas  

E2 
 

OZ 
 

Outer Station  
 

Long-Term Ice-Free 
Areas  

Schloss et al. (2012) 
 
García et al. (2016) 
 
Sahade et al. (2015) 
 
Lagger et al. 
(2017a) 

Habitat type Melt Water Fjord  Fjord Marine Jerosch et al. (2018) 

TSPM 
concentration* 

13-315 mg L-1 5-13 mg L-1 0-2.5 mg L-1 Monien et al. 
(2017) 

Solitary ascidians 
dominance 
relationship 

Cv>Mp>>Ca>Ac** 
 

Mp>>>Ac>Ca>Cv*
* 
 

Mp>Cv>>Ca>Ac** 
 

Sahade et al. (2015) 
Lagger et al. 
(2017a) 

*Total suspended particulate matter (TSPM) concentration in the surface waters of Potter Cove during summer 186 

2010/2011. 187 

**Solitary ascidians species considered: Cnemidocarpa verrucosa (Cv), Molgula pedunculata (Mp), Ascidia challengeri 188 

(Ac) and Corella antarctica (Ca). 189 

  190 
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Between ten and fifteen specimens of the most conspicuous solitary ascidians species were 191 

carefully taken by SCUBA divers from each station at 20 m depth. As many other epibenthic groups 192 

in Antarctica, they can inhabit either hard and soft-bottoms. In Potter Cove soft bottoms, these 193 

species' larvae can attach themselves to shells, pebble, stones and even sand aggregations (Tatián et 194 

al., 1998). 195 

Specimens of Molgula pedunculata of 52.2±8.29 grams of fresh mass (g fm) (mean±SE) 196 

Cnemidocarpa verrucosa of 121.06±10.55 g fm, and Corella antarctica of 152.28±17.09 g fm were 197 

collected. The chosen species represent erect and flat-form body shapes that respond differently to 198 

sedimentation. Not enough specimens of Ascidia challengeri were found in the Outer station (even 199 

when they have been thereafter recorded (Sahade et al., 2015)), so we excluded this species from this 200 

part of the analysis. Characteristics of these species are summarised in Table 2. 201 

Immediately after collection, each specimen was dissected. Note that before dissection the 202 

intestinal tract (stomach and intestine portion) was clamped at both ends with surgical clamping 203 

forceps to recover its complete content. The total gut content was retrieved by opening one of the 204 

extremes of the digestive tract inside a tube and leaving the content to fall into it. Finally, the inner 205 

walls of the digestive tract were rinsed off by running Mili-Q water and collected into the same 206 

sample tube. Tissue and gut content samples (tunic, mantle, branchial sac, and emptied intestinal 207 

tract) were immediately frozen in liquid nitrogen and stored at −80 °C after dissection. 208 

  209 
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Table 2: Summarized characteristic of more conspicuous solitary ascidian species of Potter Cove 210 

Species Molgula 
pedunculata 

Cnemidocarpav
errucosa 

Ascidia 
challengeri 

Corella 
antarctica 

Source 

Order / Family Stolidobranchia 
/ Molgulidae 

Stolidobranchia 
/ Styelidae 

Phlebobranchia / 
Ascidiidae 

Phlebobranchia 
/ Corellidae 

Tatián et al. 
(1998); Alurralde 
et al. (2013) 

Body shape Cylindrical Pedunculated Laterally 
flattened 

Laterally 
flattened 

Kott (1969); 
Moniot et al. 
(2011) 

Muscular 
development 

Scarce 
development 

Well developed Developed 
mostly around 

syphons 

Developed 
mostly around 

syphons 

Kott (1969); 
Moniot et al. 
(2011) 

Feeding 
behavior 

Active filter-
feeder 

Active filter-
feeder 

Active filter-
feeder 

Active filter-
feeder 

Kott (1969); 
Moniot et al. 
(2011) 

Pumping rate 
(L d -1 g dm)* 

4.8  6.24 4.58  3.55  Kowalke (1998); 

Squirting 
behavior 

nd** TSPM 
dependent 

nd nd Kowalke et al., 
(2001); 
Torre et al. 
(2014) 

Standard 
Metabolic rate 
 (mg O2 gdrm-1 
d-1) 
(mean ± 
standard error) 

3.47 ±0.92 5.46 ±1.54  
 

2.47 ±0.12  
 

nd Torre et al. 
(2012) 

Standard 
Metabolic rate 
(ml O2 g afdrm-

1 h-1) 

0.057  0.023  nd nd Kowalke et al. 
(2001) 

Respiration 
under TSPM 

available available available nd Torre et al. 
(2012) 

Absorption 
efficiency 

nd 86.05 ± 0.07% nd nd Alurralde et al. 
(2019) 

Sediment 
sensitivity 

++++ +++ ++ nd Torre et al. 
(2012) 
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Reproduction 
period 

Summer Winter Summer nd Sahade et al. 
(2004); 
Sahade (1999) 

Maximal mass 
(KJ) 

110.7  227.3 (KJ) 41.4 (KJ) 108.7 (KJ) Kowalke et al. 
(2001) 

Maximal age 3.1(y) 3.4 (y) 10.6 (y) 3.5 (y) Kowalke et al. 
(2001) 

Individual 
Growth 
performance 

1.55 1.83 0.59 1.3 Kowalke et al. 
(2001) 

*Liters per day per gram of dry mass (L d -1 g dm) 211 

**Not available data (nd) 212 

 213 

2.2. Total gut content analysis  214 

Each gut content sample was dried at 60 ºC until constant weight (~24-48 hours) and dry 215 

weight was determined in a 0.1-mg precision degree balance (Sartorius AG LA230S, Göttingen, 216 

Germany). OM content of each sample was determined following combustion at 450 ºC for 5 h to 217 

obtain the ash weight, which was subtracted from dry weight. To determine %OM, the OM content 218 

was divided by the total dry weight and multiplied it by 100.  219 

 220 

2.3. Glycogen measurements 221 

Glycogen concentration in the mantle tissue of each individual was determined following 222 

Kunst et al. (1984) and Keppler and Decker (1984). Mantle tissue samples (100-200 mg fm) were 223 

ground to a powder in liquid nitrogen. 0.5 mL of ice-cold Milli-Q water was added to each sample, 224 

and they were homogenised manually for 30 seconds on ice using a small glass homogeniser. The 225 

homogenate was heated to 95°C for 10 min to achieve protein denaturation using a water bath. For 226 

the hydrolysis of glycogen to glucose, 250μL of the homogenate was mixed with 500μL acetate 227 
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buffer (0.1 mol, pH 4.8) and 20μL amyloglucosidase (Roche, Mannheim, Germany), and incubated 228 

for 2 h at 40°C in a water bath. The rest of the homogenate was kept on ice for later determination 229 

of the free glucose concentration. After incubation, samples were centrifuged at 15.000 g for 10 min 230 

at 4 °C in a refrigerated centrifuge (Eppendorf AG 5417R, Hamburg, Germany). The supernatant 231 

was collected, and glucose concentration was determined using the glucose determination kit (D-232 

glucose UV test, R-Biopharm, Darmstadt, Germany), following the manufacturer’s instructions. 233 

The glycogen content was calculated as the difference between the hydrolysed and the non-234 

hydrolysed subsamples. Glycogen content is expressed in µg of glycogen per g of fresh mass (µg g 235 

fm-1). 236 

 237 

2.4. Scope for Growth (SFG) 238 

The scope for growth (SFG) reflects the overall energy balance of an individual. It was 239 

estimated as the difference between the energy absorbed from the food and the energy expenditure or 240 

consumed due to respiration. A positive SFG reflects the available energy for biomass production 241 

(somatic and reproductive tissue growth) after reaching routine metabolic demands, whereas a 242 

negative SFG reflects an overall loss of energy by the individual (Gardner, 2000; Navarro et al., 243 

1991). Considering the available data (Alurralde et al., 2019; Kowalke, 1999; Torre et al.,2012; see 244 

Table 2), ascidians' SFG under different TSPM concentration (SFGTSPM) was estimated for M. 245 

pedunculata, C. verrucosa and A. challengeri. As no respiration data under different TSPM 246 

concentration for C. antarctica was available, we assumed A. challengeri respiration rate to be 247 

representative of C. antarctica, since both are similar in terms of body shape, standard metabolic rate, 248 

pumping rate and growth performance (Kowalke, 1999; Kowalke et al., 2001), much more than to M. 249 

pedunculata or C. verrucosa (see summary data in Table 3). 250 
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SFGTSPM was estimated as the difference between assimilation (A) and respiration (R) at 251 

different TSPM concentrations (ATSPM and RTSPM, respectively):  252 

SFGTSPM = ATSPM - RTSPM 253 

Calculation of SFGTSPM, ATSPM and RTSPM (all in J gms-1 d-1) follows Widdows and Johnson (1988) as 254 

cited by Gardner (2000): 255 

ITSPM = PRTSPM x POM x 23 J mg-1 AFDW 256 

ATSPM = ITSPM x AETSPM  257 

RTSPM = VO2 x  20.33 J mL-1 O2  258 

RTSPM data of M. pedunculata, C. verrucosa and A. challengeri individuals was measured at different 259 

concentrations of TSPM (Torre et al., 2020b; https://doi.org/10.1594/PANGAEA.925202). ATSPM 260 

calculation was estimated from Ingestion rate (I) and Absorption efficiency (AE). I and AE depend 261 

on particle concentration. In the absence of specific data, AETSPM of C. verrucosa under different 262 

TSPM concentrations estimated from Alurralde et al. (2019) was assumed for the three species, as no 263 

differences in AE for natural seston are observed for different ascidians species in Potter Cove 264 

(Tatián et al. 2004). Considering that filtration is the most energy-consuming activity for these 265 

species under increasing TSPM concentration, specific pumping rate (PR) recorded by Kowalke 266 

(1999) was corrected from respiration data under different sediment concentration (Torre et al., 267 

2020b). In this way we obtain the specific PRTSPM for each species in order to assess the ITSPM. The 268 

calculation of each parameter and their sources are summarised in Table 3.  269 

To estimate the possibility of growth and reproduction for these ascidians at low and high sediment 270 

impact in Potter Cove, SFGTSPM was estimated for each species with the maximal summer TSPM 271 

recorded at 20 m water depth from published data since 1992 in the middle station (Schloss, 2010; 272 

https://doi.org/10.1594/PANGAEA.745596) and since 2009 at the Inner station (García et al., 2016). 273 

Jo
urn

al 
Pre-

pro
of



16 

Summer values were chosen because they were more abundant, frequent and representative of TSPM 274 

concentrations (Neder et al., 2020) and also because glacier inorganic sediment discharge occurs in 275 

this warmer period (Shcloss et al., 2012). Additionally, most of the biological parameters considered 276 

for SFG estimation were also evaluated during the summer season. On the other hand, maximum 277 

recorded values were chosen instead of means as they better represent the most prevalent conditions 278 

at Potter Cove. Bad weather conditions with strong winds are a common summer feature (Ruiz Barlet 279 

et al., 2021), which constrain sampling opportunities. Thus, it is logical to assume that part of the 280 

story is missing, and mean TSPM records would not accurately represent the most typical conditions 281 

in Potter Cove.   282 
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Table 3: Calculation of each SFGTSPM parameter 283 

Parameter Calculation Data Source 

SFGTSPM (J gms-1 d-1) ATSPM - RTSPM 

 
This work 

ATSPM (J gms-1 d-1) ITSPM • AE This work 

ITSPM (L g-1 h-1) 

 
PRTSPM (L g-1 h-1) • POMb (mg L-1) • 23 J mg-1 AFDW  This work 

AE -0.27•LN (TSPM (mg L-1) ) + 1,1124 
R² = 0.9885 

Alurralde et al. (2019) 

PRTSPM (L g-1 h-1) PR•(RTSPM/Rs
a) Kowalke (1999); 

Torre et al. (2012); 
Torre et al. (2020b) 

POMb (mg L-1) 1.8191•LN (TSPM (mg L-1) ) - 0.383 
R² = 0.8658 

Alurralde et al. (2019) 

RTSPM (J gms-1 d-1) VO2
c (mL O2 g

-1 d-1) • 20.33 J mL-1 O2  Torre et al. (2012); 
Torre et al. (2020b) 

a Rs
 means respiration rate at natural seston levels (without added sediment). 284 

b POM means particulate organic matter. 285 

c VO2 means oxygen consumption rate. 286 

 287 

2.5. Data analysis 288 

Gut content between species and stations was analysed with ANCOVA (Analysis of 289 

covariance) with total gut content as dependent variable and station and species as independent 290 

variables. Individual size (fresh weight) was considered as a covariable due to its strong correlation 291 

with gut content (R2 = 0.69, p<0.0001 for M. pedunculata, R2= 0.73, p= 0.012 for C. verrucosa and 292 

R2= 0.72, p= 0.014 for C. antarctica). %OM of total gut content and mantle glycogen content 293 

between species and stations were analysed with ANOVA with %OM and glycogen content as 294 

dependent variables and station and species as independent variables. In the absence of normality, 295 
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data of glycogen content was Log10 (x+1) transformed prior to analysis. Finally, we also performed 296 

an ANOVA to compare SFGTSPM of all the species between periods at which major changes have 297 

been recorded (pre and post-1995 TSPM peak) in the Middle and Inner stations. In all cases, 298 

significant differences (p<0.05) were estimated with the Bonferroni post-hoc test. All statistical 299 

analyses were performed with Infostat 2016 (Di Rienzo et al., 2016) 300 

 301 

3. Results 302 

3.1. Bulk gut content and energy reserve  303 

Size-dependent total gut content showed differences between stations for the three species. 304 

The major significant difference was observed between samples from the Inner and the other two 305 

stations for each of the investigated species. At Inner and Middle stations, M. pedunculata had 306 

significantly lower size-dependent gut content than the other two species (Fig. 2a). The %OM had a 307 

clear pattern, increasing with the distance to the glacier in all three species. Furthermore, %OM of 308 

gut content was significantly higher in M. pedunculata compared with the other two species at all 309 

stations (Fig. 2b). Mantle glycogen content of M. pedunculata was significantly lower than in the 310 

other two species at each station. A significant difference of mantle glycogen between stations was 311 

found only for C. antarctica where the glycogen content increased with the distance to the glacier 312 

(outer > middle> inner cove, Fig. 2c). F and p values from ANCOVA and ANOVA analysis are 313 

summarized on Table 4.  314 

  315 
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Table 4: ANCOVA and ANOVA results of total gut content, %OM, glycogen content differences 316 

between species and Station.  317 

ANCOVA Total gut content  
Between stations 

 F  p n 

M. pedunculata 
C. verrucosa 
C. antarctica 

17.79 
23.72  
21.53 

<0.0001 
<0.0001 
<0.0001 

29 
30 
29 

Size (fresh body mass)  <0.05  

Between species  F  p n 

Inner Station 
Middle Station 
Outer Station 

33.09 
16.77 
7.87 

<0.0001 
<0.0001 
ns* 

30 
31 
27 

Size (fresh body mass)  <0.05  

ANOVA %OM  
Between stations 

 F  p n 

M. pedunculata 
C. verrucosa 
C. antarctica 

87.82 
12.85  
10.97 

<0.0001 
<0.0001 
<0.0004 

29 
30 
29 

Between species  F  p n 

Inner Station 
Middle Station 
Outer Station 

11.52 
18.3 
40.35 

<0.0001 
<0.0001 
<0.0001 

30 
31 
27 

ANOVA 
Mantle glycogen content  
Between stations 

 F  p  n 

M. pedunculata 
C. verrucosa 
C. antarctica 

2.67 
1.85 
4.286 

ns 
ns 
0.0235 

26 
27 
32 

Between species  F  p n 
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Inner Station 
Middle Station 
Outer Station 

9.4 
26.89 
21.32 

0.0008 
<0.0001 
<0.0001 

30 
31 
27 

*ns means no significant differences 318 

319 
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 320 
Figure 2: a) Mass corrected total gut content (g dry mass), b) %OM of total gut content and 321 

c) Log10 transformed Glycogen mantle content (μg g fm-1) of C. antarctica, C. verrucosa and M. 322 
pedunculata at each sampling station in Potter Cove. Different letters show significant differences 323 
between stations by species with the Bonferroni test (p<0.05). Error bars indicate standard error. * 324 
Show significant differences (p<0.001) between species at all stations. gdm: grams of dry mass. 325 

 326 

 327 
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3.2. Scope for Growth under increasing TSPM 328 

The estimated SFGTSPM for the three ascidians showed an increase at lower TSPM 329 

concentrations up to a maximum value at around 10 mg L-1 beyond which SFGTSPM decreased at 330 

higher concentrations and became negative between 40 and 60 mg L-1 TSPM. M. pedunculata 331 

showed a higher SFG at lower and intermediate TSPM concentrations, probably due to its higher 332 

filtration rate (Kowalke 1999). Additionally, it represents together with C. verrucosa the most 333 

sensitive species as its SFGTSPM becomes negative at lower TSPM (~45±15 mg L-1) concentrations 334 

than A. challengeri (~55±5 mg L-1) (see Fig. 3). A. challengeri has a higher SFGTSPM than the other 335 

two species only under higher TSPM concentrations, and its SFGTSPM also becomes negative at 336 

higher TSPM (Fig. 3).  337 

  338 
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 339 

Figure 3: Scope for Growth (SFGTSPM) in J g dm-1 d-1 under increasing TSPM concentrations 340 
(mg L-1) of a) M. pedunculata, b) A. challengeri and c) C. verrucosa. Grey areas represent 341 
estimated standard deviation.  342 

 343 

  344 
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SFGTSPM estimation with real TSPM data showed that, at maximum TSPM recorded in the 345 

Inner and Middle station, the SFG of the three species is positive for most of the measured maximal 346 

summer concentrations from 1993 to 2011 at the Middle station and between 2009 and 2011 at the 347 

Inner station (Fig. 4 a, b). For 1995, the SFGTSPM reached a very high negative value for the three 348 

species when the recorded maximal TSPM was as high as 162 mg L-1. It also became slightly 349 

negative for M. pedunculata and C. verrucosa in 2000 and 2006 at the Middle station when recorded 350 

TSPM was as high as 48 and 46.2 mg L-1 respectively. Comparison of pre and post-1995 TSPM peak 351 

at the Middle station was only significantly lower after the peak for A. challengeri (ANOVA; F=4.62, 352 

p=0.03) and C. verrucosa (ANOVA; F=5.16, p=0.02). At both considered periods (1992-1994 vs 353 

1996-2011), SFGTSPM means are positive for the three species. Leaving out the 1995 event and 354 

despite the observed year-to-year variability, the ascidian SFGTSPM did not differ significantly 355 

between the Middle and Inner stations.  356 

  357 
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 358 

Figure 4: a) TSPM (mg L-1) recorded in the Middle and Inner stations at 20 m depth form 359 
Schloss (2010) and García et al. (2016) respectively. The solid black line indicates average summer 360 
values, while the grey shaded area represents the minimum and maximum values recorded. 361 

Overlapping coloured lines indicate M. pedunculata, A. challengeri and C. verrucosa TSPM 362 
thresholds (concentration at which SFGTSPM became negative). b) Estimated SFGTSPM (KJ gdm y-1) 363 
for M. pedunculata, A. challengeri and C. verrucosa considering maximal summer TSPM 364 
concentration in the Inner and Middle stations. Error bars indicate standard error. c) Biomass (KJ m-365 
2) of M. pedunculata, C. verrucosa, A. challengeri and C. antarctica recorded at the Middle station 366 
in 1994, 1995 and 2010 from Sahade et al. (2015) and at the Inner station in 2010 from Lagger et al. 367 
(2018). gdm: grams of dry mass.  368 

 369 

4. Discussion 370 

Our study supported the hypothesis that the magnitude of pressure exerted on ascidians by 371 

glacier sediment discharge, agrees with sedimentation gradient from the head fjord toward the mouth 372 

described by Monien et al. (2017). The negative effect is higher   at the Inner station and decreases 373 

towards the middle and outer stations. The sedimentation pattern is reflected in the ascidians bulk gut 374 
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contents and its quality, being highest at the Inner Station with a lower OM fraction and lowest at the 375 

Outer one with the highest OM fraction. Like the canary in the coal mine, ascidians may act as 376 

sentinels of sedimentation conditions and living ‘sediment traps’ since their gut contents provide 377 

relevant insights on the sedimentation process, witnessing what is reaching the bottom in Potter Cove 378 

(Tatián et al., 2002; Tatián et al., 2004). As sessile suspension-feeders and primary consumers, 379 

ascidians serve as indicators of different aspects of ecosystem functioning and spatial heterogeneity 380 

of food sources due to local environment and hydrology (Alurralde et al., 2020; Kim et al., 2021; 381 

Lefebvre et al., 2009). Spring/summer glacier discharge and wind stress set local differences between 382 

the inner and outer part of Potter Cove, as well as between surface and deeper waters (Ruiz Barlett et 383 

al., 2021; Schloss et al., 2012). In addition, variable water retention times and stratification due to 384 

meltwater inflows may dilute food sources or patchly distribute them within the fjord (Alurralde et 385 

al., 2020). On the other hand, the observed differences among the species provide insights on species-386 

specific trophic traits that could determine to some extent the interplay between energy intake and 387 

population abundances. Under increasing TSPM concentrations, ascidians increased their respiration 388 

rate (and probably their pumping activity) up to a certain concentration after which ascidians down-389 

regulated their metabolism. Their sensitivity to TSPM was then inversely related to the concentration 390 

they react to, being M. pedunculata more sensitive than C. verrucosa and A. challengeri (Torre et al. 391 

2012, 2014). There has been some controversy elucidating the relevance of particle concentration in 392 

regulating ascidians´ ingestion rate (Armsworthy et al., 2001; Klumpp, 1984; Petersen and Riisgård, 393 

1992; Petersen et al., 1995). Nevertheless the evidence summarised by Petersen (2007) have 394 

demonstrated that gut fullness reduces ascidians ingestion rate. The gut contents of M. pedunculata 395 

were always less than the other species, especially at the Inner station (with the highest TSPM). This 396 

indicates that ingestion is downregulated at lower TSPM concentration in this species. In a turbid 397 
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environment as Potter Cove, the ability to regulate ingestion rate would therefore be an advantageous 398 

trait since it could prevent M. pedunculata from overloading their digestive system. This could 399 

enable a more efficient food intake strategy, limiting filtration rates at high TSPM concentrations and 400 

more importantly, avoids branchial clogging. Here is where sensitivity probably masks a strategy that 401 

allows M. pedunculata to survive and dominate even in areas subjected to intense sediment regimes 402 

(Kim et al., 2021; Lagger et al., 2017a; 2018).  403 

Just like total gut content reflects the TSPM regimes at each station (Fig.1), the gut content 404 

OM fraction also coincides with the OM distribution along Potter Cove bottom (Monien et al., 2014). 405 

The observed interspecific differences may have resulted from specific branchial sac morphology and 406 

pumping rates, which are thought to determine retention efficiency and ingestion rate in ascidians 407 

(Kowalke, 1999; Petersen and Svane, 2002; Riisgård and Larsen, 2010). Schloss et al. (1999) 408 

postulated that at the bottom-water interface M. pedunculata gets better quality food because its 409 

siphons are located some centimeters higher than C. antarctica and C. verrucosa, where TSPM has a 410 

higher OM fraction. Nevertheless, the differences in siphon heights between M. pedunculata and C. 411 

verrucosa are markedly lower. C. verrucosa is the only one of the studied ascidians that performs 412 

squirting, i.e., a rejection reflex happening under high TSPM concentrations (Torre et al., 2014). We 413 

believe, therefore, that this particular reflex leads to the difference observed between species since it 414 

increases with increasing TSPM concentration, limiting ingestion rate because of the loss of particles 415 

rejected before the gut passage (Armsworthy et al., 2001). Not only the amount and quality of 416 

available food, but also the rates of its incorporation and utilisation in different processes such as 417 

growth, reproduction or environmental stress, would determine an animal's net energy balance 418 

(Sokolova, 2013; Sokolova et al., 2012). Glycogen is one of the primary energy sources described for 419 

ascidians (Ermak, 1977; Gaill, 1980; Torre et al., 2014) and its accumulation is tightly related to the 420 
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energy balance of each species (Kang et al. 2011; Torre et al., 2014). As expected, the glycogen 421 

levels measured for C. antarctica and C. verrucosa are coincident with %OM of gut contents, 422 

reflecting the significant impact that quality food intake has on the energy storage capacity of these 423 

species. However, this was not possible to corroborate on M. pedunculata as glycogen was too scarce 424 

for comparison, probably because it is mostly stored in muscles, and mantle muscular fibres which 425 

are poorly developed in this species (Torre et al., 2014; Monniot et al., 2011; Kott, 1969).  426 

 Placing this snapshot of what summer sedimentation represents for antarctic ascidians, and 427 

what happened at the population level in a historical context, leads us to the second main finding of 428 

our study. After linking sharp changes in megabenthic assemblages’ structure with sediment 429 

dynamics in Potter Cove, Sahade et al. (2015) suggested this could be a case of a sudden shift with 430 

ecosystem hysteresis. The TSPM peak in 1995 was interpreted as a critical threshold, but still, 431 

uncertainties remain whether these shifts are reversible or not. Our estimates confirm that TSPM 432 

level in 1995 far exceeded the ascidians threshold from the energetic perspective, and represented a 433 

breakpoint in the structuring of benthic assemblages occurring in the Middle Station which 434 

corresponds to older areas within Potter Cove (referred as Inner by Sahade et al., 2015). The SFG, 435 

represents the animal net energy balance and provides an integrative and quantitative assessment of 436 

the animal's energy status under a particular food regime (Gardner, 2000). A negative SFG like the 437 

one described for the 1995's TSPM peak would have limited ascidians' survival because of high 438 

respiratory expenditure and low energy absorption (Alurralde et al., 2019; Torre et al., 2012). Since a 439 

positive SFG is a good predictor of growth potential, the estimation of SFG for a particular species 440 

allows assessing its potential presence, abundance, survival, and reproduction in a given place. 441 

Despite TSPM concentrations remaining higher than before the perturbation, they did not exceed 442 

ascidians TSPM threshold (concentration from which each species SFG becomes negative) 443 
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demonstrating that energy provision is still suitable for ascidians to thrive. Even so, ascidians were 444 

unable to restore their dominance in older areas but, paradoxically, they dominated the new ice-free 445 

areas. These newer areas in the Inner Station were uncovered many years after the 1995 446 

sedimentation peak, but have been permanently subjected to the highest sediment pressure registered 447 

within the cove. At the last benthic photographic survey in Potter Cove in 2010, both states coexisted 448 

(Lagger et al., 2017a; 2018; Sahade et al., 2015) between Inner and Middle stations. This suggests 449 

that the benthic system in the cove could present alternative equilibrium states for similar values of 450 

the environmental condition. Spatial coexistence of alternative stable states when a system is in the 451 

environmental condition range that allows hysteresis, are generally described as the result of spatial 452 

or temporal heterogeneity (Shurin et al., 2004). Therefore, the current coexistence of both states may 453 

be the result of spatial and temporal heterogeneity in TSPM dynamics detailed above (Fig. 5). 454 
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 455 

Figure 5: Schematic representation of Potter Cove assemblage composition at the Middle and Inner 456 
station since 2010. Equilibrium and hysteresis model (based on Scheffer 2001) is shown by a dotted 457 
line and circles indicating states of the Potter Cove system at different surveys under increasing total 458 
suspended particulate matter (TSPM) concentration. Two stable states are identified: the “ascidian 459 
dominated assemblage” and the “mixed assemblage” and in-between the unstable hysteresis state 460 
where the system could turn to any of the other two states. The directions of the system change as a 461 
function of TSPM concentration (increasing from left [-] to right [+]) is indicated with small arrows. 462 
Ascidian specific scope for growth (SFG) thresholds related to TSPM are indicated. The Middle 463 
station composition in the 1994 survey corresponded to an “Ascidian dominated assemblage”. After 464 
the 1995 TSPM peak (system perturbation), where ascidians SFG thresholds were exceeded, the 465 
Middle station assemblage turned into a “mixed assemblage”. In the last survey, ascidian dominated 466 
assemblage dominated the Inner station while the mixed assemblage dominated the older Middle 467 
station. The irreversibility to the ascidian dominated assemblage at the Middle station even when 468 
TSPM has been predominantly lower, and coexistence of both states is a clear indication of current 469 
system hysteresis. 470 
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 471 

Assemblage composition often depends on environmental conditions, but also on colonisation 472 

or settlement history (Chase, 2003), as early settling species can favour the settlement of a particular 473 

assemblage by facilitation process (Kéfi et al., 2016; Urban and De Meester, 2009). In this sense, the 474 

rocky substrate provided by the island in the new ice-free area at the Inner Station represents a 475 

perfect refuge that may allow constant ascidian recolonisation to the soft-bottoms around it. Species 476 

success is usually assumed to be density-dependent, being enhanced at certain population densities 477 

via the Allee effect, but under some circumstances, high-density aggregations can also favour 478 

population success via protection, predation dissolution, food intake facilitation or self-recruitment 479 

(i.e. recruitment of progeny to the parental population or patch) (Bruno et al., 2003; Rius et al., 480 

2017). Density-dependent facilitation processes could, therefore generate positive feedback for a 481 

specific assemblage. Several biological processes are inherently species-specific and contribute to 482 

shaping ecosystem functioning (Barnes and Sands, 2017), especially when suspension-feeder species 483 

dominate in abundance (Mermillon-Blondin, 2011; Schenone and Thrush, 2020). For instance, the 484 

fine (muddy) sediment substrate prevailing in the inner Potter Cove may not be suitable for sessile 485 

epibenthic organisms’ settlement. However, ascidians and other suspension-feeders, act as ecosystem 486 

engineers developing complex three-dimensional biogenic structures (Gili et al., 2001; Rossi et al., 487 

2015; Tatián et al., 1998), providing living habitat for epibionts, including organisms from their own 488 

species (Rimondino et al., 2015). In this way, the development of clumped patches increases 489 

biodiversity by increasing substrate for colonisation. It also favours reproduction, settlement and 490 

survival, generating a positive feedback to the “ascidian dominated assemblage” state (Monteiro et 491 

al., 2002). In dense populations, the active feeding behaviour allows ascidians to reach high filtration 492 

rates (Riisgård et al., 1995) that, along with a remarkable retention efficiency, may limit food 493 
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availability for other co-occurring animals (Kowalke, 1998; 1999; 2000). On the contrary, once a 494 

“mixed assemblage” dominated by epi-infaunal species (e.g. Malacobelemnom daytoni) is settled, the 495 

colonisation area for ascidian gets compromised. The infaunal species modify bottom sediment, 496 

altering water-sediment layer dynamics and geochemistry, increasing bioturbation and sediment 497 

accumulation rate favouring their own aggregation (Coco et al., 2006; Mermillod-Blondin, 2011; Tait 498 

et al., 2020). Nevertheless, further investigations are necessary to detect and evaluate multiple 499 

feedbacks and interactions that may be stabilising these alternative states.  500 

By austral summer 2020, the current assemblage state at Potter Cove remained the same 501 

described for 2010 sampling survey (Alurralde, G. personal communication). In the light of the 502 

results obtained here, it could be possible that just a warmer summer event could trigger higher 503 

glacier wash out of terrigenous material. This will increase TSPM to the point that surpasses the 504 

tolerance threshold of ascidian assemblages at the Inner station, making the system collapse to the 505 

other equilibrium state of a mixed assemblage. This prognosis is not trivial if the warming of the 506 

WAP resumes from the current hiatus (Etourneau et al., 2019), as it appears to be the case after the 507 

extreme temperatures measured in austral summer 2020 (Robinson et al., 2020). Extensive fjordic 508 

areas may follow the same trend observed in Potter Cove, i.e. retreating landward (Meredith et al., 509 

2018). Furthermore, the new ice-free areas are currently getting more relevance on Antarctic blue 510 

carbon estimations, because of their high potential for new benthic carbon accumulation and 511 

immobilisation, mainly based on functional groups composition (Barnes et al., 2020). Therefore, to 512 

assess the possible presence of thresholds, alternative equilibrium states and hysteresis in coastal 513 

Antarctic ecosystems is becoming crucial to evaluate responses and potential negative or positive 514 

feedback to the ongoing Global Environmental Change.  515 

 516 
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Conclusions 517 

Ascidians bulk gut contents reflected the sedimentation pattern described in the study area. They can 518 

in fact be considered living ‘sediment traps’ since their gut contents provide relevant insights on the 519 

sedimentation process, witnessing what is reaching the bottom. The use of SFG allowed us to detect 520 

the energy thresholds for each analysed species. Its estimation corroborated a great energetic deficit 521 

under the historical sedimentation peak, which could explain the recorded assemblage change in the 522 

cove after 1995. 523 

SFGTSPM estimation indicates suitable environmental conditions supporting current ascidians 524 

dominance in the new ice-free areas, but it fails to explain why under the current scenario, the 525 

ascidian assemblage at the cove has not been restored. These results may indicate the existence of a 526 

TSPM threshold that allows the spatial coexistence of alternative stable assemblage states at the 527 

benthic Potter Cove system. 528 
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