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1 INTRODUCTION

1.1 Figures of Merit in Modern Analytical Chemistry: Why Are
They Important?

As previously presented in this book, measuring and processing multiway data

provides analytical chemists with a number of advantages, such as (1)

improved sensitivity, derived from noise averaging multiple measurements

of redundant data, (2) increased selectivity, because each new data mode pro-

vides an additional degree of partial selectivity, and (3) modeling the analyte

contribution and its quantitative determination in the presence of unknown

interferences, absent in calibration samples (second-order advantage) [1].

Regarding items 1 and 2, a question which immediately emerges is how fig-

ures of merit like sensitivity, selectivity, and even the limit of detection

(LOD) should be estimated when dealing with multivariate and multiway

data? As analytical chemistry is the science of chemical measurements,

finding a reliable way to judge them properly is not a minor issue, and this

is the reason why this chapter is focused on trying to give a response to this

question.

In modern analytical chemistry research, the search for new estimators

to improve analytical figures of merit is an important driving force, with the

sensitivity (SEN) and the LOD occupying prominent places among these fig-

ures. Finding an expression to calculate consistent estimators for these figures

has a relevant influence on different activities, such as (1) comparison of the

performance of different experimental procedures, (2) optimization of a given

methodology under various experimental conditions, and (3) development of

official protocols of validation and analysis, as documented in international

standards [2,3].

The LOD has gained significant popularity as a descriptor of the quality

of a method in applied analytical chemistry. This is because of two reasons:

(1) it is expressed in concentration units, allowing to easily comparing in a

direct way different methodologies and (2) it is needed for assessing detec-

tion capabilities which are of fundamental importance in certain specific

areas: doping control in sports, monitoring traces of contaminants in environ-

mental samples, etc. However, at the core of LOD definition lies the sensitiv-

ity, which is also a key parameter in the estimation of other figures of merit:

(1) analytical sensitivity, which is important for the comparison of metho-

dologies based on widely different signals, because it is independent of

the instrument and technique applied, (2) selectivity, which helps to assess

the possibility of analyte quantitation in the presence of interferences, and

(3) prediction uncertainty, which gives an idea of the precision of a certain

prediction.
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1.2 From Univariate to Multivariate and Multiway Calibration

1.2.1 Sensitivity

According to the International Union of Pure and Applied Chemistry

(IUPAC), in the classical single-constituent or univariate calibration, the sen-

sitivity is defined as “the change in the response of the instrument divided by

the corresponding stimulus (the concentration of the analyte of interest),” i.e.,

the slope of the calibration curve [4]. In first-order multivariate calibration,

unfortunately, the situation regarding the definition of sensitivity becomes

more complex [5]. The difficulty arising in this case is the fact that an intense

signal may be useless under severe spectral overlapping with signals from

other concomitant constituents. This leads to an important property of multi-

variate sensitivity: analyte specificity, which means that a certain sensitivity

parameter corresponds to each analyte of interest.

As explained in other chapters, multiway calibration involves the measure-

ment of data matrices per sample (or data arrays with three or more modes)

for analyte calibration purposes and constitutes a powerful generalization of

multivariate calibration [6]. In this field, several different sensitivity expres-

sions have been proposed, some of them based on the extension of the first-

order net analyte signal (NAS) concept to further data modes [7–10]. The

NAS is the portion of the total signal which can be uniquely ascribed to the

analyte of interest, and hence, the slope of the pseudounivariate NAS concen-

tration graph, or the NAS at unit concentration, appears to be a reasonable

definition of sensitivity. However, this kind of intuitive extension has caused

several difficulties, as there are various competing NAS definitions, with no

clear relationships among them [11–13]. Moreover, extrapolation to higher-

order calibration led to serious underestimation of sensitivities.

As an alternative to the NAS approach, a general expression emerged in

recent years, based on the analysis on how the uncertainty in instrumental sig-

nal propagates to the uncertainty in predicted concentrations [14–16]. As will

be explained in more detail below, thanks to the developments in this direc-

tion, it is now possible to cast all the available sensitivity expressions into a

general mathematical equation encompassing all possible degrees of data

complexity, from univariate to multiway, and in the latter case for most multi-

way algorithms [17].

The general expression is in accordance with the fact that the multiway

sensitivity displays even more intriguing properties in comparison with the

univariate and first-order counterparts: it is not only analyte specific but also

strongly dependent on the test sample and on the data processing algorithm.

This implies that each test sample can have its own qualitative chemical

composition, leading to a specific value of sensitivity. Likewise, the
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computational tools employed by each algorithm will affect the analyte sensi-

tivity, and hence, they should be regarded as an integral part of a multiway

analytical protocol. Figure 1 summarizes the different ways in which sensitiv-

ity, generally understood as the relation between an input and an output, can

be defined depending on the order of the data under analysis and the figures of

merit resulting from the former.

1.2.2 Limit of Detection

Regarding the LOD, the transition between univariate and multivariate cali-

bration requires a special attention, as in the case of SEN. The terms asso-

ciated with detection capabilities have been present in the scientific

literature for at least the past 100 years. Numerous terms, definition, and cal-

culation approaches have been presented during the latter time period.

A recent review with a historical overview about this topic has been recently

published [18].

Currently, IUPAC adopts the definition given by the International Standar-

dization Organization (document ISO 11843) [19] for the capability (or limit)

of detection as “the lowest quantity of substance that can be distinguished

from the absence of that substance (a blank value) within a stated confidence

limit” [20–22]. This implies that the LOD is the minimum quantity detectable

with a preset probability of false positives (false detects, a- or Type I errors)

and false negatives (false nondetects, b- or Type II errors) [20–22]. When the

analytical signal is univariate and analyte specific, the estimator is well

defined and the LOD can be directly estimated from the univariate calibration

line. The recommended detection rule is based on Neyman–Pearson test that

considers false detects and false nondetects for the null hypothesis “there is

no analyte” and the alternative hypothesis “there is analyte” [20].

FIGURE 1 Schematic representation of the different possible ways to define sensitivity accord-

ing to the data order and the corresponding algorithms.
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However, when dealing with multivariate calibration, as is the case of the

well-known partial least-squares (PLS) regression analysis, some aspects

which remain outside the field of application of the ISO norm need to be con-

sidered [23]. In fact, there is still no generally accepted LOD estimator for

PLS studies. Nevertheless, there is a high interest in the topic [17], undoubt-

edly tied to the inclusion of PLS regression in many commercial instruments,

particularly those based on near-infrared spectral measurements [24], in addi-

tion to the continuous emergence of new and more sensitive analytical techni-

ques, and the release of regulations on human or environmental exposure to

low levels of chemical health hazards.

The main difficulty to estimate a multivariate LOD is that instrumental

signals are not specific for a particular analyte. For this reason, the composi-

tion of the background of the sample, when extrapolating to zero analyte con-

centration, plays a fundamental role. As will be developed further in this

chapter, a reasonable proposal based on an LOD estimator which adopts the

form of a detection interval was recently investigated to try to overcome the

previously stated difficulties [25].

1.2.3 Other Figures of Merit

As postulated in Section 1.1, the sensitivity constitutes the core from which

other figures of merit can be defined. Among them, the LOD is one of the

most well known and widely used. However, in some cases, it might be useful

to define other figures in order to emphasize certain features and differences

in the data, the samples, or the methodology under analysis. Examples of this

kind of figures of merit are the analytical sensitivity, the uncertainty in predic-

tion, and the limit of quantification. A more detailed description of the

corresponding estimators will be presented in Section 5.

2 A BRIEF INSIGHT INTO DATA PROPERTIES, MODELS,
AND ALGORITHMS

Knowledge of the properties and the structure of measured multiway data

allow selecting a corresponding model and a data processing tool. As previ-

ously stated, this will significantly affect the achieved figures of merit, lead-

ing to another peculiar feature of multiway calibration: the algorithm

specificity of these figures. This is why a brief reference to the main features

of multiway data will be made at this point.

2.1 Bilinear and Trilinear Models

As discussed in other chapters, the simplest data array that can be found is a

matrix for a single sample, leading to second-order data: if there are N
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responsive constituents in the sample, a generic element xij of these data

matrices can be written as:

xij ¼
XN
n¼1

bjnckn + eij (1)

where bjn and ckn define the specific properties at instrumental channels j and
k for constituent n, and eij is an error term. Any data matrix can be expressed

as the product of two matrices; however, if the mathematical rank, i.e., the

number of bilinear components required to model the data, is small (ideally

equal to the number of chemical constituents), the matrix is considered to

be bilinear (strictly speaking, low-rank bilinear). When the matrix cannot be

expressed as a sum of a few bilinear terms, it is considered as nonbilinear.

In general, bilinearity is lost when the phenomena occurring in the two instru-

mental modes are mutually dependent [26].

Second-order data are the basic ingredient of a three-way array, which is

the simplest multiway data. A three-way data array is low-rank trilinear if it

can be expressed as a sum of a few trilinear components when the mixture

contains a few constituents. Excitation–emission fluorescence (EEFM) data

are typical examples where trilinearity applies. If a number of EEFM (I) are
stacked in the sample mode, creating a three-way array X, and the samples

are mixtures of N fluorescent constituents, a specific signal xijk at sample i,
emission wavelength j, and excitation wavelength k can be written as:

xijk ¼
XN
n¼1

ainbjnckn + eijk (2)

where ain is proportional to the concentration of constituent n in sample i, bjn
to the emission quantum yield at wavelength j, and ckn to the absorption coef-

ficient at excitation wavelength k.

2.2 Models to Deal with Trilinearity Deviations

Although it is not directly apparent in Equation (2), for practical purposes it is

useful to outline the trilinearity demands: (1) individual data matrices should

be bilinear, i.e., b and c profiles should not depend on each other and (2) b

and c profiles should not depend on the sample, i.e., there should be unique

b and c vectors in both instrumental modes in all samples. In

chromatographic-spectral matrix data, elution profiles are not always exactly

reproducible from sample to sample. Because of this, a three-way array com-

posed of these latter data matrices will not be, in general, trilinear. Neverthe-

less, since individual data matrices are bilinear, an augmentation along the

elution time mode can be performed. This leads to a chromatographic-spectral

matrix augmented in the time direction (Xaug), which is also bilinear and can

be formulated as:
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xaug,pk ¼
XN
n¼1

baug,pnckn + eaug,pk (3)

where xaug,pk, baug,pn and ckn are elements of the Xaug matrix, and of the baug
and c profiles respectively, with the index p runs from 1 to IJ, because the size
of the augmented matrix is IJ�K (I¼number of samples, J¼number of elu-

tion times, K¼number of wavelengths or other spectral sensors). The spectral

profile cn (in the nonaugmented mode) is unique for each constituent and

common to all samples, whereas baug,n is the augmented time profile in the

augmented elution time mode and is composed of I successive time subpro-

files with J times each.

As a consequence of the above discussion, it is possible to classify three-

way data as (1) trilinear, (2) nontrilinear with a single trilinearity breaking

mode and unfoldable to a bilinear augmented matrix, and (3) other nontri-

linear. This latter category refers to data structures in which two trilinearity

breaking modes can be identified or cases in which the individual matrices

are nonbilinear, as discussed in previous chapters.

Regarding the available algorithms to deal with the different data types

previously described, they can be classified into three main groups according

to a simple connection between their underlying models and the different data

categories discussed above: (1) a multilinear model, (2) a bilinear model for

an augmented matrix, and (3) a latent variable model. Group 1 includes par-

allel factor analysis (PARAFAC) [27], group 2 multivariate curve resolution

coupled to alternating least-squares (MCR-ALS) [28] particularly in the

extended version [29], and group 3 unfolded and multiway partial least-

squares (U-PLS and N-PLS) [30,31].

As already explained in other chapters, both PARAFAC and MCR-ALS

achieve the second-order advantage by simultaneously processing the multiple

calibration samples and unknowns because their internal algorithmic models

are able to decompose the contribution of the potential interfering agents and

the analytes to the total signal. However in the case of the PLS-based methodol-

ogies, the achievement of the second-order advantage is a postcalibration activ-

ity based on a procedure called residual multilinearization (RML) [32–36].

As a final note for this section, it is important to consider that sometimes

the border between these algorithms in terms of application fields is not

entirely clear, and there may be a considerable overlapping. However, it is

likely that future developments will take into account sensitivity and LOD

considerations as a helpful decision-making tool in this regard.

2.3 From Homoscedastic to Correlated and
Heteroscedastic Noise

While many chemometric tools have been designed to extract information

from multivariate chemical measurements, one issue that has been somewhat
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ignored is the role of multivariate measurement errors in this process. How-

ever, in recent years, a new branch of chemometrics has gained place: the

development of methodologies to try to uncover, understand, and characterize

the error structure of a given data set [37–39].

Most of the models and algorithms to deal with multivariate and multiway

calibration have been conceived under the simplistic assumption that the error

term, as presented in Equations (1–3), is identical and independently

distributed (iid). In many cases, especially when measurement errors are small

or the assumptions are approximately valid, traditional chemometric tools can

be applied with excellent results, but in other cases, consideration of the mea-

surement error structure can mean the difference between the success and the

failure of the data analysis [40,41]. The same discussion could be extended to

the estimation of figures of merit. Although the sensitivity obtained by the

uncertainty propagation, the approach (see below) is defined assuming that

the input noise is iid, when the uncertainty in predictions is to be estimated

in the context of correlated and heteroscedastic errors, the scenario is differ-

ent, and some extra considerations are needed. This is why further research

will be required to integrate the information about the error structure to the

current available estimators of multivariate uncertainty.

3 SENSITIVITY EXPRESSIONS BASED ON NET SIGNAL
CHANGES

3.1 Univariate Calibration

In this case, prediction of the analyte concentration (y) in a test sample from

its signal (x) proceeds through the known expression [4]:

y¼ x�n0ð Þ=m0 (4)

where m0 and n0 are the slope and intercept, respectively, of the zeroth-order

linear calibration graph. The slope m0 is the sensitivity since it measures the

change in signal for a unit change in concentration.

3.2 First-Order Calibration

The concept of NAS, graphically represented in Figure 2, was helpful on the

evaluation of the sensitivity in first-order calibration, by extending the univar-

iate definition to the change in NAS for a unit change in analyte concentra-

tion [42]. In order to fully understand the NAS concept and its

consequences, it is highly useful to consider, as a simple example, a binary

mixture where two constituents occur, with the vector signal, e.g., a spectrum

for a test sample measured at a number of sensors and given by:

x¼ y1s1 + y2s2 (5)
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where y1 and y2 are the constituent concentrations, and s1 and s2 are the

pure constituent profiles at unit concentration. Equation (5) assumes that:

(1) the studied signal is additive (i.e., the total signal is the sum of the indi-

vidual contributions from both sample constituents) and (2) the constituent

signals are proportional to their concentrations, meaning that Beer’s law

(or similar ones) applies. Focusing on analyte 1 as the constituent of interest,

the contribution from constituent 2 can be removed from Equation (5) by left-

multiplying both sides by an orthogonal projection matrix I� s2 sT2 s2
� ��1

sT2

h i
,

where I is an appropriately dimensioned unit matrix, because

I � s2s
+
2

� �� s2 ¼ s2� s2 ¼ 0, with s2 sT2 s2
� ��1

sT2

h i
designated as s +2 (the super-

script “+” indicates the generalized inverse). Notice that knowledge of s1and s2
is assumed, which is only possible in the context of first-order methodologies

such as classical least-squares (CLS) analysis, where the pure spectra are either

supplied to the model from separate measurements on pure constituents or ade-

quately retrieved by analysis of mixtures of pure constituents. Thus, Equa-

tion (5) leads to Equation (6), and a two-constituent problem has become a

virtual single-constituent problem:

I� s2s
+
2

� �
x¼ y1 I� s2s

+
2

� �
s1 (6)

FIGURE 2 Graphical representation of the NAS concept. Adapted with permission from

Ref. [17]. Copyright 2014 American Chemical Society.
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Indeed, the left-hand side of the latter equation defines the NAS for con-

stituent 1 in the mixture (x1*), as being proportional to its NAS at unit concen-

tration (s1*), the proportionality constant being the analyte concentration y1:

x�1 ¼ y1s
�
1 (7)

The relevant result to be gathered from Equation (7) is that the NAS vector

x1* is parallel to the NAS at unit concentration s1*. The real usefulness of the

NAS lies in the fact that a plot of the length of the NAS vector (jjx�1jjj, also
called the scalar NAS, and given as the square root of the sum of the squared

elements of the x1* vector) as a function of analyte concentration is linear, the

slope being the length of the NAS vector at unit concentration (jjs1*jj). This
result immediately leads to an intuitive definition of sensitivity for analyte 1

[43–45]:

SEN1 ¼ jjx�1jj=y1 ¼ jjs�1jj ¼ sT1 I� s2s
+
2

� �
s1

� �1=2
(8)

In summary, if both vectorial signals at unit concentration for the pure

constituents of a mixture are known or can be estimated from the analysis

of mixtures of pure constituents, simple matrix manipulation allows one to

define precisely the sensitivity toward a given constituent. A useful relation-

ship between the sensitivity based on this NAS approach and the complete

matrix of pure constituent signals can be found by invoking the theory of

block pseudoinverse operations [46]: Equation(8) can be generalized to the

nth constituent of interest in a multiconstituent sample in different forms.

One useful form is expressed as a function of the pure profiles for all consti-

tuents, ubiquitous in CLS studies:

SENn ¼ dTn STCLSSCLS
� ��1

dn

h i�1=2

(9)

where dn is an N�1 vector selecting the analyte of interest, and the matrix

SCLS contains N columns, each with the pure constituent profile sn for the

nth constituent.

A different useful generalization of the multivariate first-order sensitivity

can be developed in terms of the vector of regression coefficients, which is

specific for a given analyte in a mixture (bCLS,n). This vector provides the

analyte concentration from the below predictive equation

yn ¼bT
CLS,nx (10)

From Equation (10), the sensitivity can be expressed as:

SENn ¼ bT
CLS,nbCLS,n

� ��1=2

(11)

Interestingly, Equation (11) provides a useful link to estimate the SEN for

first-order algorithms based on inverse models, such as inverse least-squares
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(ILS), principal component regression (PCR), and PLS [11]. In contrast to the

direct approach of the classical Beer’s law, inverse calibration models relate

concentrations to signals yn ¼bT
nx

� �
, and these are able to provide a vector

of regression coefficients bn from a suitable set of calibration mixtures, and

thus, the analogue of Equation (11) is a useful means of estimating the sensi-

tivity for these methodologies. In this way, sensitivity expressions for both

direct and inverse calibration first-order methodologies can be brought into

a common form.

3.3 Multiway (Higher-Order) Calibration

Inspired in the useful first-order NAS philosophy, it is possible to estimate the

SEN parameter in three-way (second-order) calibration, calculate the NAS,

and remove the contribution of constituents other than the analyte of interest

using orthogonal projection matrices. One intriguing aspect of this multiway

NAS approach is the fact that, in principle, these projections can be carried

out in different ways, leading to competing NAS definitions [9].

A matrix signal X defined in two different instrumental modes for a simple

binary mixture can be written as:

X¼ y1M1 + y2M2 (12)

where M1 and M2 are matrix signals at unit concentration for each analyte,

and, as before, signal additivity and signal concentration linearity are

assumed. If the signals are bilinear and the profiles in both data modes are

designated as b and c, the expression for X would be:

X¼ y1b1c
T
1 + y2b2c

T
2 (13)

where b1 and b2 are the pure constituent profiles in the first data mode, and c1
and c2 those in the second data mode.

According to the NAS approach, the contributing matrix signal for constit-

uent 2 may be removed from Equation (13) by these simultaneous operations:

left-multiplication with a projection matrix orthogonal to b2 and right-

multiplication with an analogous matrix orthogonal to c2. This outcome leads

to one particular sensitivity expression known as HCD (the acronym follows

the authors’ final initials) [7], which is valid in a certain calibration scenario

(see Table 1).

There is an alternative procedure, which involves first unfolding the

matrix X into a vector and then removing the contribution of constituent 2 with

a single removing matrix, orthogonal to the unfolded space spanned by con-

stituent 2. This approach leads to a different second-order sensitivity defini-

tion, the MKL sensitivity [8], which is valid in a different calibration

situation in comparison with the HCD sensitivity (see Table 1). Although

the original works on HCD and MKL sensitivity did not employ NAS

Figures of Merit in Multiway Calibration Chapter 13 551



arguments for their derivation, the results are identical to those provided by

the above NAS-inspired procedures.

Both HCD and MKL equations were condensed into the more general FO

definition [9], conceived to take into account all possible calibration situa-

tions, including cases not covered by the former two expressions (see

Table 1). The derivation required a complicated series of steps, which com-

bined removal of other sample constituents, partly in matrix form and partly

in unfolded form. However, the approach could not be straightforwardly

extended to four-way (third-order) calibration, where it is apparent that

even more alternative NAS definitions may exist. This situation prompted

the finding of an alternative solution to the estimation of the multiway

sensitivity.

TABLE 1 Different Three-Way Sensitivity Definitions Based on Extensions

of the NAS Concept

HCD sensitivity

Authors and ref. C.N. Ho, G.D. Christian, E.R. Davidson [7]

Comments Valid for one calibrated constituent in the presence of unexpected
constituents

Expressiona SENn¼mn{[(B
TB)�1]nn [(CTC)�1]nn}

�1/2

MKL sensitivity

Authors and ref. N.J. Messick, J.H. Kalivas, P.M. Lang [8]

Comments Valid in the absence of unexpected constituents

Expressiona
SENn ¼ mn BTB

� �� CTC
� �� ��1

n o
nn

�1=2

FO sensitivity

Authors and ref. A.C. Olivieri, N.M. Faber [9]

Comments Valid for any number of calibrated constituents in the presence of
unexpected constituents

Expressiona
SENn ¼ mn BT

exp I � BunxB
+
unx

� �
Bexp

� �h�

� CT
exp I � CunxC

+
unx

� �
Cexp

� �i�1
	
mn

�1=2

aThe symbol “*” indicates the Hadamard matrix product, and the subscript “nn” denotes the (n,n)
diagonal element of the matrix. The parameter m is the total signal of the analyte considered at unit
concentration, while the matrices B and C collect the loadings (profiles for the sample constituents
in both data modes, normalized to unit length). The subscripts “exp” and “unx” for the FO
expression refer to expected and unexpected, respectively.
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4 SENSITIVITY EXPRESSIONS BASED ON UNCERTAINTY
PROPAGATION

4.1 The General Sensitivity Expression

A different definition of sensitivity can be given in terms of uncertainty prop-

agation: the sensitivity parameter SENn is considered to measure the degree of

output noise from a system for a given input noise. More sensitivity is

achieved if low output noise is obtained for a given input noise. In this

way, the SENn parameter can be defined as the ratio of input to output noise:

SENn ¼ sx=sy (14)

where sx and sy are the uncertainties in signal and concentration, respectively.

This uncertainty propagation approach assumes that the input noise is iid and

employs a small, perturbing noise value to interrogate how the latter is propa-

gated to prediction. However, it does not imply specific assumptions regard-

ing the properties of the real experimental noise. When calibration is

precise, the main source of uncertainty in the predicted concentration is the

one stemming from the test sample signals, and the ratio of these uncertainties

is a good measure of the SENn.

Equation (14) can be used to apply a Monte Carlo additive noise simula-

tion for estimating sensitivities for any calibration model, whether univariate,

multivariate, or multiway, as has been recently done [14–16]. This allowed to

obtain operational values for the sensitivity in different calibration scenarios,

although it does not provide a closed-form sensitivity equation. Equation (14)

was also invoked to derive expression for estimating the sensitivity in most of

the relevant multiway calibration models, including PARAFAC, MCR-ALS,

and PLS/RML, with results which are (1) compatible with the second-order

HCD, MKL, and FO (see Table 1 for application scenarios), (2) in agreement

with Monte Carlo additive noise simulations, and (3) extendable to data with

increasing number of ways. According to these results, it was possible to write

an expression for casting all sensitivity equations into a single unified scheme,

covering from zeroth-order (univariate calibration) to calibration models

based on data of any order and ways [17]. The main result is appropriately

condensed into the following expression:

SENn ¼ gTn ZT
exp I�ZunxZ

+
unx

� �
Zexp

h i�1

gn

� 	�1=2

(15)

The different factors appearing in Equation (15) are summarized in

Table 2 for the most commonly used models in each calibration order. Both

the matrix Zexp (the subscript “exp” stands for expected) and the analyte-

specific vector gn correspond to the calibration phase. The matrix Zexp col-

lects profiles (either in pure form or as linear combinations) for the expected

constituents present in the calibration set, while gn adequately selects or
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TABLE 2 General Sensitivity Formula and Corresponding Parameters for Different Data Orders and Algorithms

SENn ¼ gTn ZT
exp I�ZunxZ

+
unx

� �
Zexp

h i�1
gn

� 	�1=2

Analyte
selector

Calibration
components

Unexpected
components

Model Order gn Zexp Zunx Parameters description References

Univariate calibration

Univariate 0 1 m0 – m0¼ slope of univariate graph [4]

Multivariate calibration

CLS 1 dn SCLS – dn: N�1 vector selecting the analyte of
interest (all values of 0, except a 1 at
analyte index)

SCLS: matrix of pure constituent profiles

[4]

ILS ycal,n Xcal ycal,n: vector of calibration analyte
concentrations

Xcal: matrix of calibration signals

PCR vPCR,n PPCR vPCR,n: vector of latent PLS coefficients

PPCR: matrix of PCR calibration loadings

PLS qPLS,n WPLS qPLS,n : PTPLSWPLS

� ��1
vTPLS,n

vPLS,n: vector of latent PLS coefficients

WPLS: matrix of PLS calibration weights

PPLS: matrix of PLS calibration loadings

[4,11]



Multiway calibration

MCR-ALS 2 dn (mn/J
1/2)Cexp Cunx J: no. of sensors of each submatrix in

augmented mode

mn: slope of pseudounivariate plot

Cexp: profiles in nonaugmented mode for
expected constituents

Cunx: profiles in nonaugmented mode for
unexpected constituents

[15,17]

PARAFAC 2,3,… dn See
parameters
description

Second-order:
Equation (16);
third-order:
Equation (26);
fourth-order: same
pattern as
Equations (16) and
(26) adding the
extra data mode

Second-order: Zexp¼mnCexp�Bexp
a

Third-order: Zexp¼mn Dexp�Cexp�Bexp

Fourth-order: Zexp¼mn

Eexp�Dexp�Cexp�Bexp

[14,17]

U-PLS/RML vUPLS,n PUPLS PUPLS: matrix of U-PLS calibration
loadings

vUPLS,n: vector of latent PLS coefficients

[16,17]

aThe symbol � refers to the Khatri–Rao product. For two matrices A and B, the ith. column of A�B follows from the ith. columns of A and B as vec(bi
Tai).



combines the latter information, making it specific for the nth analyte of inter-

est. The final factor in Equation (15) is the matrix I�ZunxZ
+
unx

� �
, which is the

mathematical manifestation of the second-order advantage, and thus, it only

appears in higher-order (three-way and beyond) calibration methodologies

(see Table 2). Zunx is a block matrix built from the extracted profiles of the

unexpected constituents, and for second-order data it can be expressed in a

general way as:

Zunx ¼ c1�IbjIc�b1jc2�IbjIc�b2j⋯½ � (16)

The purpose of I�ZunxZ
+
unx

� �
is to correct the matrix of profiles for the

expected constituents (Zexp), for the overlapping effect of the profiles for

the unexpected constituents (hence the subscript “unx”), or potential interfer-

ing agents. Specifically, the matrix ZunxZ
+
unx

� �
only appears when achieving

the second-order advantage because only in this case is such information

available. This is why in Table 2, only the entries corresponding to multiway

algorithms are filled with respect to this part of Equation (16). The profiles for

the unexpected constituents may be: (1) true constituent profiles (or approxi-

mations to them) provided, for example, by MCR-ALS, PARAFAC, and other

all multilinear decompositions or (2) latent profiles (linear combinations or

loadings), as retrieved by RML. What is relevant is that I�ZunxZ
+
unx

� �
defines a projection orthogonal to the space spanned by the unexpected con-

stituents, because Zunx only contains information relative to the signals for

the latter agents.

The fact that closed expressions for Zexp, gn, and I�ZunxZ
+
unx

� �
can be

written for all calibration methodologies (see Table 2) from zeroth- to any

order indicates that Equation (15) is a completely general expression for esti-

mating sensitivities. It is also worth noticing the properties of the multiway

sensitivity defined by Equation (15): (1) it is analyte specific because the fac-

tor gn depends on the analyte of interest; (2) it is sample specific because the

composition of each test sample is unique as regards the unexpected constitu-

ents, generating a unique Zunx matrix; and (3) it is algorithm specific because

each data processing methodology provides a set of specific Zexp, gn, and

I�ZunxZ
+
unx

� �
factors.

4.2 Univariate Calibration

For the case of univariate calibration, the terms of the general Equation (15)

are scalars, except Zunx, since no unexpected constituents are possible in

this methodology and, therefore, does not defined: gn¼1, and Zexp¼m0, lead-

ing to SENn¼m0, the slope of the calibration graph. This agrees with the

IUPAC definition and also with the simple and intuitive uncertainty analysis

of Equation (4): if the calibration were precise, uncertainties in x will propa-

gate to y through sy ¼m�1
0 sx, and thus SENn will be equal to m0 (see

Table 2).
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4.3 First-Order Calibration

The definitions of Zexp depend on the specific data processing algorithm used

in first-order calibration, but since no unexpected constituents should appear

in the test samples, Zunx does not exist in none of the cases, and thus

I�ZunxZ
+
unx

� �¼ I. Therefore, the general Equation (15) becomes Equation (9)

for CLS and analogous expressions for ILS, PCR, and PLS [17], in full agree-

ment with the NAS-based sensitivity approach.

Uncertainty propagation allows one to achieve the same results, directly

from the general predictive equation for analyte n:

yn ¼bT
nx (17)

where bn is the vector of regression coefficient for any first-order methodol-

ogy. If only x carries uncertainty, it follows that the uncertainty in concentra-

tion is given by:

sy ¼ bT
nbn

� �1=2
sx (18)

From Equation (18), SENn ¼ bT
nbn

� ��1=2
immediately follows through the

uncertainty propagation approach. This sensitivity parameter is analyte spe-

cific but does not depend on the composition of the test sample, because the

vector of regression coefficients stems from the processing of the calibration

data only.

4.4 Multiway (Higher-Order) Calibration

4.4.1 Multilinear Algorithms

Multilinear algorithms such as PARAFAC [27] and its variants based on the

multilinear model [47–49] provide approximations to pure constituent pro-

files, whether they belong to the category of expected (calibrated) or unex-

pected (potentially interferent), thus achieving the second-order advantage.

Each constituent is characterized by instrumental profiles describing their

behavior in the different data modes. In the usual setting, these profile vectors

are normalized to unit length, and thus, the scaling factor with respect to ana-

lyte concentration is left to the slope (mn) of the pseudounivariate prediction

graph (the latter is a plot of the scores or relative concentrations of a given

analyte vs. its nominal calibration concentrations). As a function of the rele-

vant parameters for multilinear multiway calibration, the recently derived

expression for the sensitivity in multilinear models is [50]

SENn ¼mn nth rowof ZT
exp I�ZunxZ

+
unx

� �
Zexp

h i +


 


�1

(19)

The matrix Zexp is defined as a function of a loading matrices for second-

(two data modes), third- (three data modes), and fourth-order (four data
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modes), while the Zunx is defined as a function of the loading profiles of the

unexpected constituents in the various data modes [17]. It may be noticed that

for three-way (second-order) calibration, Equations (15) and (19) appear to be

different than the MKL, HCD, and FO expressions (see Table 1); however,

the latter numerical results are identical to those provided by Equation (15),

indicating that all previous approximations based on the NAS are special

cases of the general uncertainty propagation expression [14].

4.4.2 Multivariate Curve Resolution-Alternating Least-Squares

The corresponding SENn expression for the MCR-ALS algorithm applied in

the extended mode has been recently derived [15].

SENn ¼mn J CTC
� ��1

nn

h i�1=2

(20)

In Equation (20), J is the number of data points in each submatrix in the

augmented mode, and mn is the slope of the MCR-ALS pseudounivariate

graph (built in a similar manner to PARAFAC, i.e., plotting analyte scores

vs. nominal calibration concentrations). Assuming successful decomposition

of the augmented matrix Xaug into two matrices (Baug and C), containing

the constituent profiles in the augmented mode and in the nonaugmented

mode, respectively, the sensitivity depends on the nonaugmented profiles C,

which can be further separated into Cexp and Cunx, containing the profiles

for the expected (present in calibration) and unexpected constituents,

respectively.

The MCR-ALS sensitivity expression can also be shown to be adequately

covered by the general Equation (15). In Equation (20), J is the number of

data points in each submatrix in the augmented mode. Since each data matrix

is assumed to be of size J�K, this also assumes that augmentation has been

performed columnwise. In the case of row-wise augmentation, J should be

replaced by K in Equation (20). On the other hand, the matrix C contains

the profiles for all sample constituents in the nonaugmented data mode,

and the shorthand notation CTC
� ��1

nn
implies selecting the (n,n) diagonal

element of the inverse of matrix (CTC). To adapt Equation (20) to the present

approach, the matrix C is divided into two blocks, one for the constituents

present in calibration (Cexp) and another one for the unexpected constituents

(Cunx):

C¼ CexpjCunx

� �
(21)

It can further be shown that:

CTC
� ��1 ¼ CexpjCunx

� �T
CexpjCunx

� �� ��1

¼ CT
exp I�CunxC

+
unx

� �
Cexp

h i�1
(22)
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Then, the (n,n) diagonal element of the latter matrix can be found using

the vector dn as selector:

CTC
� ��1

nn
¼ dTn CT

exp I�CunxC
+
unx

� �
Cexp

h i�1

dn (23)

and the sensitivity is given by the equation:

SENn ¼mnJ
�1=2 dTn CT

exp I�CunxC
+
unx

� �
Cexp

h i�1

dn

� 	�1=2

(24)

Finally, Zexp and Zunx from Equation (15) are equal to Cexp and Cunx,

respectively, and the vector gn is equal to the multilinear selector dn, thereby
achieving an expression equivalent to general Equation (15).

4.4.3 Partial Least-Squares/Residual Multilinearization

For multiway algorithms with a latent-based calibration, such as PLS/RML,

the corresponding sensitivity expression has already been developed in the

same format as the general equation (15). For U-PLS calibration, for example,

Zexp is composed of columns which are the calibration loadings, which is

understandable, since they represent the behavior of the calibrated constitu-

ents in signal space. Here, the vector gn does not act as selector of a particular

analyte loading, but appropriately combines the loadings in a manner, which

specifically reflects the behavior of the analyte of interest. It is equal to the

vector of analyte-specific regression coefficients, defined in the space of

the latent variables. The above discussion concerning the properties of the

I�ZunxZ
+
unx

� �
matrix is also pertinent in this case. The uncertainty propagation

approach fully agrees with the expression for the U-PLS/residual bilinearization

(RBL) sensitivity, which was previously derived from NAS considerations [51].

An analogous expression can be derived for N-PLS/RBL [16].

4.5 Other Multiway Algorithms

The general Equation (15) has been applied to assess the sensitivity for sev-

eral algorithms commonly employed for multiway calibration. However, there

are additional methodologies, based on eigenvector–eigenvalue analysis

[52,53], which are somewhat less employed. In addition, the latter ones

always achieve the lowest HCD sensitivity, even when various constituents

are calibrated [51], probably due to the very limited information provided to

the model for the single calibration sample, in contrast to methodologies rely-

ing on multiple calibration samples.

Other algorithms for which sensitivity studies are lacking are multilinear

least-squares/RML (MLLS/RML) [32,34,35,52,53] and PARAFAC2, a variant

of PARAFAC conceived to cope with nonmultilinear multiway data with

one trilinearity breaking mode, e.g., chromatographic-spectral second-order
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data, whose sensitivity properties have yet to be explored. Recently, a new

version of PARAFAC (Augmented PARAFAC), specifically designed for

four-way nonmultilinear data, was used to resolve different third-order chro-

matographic systems [54]. In the latter work, sensitivities were calculated

using expressions based on the multilinear approach, i.e., as if the system

were processable by quadrilinear four-way PARAFAC [14]. Thus, the

results should in principle be rather overoptimistic. However, it is now pos-

sible to postulate an expression for sensitivity that fits better to the three-

way augmented PARAFAC model: as for MCR-ALS, Equation (15)

becomes similar to Equation (23), but in this case, it is possible to use

the information of the two pure profiles B and C (see FO sensitivity in

Table 1):

SENn ¼mnJ
�1=2 dTn BT

exp I�BunxB
+
unx

� �
Bexp

� �h�

CT
exp I�CunxC

+
unx

� �
Cexp

� �i�1

dn

	�1=2
(25)

In Equation (25), all symbols have the same meaning that the MCR-ALS

context, but the matrices B and C contain the profiles for all sample consti-

tuents in the two nonaugmented data modes, an option which is not possible

in the expression of MCR-ALS sensitivity. Figure 3 shows the sensitivities

for simulated four-way data ternary systems, consisting in two analytes

and one interferent, estimated through Monte Carlo/augmented PARAFAC

and Monte Carlo/MCR-ALS calculations, using Equation (24) for MCR-

ALS and Equation (25) for Augmented PARAFAC. Interestingly, the sensi-

tivity expression for augmented PARAFAC leads to better results than for

MCR-ALS, meaning that Equation (25) is well suited for the proposed

objective.

FIGURE 3 Four-way sensitivity expressions versus Monte Carlo values for 100 cases of a ter-

nary system: (A) Augmented PARAFAC (Equation 25) and (B) MCR-ALS (Equation 24).
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4.6 Further Multiway Systems

Generalization of Zunx in Equation (15) to further data modes is possible by

noting, for example, that in four-way (third-order) calibration, the spaces

spanned by Zunx are the three possible combinations of pairs of modes: for

a given interfering constituent, Zunx contains blocks of columns for each

unexpected constituent, e.g., for the unexpected agent 1, the first block will

look as follows [17]:

Zunx ¼ d1�c1�Ib d1�Ic�b1j jId�c1�b1j⋯½ � (26)

where Ib, Ic, and Id are J�J, K�K, and L�L identity matrices. This

Zunx matrix is easily constructed for any number of unexpected constituents.

If a data mode is added (five-way calibration), four different combinations

of triads of profiles in each of the possible sets of three modes will provide a

Zunx matrix for each unexpected agent. For more data modes, specifically, for

(N+1)-way (Nth-order) calibration, the blocks of Zunx for each unexpected

agent will include all possible combination of profiles in (N�1) modes. In

sum, Zunx conceivably represents the space spanned by the unexpected consti-

tuents, but in a nonclassical way, although the systematic block characteristics

of this matrix makes it easy to build it for any data order and number of inter-

fering agents.

5 OTHER FIGURES OF MERIT

5.1 Analytical Sensitivity

One potential problem with the interpretation of the plain sensitivity is that it

depends on the specific type of signal employed for developing a calibration

methodology. The value of SENn has units of (signal�concentration�1), and

therefore, sensitivities derived from spectral and electrochemical measure-

ments cannot be compared on an equal basis. For these reasons, the analytical

sensitivity (g) has been proposed as a better indicator for comparison pur-

poses, as the ratio between sensitivity and instrumental noise [55]:

gn ¼ SENn=sx (27)

The parameter gn has units of (concentration)�1, is independent of the

measured signal, and can be employed to compare different methodologies.

Comparison of Equations (14) and (27) implies that gn ¼ s�1
y , and thus the

analytical sensitivity has been interpreted as the inverse of the minimum con-

centration difference which can be appreciated across the linear analytical

range, although this appears to be a rather qualitative statement, less rigorous

than the detection capabilities to be described below. In any case, having esti-

mated the sensitivity, a measure of the instrumental noise level allows one to

compute the analytical sensitivity through Equation (27).
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5.2 Selectivity

According to IUPAC, selectivity is the extent to which a method can be used

to determine particular analytes in mixtures or matrices without interferences

from other constituents of similar behavior [56]. However, this qualitative

definition does not imply a specific procedure for the estimation of a numeri-

cal selectivity parameter [50].

Several requirements have been proposed for a consistent numerical selec-

tivity [50]: (1) a change in the calibration data should be reflected in changes

in selectivity, (2) changes in individual analyte selectivities should produce

corresponding changes in the selectivity and the amount of these changes

should be comparable in size, (3) values such as infinity should not be

obtained, (4) a relation between selectivity and prediction uncertainty is desir-

able, (5) numerical results should be possible for overdetermined systems

(having more sensors or wavelengths than components), and (6) generaliza-

tion to multiway data should be straightforward.

The simplest way in which a selectivity parameter can be defined for

most calibration scenarios, complying with the above requirements, is as the

dimensionless ratio between two analyte sensitivity values: the sensitivity in

a mixture and the sensitivity when all other sample constituents are

absent [57].

SELn ¼ SENn in a mixtureð Þ=SENn pureð Þ (28)

In univariate calibration, SEL should be equal to 1 (100%, meaning full

selectivity), because no interfering agents are allowed. In first-order CLS cal-

ibration, Equation (28) naturally follows as Equation (28) by setting the

denominator as a measure of the pure analyte signal [50]. However, for latent

variables-based calibration models, no approximations to pure analyte profiles

are available, and hence, the selectivity cannot be precisely defined. Although

there have been proposals to use the total signal for a given test sample as

denominator in Equation (28) in these cases, i.e., this makes the selectivity

highly dependent on the unknown samples. Consequently, it may only be sen-

sible to define the selectivity when the pure analyte signal is either adequately

retrieved by the processing algorithm or known from separate experiments.

For the multiway analysis world, the defining Equation (28) implies that

the multiway selectivity is accessible when the pure analyte signal is ade-

quately retrieved by the processing algorithm [8,11,58], as in the case of mul-

tilinear decomposition analysis, for which the selectivity (SELn) is directly

given by:

SELn ¼ SENn=mn (29)

where mn is the slope of the pseudounivariate calibration graph. The degree by

which SENn departs from mn in Equation (29) is adequately measured by the

level of overlapping among the profiles for the various constituents. Since
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SENn<mn, the value of SELn continuously varies between 0 (null selectivity)

and 1 (100%, full selectivity).

In the case of MCR-ALS, the selectivity is [15] as follows:

SELn ¼ SENnJ
1=2=mn (30)

As was the case with Equation (29), Equation (30) leads to continuous

values in the range 0–1, depending on the relative degree of overlapping

among the profile for the various sample constituents.

The latter expressions are not the only ones employed for the selectivity

calculation in multiway calibration [59–61], which shows that there is some

controversy about the numerical concept of selectivity.

5.3 Prediction Uncertainty

Prediction uncertainty is based on two proposals for estimating standard errors

in multivariate/multiway analysis [62]: (1) resampling techniques such as

jack-knife or bootstrap [63] and (2) error propagation, which is preferable

because it leads to closed-form expressions and permits better insight into

the relative impact of various uncertainty sources on the prediction error

[57,64].

The best approximation to concentration variance is the well-known three-

term expression (valid for propagation of homoscedastic and uncorrelated

noise) [57,64,65]:

s2y ¼ SEN�2
n s2x + hSEN

�2
n s2x + hs

2
ycal

(31)

where sx
2 is the variance in instrumental signals, h is the sample leverage, and

s2ycal is the variance in calibration concentrations. The three terms in the right-

hand side of Equation (31) derive, by uncertainty propagation, from the fol-

lowing three sources: (1) instrumental signals for the test sample, (2) instru-

mental signals for the calibration samples, and (3) calibration

concentrations. The first and probably the most relevant of these contributions

is directly propagated and is inversely proportional to the squared sensitivity.

The second and third terms stem from calibration uncertainties and are scaled

by the sample leverage h, a dimensionless parameter placing the sample rela-

tive to the calibration space. A simple expression exists for h in univariate cal-

ibration and in pseudounivariate multiway calibration, whereas in other

situations the value of h depends on the presence and levels of additional sam-

ple constituents. A general equation is able to appropriately cover all cases,

however:

h¼ fTtest F
T
calFcal

� ��1
f test (32)

where Fcal is a matrix (or vector) corresponding to the calibration set of sam-

ples, and ftest is a vector for the test sample. It is important to notice that 1/Ical
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(Ical is the number calibration samples) should be added to Equation (32) for

mean-centering data, and when the model includes an intercept, as in univari-

ate calibration through Equation (4), where h becomes the familiar

expression:

h¼ 1

Ical
+

y� �ycalð Þ2XIcal

i¼1
y� �ycalð Þ2

(33)

where y is the predicted analyte concentration, yi is its nominal concentration

in the ith calibration sample, and �ycal is the mean calibration concentration. It

may be noticed that Equation (31) is accurate for the univariate case [4] and

for CLS first-order calibration [66]. For the remaining calibrations, the first

term of Equation (31) is accurate [64], while the remaining two terms are

appropriate approximations [9,16].

5.4 Detection Capabilities

The modern definition of the LOD is due to Currie’s pioneering work on

hypothesis-based detection limit theory [67] and is an important figure of

merit to be reported because it defines the minimum analyte concentration

that is detectable with a certain degree of confidence. However, the definition

of the LOD officially recommended by IUPAC is somewhat less simpler than

the latter idea: it first requires one to define a critical concentration level (CL),

which is the level for the detection decision, involving a certain risk of false

detects. The LOD is then defined as a CL for which the risk of false nonde-

tects has a probability b [68–71]. Following the above cited works, and

according to the expressions presented herein, an LOD expression can be

achieved, as proportional to the uncertainty in predicted concentration near

a blank sample [17,72,73]:

LODn ¼ 3:3 SEN�2
n s2x + h0SEN

�2
n s2x + h0s

2
ycal

� �
(34)

where the subscript n identifies a particular analyte of interest, h0 is the lever-
age for the blank sample, and the factor 3.3 is the sum of t-coefficients
accounting for types I and II errors at 95% confidence level [57]. The factor

in front of Equation (34) may be corrected for other probabilities and degrees

of freedom. Notice the assumptions underlying Equation (34): (1) the LODn is

close enough to the blank so that the leverage at the LOD level is equal to the

blank leverage h0, otherwise, complex corrections are required [74] and (2)

the distance from the blank to the LOD is given as a sum of two confidence

intervals; a more rigorous treatment suggests the use of a noncentrality param-

eter of a noncentral t distribution instead of a sum of classical t-coeffi-
cients [71]. It is likely, however, that the values provided by Equation (34)

and more elaborate statistical approaches do not significantly differ [75,76].
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In univariate calibration, the subscript n may be dropped and the LOD

characterizes the detection capability toward the analyte under study. How-

ever, for first-order methodologies, SENn is analyte specific, as explained

above, but the leverage h0 is also sample specific, meaning that different

blank samples (samples where the analyte is absent, but contain varying pro-

portions of the remaining constituents) have different associated values of h0.
Therefore, the LODn not only becomes analyte specific but also sample spe-

cific. Even more, in higher-order calibration, as already discussed, the value

of SENn is analyte, sample, and algorithm specific (incidentally, the leverage

h0 is not sample specific when pseudounivariate calibration is employed) [10].

For this reasons, the detection capability toward a given analyte depends on

various factors beyond the instrumental signals measured for a set of calibra-

tion samples. Following this concept, and in order to overcome the sample

dependency issue, a recent approach has been proposed based on the interpre-

tation of the LOD as an interval [25]. Although this proposal has been specif-

ically developed for first-order PLS calibration, it could be potentially

extended to other algorithms as long as they are consistent with Equation (34).

The main ideas underlying this definition are (1) each test sample has a spe-

cific LOD value, (2) the universe of test samples is represented by the calibra-

tion set of samples, (3) the leverages for the calibration samples can be

extrapolated to zero analyte concentration, and (4) a range of LOD values

can be estimated for the PLS model as a whole.

As shown in Figure 4, the lower and upper limits of the LOD interval cor-

respond to the calibration samples with the lowest and largest extrapolated

leverages to zero analyte concentration and can be calculated using the fol-

lowing expressions [25]:

LODmin ¼ 3:3 SEN�2var xð Þ+ h0minSEN
�2var xð Þ+ h0minvar ycalð Þ� �1=2

(35)

LODmax ¼ 3:3 SEN�2var xð Þ+ h0maxSEN
�2var xð Þ+ h0maxvar ycalð Þ� �1=2

(36)

where

h0min ¼ �y2calXI

i¼1
y2i

(37)

h0max ¼max h0calð Þ (38)

It is interesting to note that the leverage in Equation (34) corresponds to

the value obtained in univariate calibration with a given calibration set,

provided other sample components are absent. In Equation (35), on the other

hand, h0cal refers to the leverages for the projections of all calibration samples

onto Η0, which is the zero concentration hyperplane in a score space having a
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number of dimensions equal to the number of calibration latent variables

(Figure 4), and h0cal can be calculated as:

h0cal ¼ hcal + h0min 1� ycal
�ycal

� �2
" #

(39)

In the concentration range LODmin<y<LODmax, a reasonable way to

decide if the analyte is detected or not is to estimate a specific LOD value

for the corresponding test sample, approximating its real leverage h to the

leverage h0, which would correspond to its background components (i.e., in

the absence of analyte). This is equivalent to taking the sample as if it were

a blank, which is conceivable because its analyte concentration is most prob-

ably very low. The obtained LOD value can then be employed to check

whether the predicted concentration is below (analyte absent) or above (ana-

lyte present) the sample-specific LOD.

Another common approach to calculate limits of detection in multivariate

calibration bears some similarities with the univariate approach, and this is

why it is sometimes called “pseudounivariate LOD” [77]. In this strategy,

the analyte concentrations estimated for the calibration set of samples by the

PLS model are plotted against their nominal or reference concentrations.

The result is a pseudounivariate calibration graph in which the vertical scale

FIGURE 4 Schematic representation of the limit of detection (LOD) interval approach to calcu-

late the LOD in PLS calibration. Red (gray in the print version) solid lines, leverage and

corresponding standard deviation used to calculate LODmin; blue (dark gray in the print version)

solid lines, leverage and corresponding standard deviation used to calculate LODmax. Adapted
with permission from Ref. [25]. Copyright 2014 American Chemical Society.
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is the estimated analyte concentration instead of either instrumental or latent

variables. The graph is processed as in univariate calibration, assuming that

the detection limit is insensitive to linear transformations applied to the signal.

This leads to an LODpu value, estimated from the classical univariate

Equation (4):

LODpu ¼ 3:3s�1
pu 1 + h0min + 1=Ið Þvarpu
� �1=2

(40)

where spu is the slope of the pseudounivariate line and varpu is the variance of

the regression residuals.

The parameter LODpu has the advantage of being a single figure of merit

characterizing the overall PLS calibration model. However, one critical point

about this estimator is the absence of a term accounting for calibration con-

centration uncertainties. This difference shows up if LODpu and LODmin/

LODmax are compared by Monte Carlo noise addition studies, which indicate

that the LODpu distribution is centered at the lower limit LODmin of the pres-

ently proposed LOD interval, provided the noise in calibration concentrations

is negligible compared to the level of noise in instrumental signals. In con-

trast, when concentration uncertainties compete with the instrumental noise

in relative size, the mutual relationship among LODpu, LODmin, and LODmax

is less clear.

This can be explained on the basis of how the errors in calibration concen-

trations var(ycal) are incorporated into the LOD definitions. In the estimation

of both LODmin and LODmax, the latter contribution is scaled by the leverage,

but in LODpu, it is directly incorporated into the first, test-sample-dependent

term of the LOD expression. In the latter case, the “signal” is replaced by

the estimated concentration. This means that although the term that takes into

account the errors in calibration concentrations is not present in an explicit

way, concentrations errors are directly propagated to the standard error in pre-

dicted concentrations. In any case, it is important to remark that the concep-

tual approach to LODpu is radically different than the presently proposed

range of LOD values, which is clearly consistent with the latest advances in

error-in-variables theory [11], and leads to a better insight into PLS detection

capabilities, because it helps to understand the effect of background

and potential interfering agents on the analyte detection for complex

samples [25].

The limit of quantitation (LOQn), in turn, is estimated as the CL for which

the relative prediction error is 10% and is easily set at a concentration value

which is 10 times the associated prediction uncertainty [57]:

LOQn ¼ 10 SEN�2
n s2x + h0SEN

�2
n s2x + h0s

2
ycal

� �
(41)

Analogous considerations to those for LODn regarding the analyte and

sample dependence of the LOQn apply.
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6 COMPARISON OF FIGURES OF MERIT

The measuring and processing of multivariate data leads to a sensitivity

increase, derived from multiple redundant measurements and noise averaging.

The sensitivity increase can now be precisely computed using the general

expression (15). This may help in advanced planning and in anticipating the

sensitivity gain for complex multiway experiments. To illustrate the sensitiv-

ity gain when increasing the number of instrumental sensors and data orders, a

real example will be presented, which shows the usefulness of the general

expression to calculate sensitivity and the resulting figures of merit. In this

experimental fourth-order data set, excitation–emission fluorescence matrices

were measured as a function of time and pH to quantify the amount of the

fluorescent pesticide carbaryl, which hydrolyzes in alkaline media to fluores-

cent 1-naphthol. The calibration samples only contain the analyte carbaryl,

but the test samples contain, in addition to the analyte, another fluorescent

pesticide as an interfering agent (thiabendazole or fuberidazole). Hence, the

second-order advantage is required for successful analyte determination [16].

Given the features of the data, it is possible to explore all the different pos-

sibilities provided by second-, third-, and fourth-order calibration. To do this,

the corresponding subarrays can be generated by fixing the time, the pH

(third-order data), or both pH and time simultaneously (second-order data).

When the second-order data were analyzed using U-PLS/RBL, the use of

cross-validation rendered an optimum number of calibration latent variables

equal to 1. It is important to notice that two chemical components occur in

calibration. However, since they are mutually correlated because one compo-

nent is hydrolyzed to yield the second one, a single U-PLS latent variable is

understandable. The same situation stands for higher orders. As can be seen

in Figure 5 for two typical test samples with different interferents, the RBL

procedure was able to return the corresponding profiles, achieving the

second-order advantage. The figures of merit are shown in Table 3 and will

be compared below with those corresponding to third- and fourth-order data

analysis. When third-order data are generated by fixing the pH value to 10,

residual trilinearization (RTL), as in the case of RBL, allowed to model the

corresponding interfering agent in each sample. The complete fourth-order

data were finally submitted to U-PLS/RQL, with similar qualitative results

in comparison with above analysis, but with an additional profile in the pH

mode for the interfering agent profiles.

The figures of merit for the analyte carbaryl are reported in Table 3 for

comparison with previous methodologies. In comparing the results for

second-, third-, and fourth-order data for the studied experimental system,

increasing sensitivities and analytical sensitivities are apparent on increasing

the data order (Figure 6). A steady improvement in the average concentration

error indicators is also observed, as well as in uncertainty in predicted concen-

trations and detecting capabilities (LOD and LOQ). However, in agreement
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with the simulations presented in the previous section, the improvement in

concentration uncertainty, LOD, and LOQ is not directly proportional to the

gain in sensitivity. Again, this is expected on inspection of Equation (31),

where only two of the three terms are directly affected by the sensitivity

parameter.

From this example can be clearly seen that, with the expressions now

available, it is possible to obtain a reliable quantitative measure of the

improvement that could result from the addition of an extra data mode. This

gives the analyst a powerful criterion to decide whether it is necessary or

not to add extra information to a particular analysis.

FIGURE 5 Excitation (A) and emission (B) profiles for the various components of a typical

experimental example. Green (gray in the print version) and red (gray in the print version) lines

correspond to the experimental spectra for the analyte carbaryl and its hydrolysis product

1-naphthol, respectively. Blue (black in the print version) and black lines (three superimposed

similar traces) indicate the profiles for the interfering agents fuberidazole and thiabendazole, as

retrieved from test samples containing interferents, by U-PLS/RML analysis of second-, third-,

and fourth-order data. Reprinted with permission from Ref. [16]. Copyright 2012 American Chem-
ical Society.

Figures of Merit in Multiway Calibration Chapter 13 569



7 CONCLUSIONS

In this chapter, it has been clearly shown that the task of calculating figures of

merit in multivariate and multiway calibration is not as simple as an intuitive

and direct extension of univariate expressions and requires special attention.

An insight into the data structure clearly shows that it becomes necessary to

study and rationalize the definition of estimators, depending not only on the

sample being analyzed but also on the structure of the algorithm used to

TABLE 3 Figures of Merit for the Experimental Example Using U-PLS/RBL,

U-PLS/RTL, and U-PLS/RQL

Figures of merita

SEN/AFU (L mg�1) 1.3 5.5 12

g (L mg�1) 0.7 3.1 6.7

LOD (mg L�1) 5.3 2 1.5

LOQ (mg L�1) 16 6 4.5

a[var(ycal)]
1/2¼1 mg L�1, [var(x)]1/2¼2 AFU (arbitrary fluorescence units).

FIGURE 6 Variation of the limit of detection (LOD) with the sensitivity for the determination of

the analyte carbaryl in the experimental example. Red (gray in the print version) circles, LOD

values as obtained with U-PLS/RML for the different experimental data orders using as an

approximation only the first term of Equation (34). Blue (black in the print version) circles,

LOD values from the complete IUPAC’s recommended expression (Equation 34), inserting the

corresponding values of h. Reprinted with permission from Ref. [16]. Copyright 2012 American

Chemical Society.
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process the corresponding data. In this sense, the derivation of a general for-

mula to calculate sensitivity, applicable to any data order and for the most

important processing tools, constitutes an important step to a better under-

standing of the information needed to develop a reliable validation

methodology.

The definition of the LOD is also an important issue, since this figure of

merit brings together two important analytical concepts: the sensitivity and

the precision in the analytical determination. Regarding this figure of merit,

some efforts to define a reliable estimator in first-order calibration have been

presented, but further studies should be made to extend it to more complex

multiway data.

Finally, one of the main perspectives of this chapter is related to uncer-

tainty estimation. The extension of the proposed expressions to cases in which

the error structure is not iid is a topic of fundamental importance, since this

latter assumption is not always completely adequate. This implies a deep

insight into the different sources of instrumental noise that could affect a mea-

surement, and how the noise is propagated through the structure of each cali-

bration algorithm to give a reliable uncertainty value in the estimated

concentration.
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[50] Faber NM, Ferré J, Boqué R, Kalivas JH. Quantifying selectivity in spectrophotometric mul-

ticomponent analysis. Trends Anal Chem 2003;22:352–61.

[51] Olivieri AC. On a versatile second-order multivariate calibration method based on partial

least-squares and residual bilinearization. Second-order advantage and precision properties.

J Chemometr 2005;19:253–65.

[52] Sanchez E, Kowalski BR. Generalized rank annihilation factor analysis. Anal Chem

1986;58:496–9.

Figures of Merit in Multiway Calibration Chapter 13 573

http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0155
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0155
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0160
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0160
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0160
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0165
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0165
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0165
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0170
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0170
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0175
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0175
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0175
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0175
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0180
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0180
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0185
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0185
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0190
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0190
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0195
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0195
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0200
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0200
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0205
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0205
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0210
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0210
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0215
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0215
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0220
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0220
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0225
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0225
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0230
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0230
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0235
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0235
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0235
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0240
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0240
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0245
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0245
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0250
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0250
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0250
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0255
http://refhub.elsevier.com/B978-0-444-63527-3.00013-8/rf0255


[53] Sanchez E, Kowalski BR. Tensorial resolution: a direct trilinear decomposition.

J Chemometr 1990;4:29–45.

[54] Bortolato SA, Lozano VA, de la Peña AM, Olivieri AC. Novel augmented parallel factor

model for four-way calibration of high-performance liquid chromatography-fluorescence

excitation-emission data. Chemom Intell Lab Syst 2015;141:1–11.

[55] Cuadros Rodrı́guez L, Garcı́a Campaña AM, Jiménez Linares C, Román Ceba M. Estimation
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