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ABSTRACT 

 

Primary cilia have been known to regulate neurological functions, as primary cilia exist on 

astrocytes and neurons in the mature brain.1 More is being discovered about primary cilia and 

their role in the vertebrate nervous system; however, little is known about their functions and 

molecular pathways in the mature brain. There also lacks methods of diagnosis for primary cilia-

related defects and diseases. The purpose of this project was to provide more information on the 

involvement of cilia in the neurological functions and offer a potential means for diagnosis of 

cilia-related disorders by comparing the EEG and EMG signals of wildtype mice with the signals 

of IFT88 knockout and Arl13b-mCherry transgenic mice. The study was successful in 

identifying several potential points of comparison in the EEG/EMG plots of wildtype, IFT88 

knockout, and Arl13b-mCherry transgenic mice. More data must be collected and analyzed to 

confirm these findings; however, the comparisons found in this project could be crucial in 

furthering knowledge of how we understand and study primary cilia and how they affect 

neurological functions and patterns in humans.  

 

 

INTRODUCTION 

 

Primary cilia are centriole-derived sensory organelles which act as small microtubule-based 

signaling devices. Present in most mammalian cells, primary cilia regulate a variety of 

physiological functions such as metabolism and cell division. Primary cilia have also been 

known to regulate neurological functions, as primary cilia exist on astrocytes and neurons in the 

mature brain. Primary cilia are not directly involved in synaptic communication; however, their 

impacts on obesity and mental disorders are widely recognized.1 Recent studies have shown 

evidence for primary cilia in the vertebrate nervous system, connecting primary cilia to crucial 

neurological pathways such as the Sonic Hedgehog pathway. The Sonic Hedgehog pathway is a 

signaling pathway that plays an essential role in vertebrate embryonic development and 

tumorigenesis. As a result of discovering primary cilia’s impact on many important factors in 

human development, there is now a large group of genetic disorders that have been tied to 

defects in cilia structure or function, called ciliopathies. One example of a ciliopathy related to 
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neurological function is Joubert Syndrome.2 Joubert Syndrome is a rare genetic disorder 

characterized by cerebellar and brainstem defect in infants and children. This neurological 

developmental disorder is caused by a mutation of genes encoding primary ciliary proteins, 

resulting in dysfunctional cilia in the nervous system, affecting embryonic and neurological 

development. 3 Joubert Syndrome displays how defects in primary cilia can be related to changes 

in neurological function. More is being discovered about primary cilia and their role in the 

vertebrate nervous system; however, little is known about their functions and molecular 

pathways in the mature brain. There also lacks methods of diagnosis for primary cilia-related 

defects and diseases. The purpose of this project is to study neurological patterns of mice with a 

cilia-related knockout or transgene to learn more information about cilia and its involvement in 

the brain. 

 

Knockout mice and transgenic mice associated with different cilia presence and function were 

studied in this project to provide more information on primary cilia’s effect on neurological 

patterns and function. One type of mice being observed in this study is a Intraflagellar Transport 

(IFT) knockout. IFT is an active event in which cargo is transported along microtubules by motor 

proteins. IFT proteins are required for the formation and maintenance of flagella and cilia. 4 IFT 

protein 88 (IFT88) has been discovered as a crucial protein required for the assembly of primary 

cilia. The deletion of IFT88 has been associated with loss of primary cilia, causing a variety of 

defects such as in neurological function.5 The other type of mice studied in this project are 

Arl13b-mCherry transgenic mice. In the adult brain, astrocytic primary cilia are often marked by 

ADP-ribosylation factor-like protein 13b (Arl13b). This protein is involved in regulating ciliary 

protein trafficking, the Sonic Hedgehog pathway, and neural development. Arl13b-mCherry is a 

double transgenic mouse strain in which the mCherry fluorescence reporter labels Arl13b-

positive primary cilia.6 This transgenic mouse was representative of the overexpression of 

primary cilia in mice. By studying mice with the IFT knockout gene and the Arl13b transgene, 

more insight can be achieved on cilia’s effect on neurological patterns and its involvement in 

different neurological defects.  

 

This project attempted to achieve more insight on the effects of cilia in the brain by using 

Electroencephalogram (EEG). EEG is a technique used to record and monitor neurological 

patterns. This technique is commonly used in research with rodents to help better understand 

states of sleep and wakefulness in animals and humans. Additionally, EEG is used to help study 

differences in physiological and disease states. Electromyography (EMG) is also used in this 

study. EMG measures the muscle response and electrical activity in response to a nerve's 

stimulation of the muscle. This technique can be used to help detect neuromuscular changes or 

abnormalities.7 EEG and EMG techniques are utilized in this study in conjunction with 

anesthesia. The use of anesthesia in this project allowed EEG and EMG to be used more 

effectively to monitor changes in EEG waveform pattern in the mouse neocortex. In this project, 

the EEG and EMG signals of wildtype mice will be compared with the signals of IFT knockout 

and Arl13b transgenic mice. This comparison will not only provide more information on the 

involvement of cilia in the neurological functions, but it will also offer a potential means for 

diagnosis of cilia-related disorders.  
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MATERIALS & METHODS 

 

Mouse Conditions 

 

Mice were used in this project to evaluate differences in EEG signals upon anesthesia treatment. 

All procedures involving mice were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of New Hampshire and performed in accordance with 

their guidelines. Mice for experimentation were bred and genotyped. Data from 7 male and 7 

female mice at ages between 4 and 5 months was recorded and analyzed. Mice were maintained 

in standard housing cages with controlled temperature at 22°C, where they had access to food 

and water ad libitum. A 12:12 hour light-dark cycle was used, as a consistent photoperiod is 

critical for regulating mice behavior and health.  

 

EEG Headmount Implantation Surgery 

 

Headmounts were implanted into the skulls of each mouse for the purpose of recording EEG and 

EMG signals in experimentation. Pinnacle’s standard SL/SE headmounts were used for the 2 

EEG/ 1 EMG mouse surgeries. All instruments were sterilized before the start of the operation, 

the surgical area was disinfected, and the experimenter was wearing proper PPE (clean lab coat, 

sterile gloves, covering mask, and hair net). The following procedure was followed for EEG 

headplate implantation surgeries.  

 

Anesthetics and Pre-surgical Preparation 

 

The mouse was sedated with isoflurane before transferring to the surgical apparatus. The mouse 

was treated with 3% isoflurane at 1000mL O2 for approximately 5 minutes. The mouse was then 

transferred to a stereotaxic frame to fix the mouse’s head in an appropriate position for the EEG 

implantation. The apparatus contained a heating pad to help minimize heat loss from the 

anesthetics. The surgical area was illuminated with a high-intensity light source.  

 

The teeth of the mouse were placed in the tooth holder, with the tongue of the mouth below to 

avoid suffocation. The mussel piece was then screwed into place, securing the mouse’s position, 

while also providing the anesthetic gas throughout the surgery. At this point, the anesthetics were 

reduced to 2% isoflurane at 500mL O2. The ear bars were used to fix the head by positioning 

them below the mouse’s ears. A protective gel was added to the eyes of the mouse to prevent 

from drying out.  

 

The scalp of the mouse was disinfected with ethanol, and scissors were used to cut the hair on 

the scalp to prepare for incision. Further anesthetics were injected to prevent and treat pain from 

the procedure. A bupivacaine/ lidocaine mixture (1 mg/kg, 2 mg/kg) was administered to numb 

the skin and the periosteum at the incision site prior to starting surgery for local anesthesia. 

Butorphanol (1mg/kg) and Ketoprofen (5mg/kg) or Carprofen (5mg/kg) were administered by 
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subcutaneous injection. The back of the mouse was then covered with saranwrap to help avoid 

contamination. The scalp was cleaned 3 times with disinfectant solution.  

 

EEG Headmount Implantation  

 

Using sterilized scissors and tweezers, an approximate 2 cm longitudinal incision was made in 

the middle of the mouse’s head, spanning from the eyes to ears. The skull periosteum was 

completely removed, and the area was dried thoroughly with a sterile Q-tip. The headmount was 

secured with cyanoacrylate and placed symmetrically so that the holes in the headmounts were in 

the frontal contralateral, frontal ipsilateral, parietal contralateral, and parietal ipsilateral locations 

on the skull. The holes were positioned bilaterally over the frontal and parietal cortex, so that the 

screw or electrode placement is optimal for recording EEG signals. Figure 1 shows the locations 

on a mouse skull to be used for reference for headmount placement. The figure also shows the 

purpose of each screw to be inserted in the headmount, including for grounding, reference, EEG 

1 signal, or EEG 2 signal. The headmount should be left alone to dry for at least 5 minutes before 

continuing.  

 
Figure 1. Reference figure for headmount placement. The headmount should be placed so that each 

section of the skull (frontal contralateral, frontal ipsilateral, parietal contralateral, and parietal ipsilateral) 

has a hole opening to be used for screws (shown in red). Frontal ipsilateral screw is used for the EEG 1 

signal, the parietal ipsilateral screw is for the EEG 2 signal, the frontal contralateral screw is for the 

ground, and the parietal contralateral screw is a control for reference.  

 

Holes in the skull were created with a 23-gauge needle by carefully rotating the needle and 

applying minimal pressure. Deep penetration of the needle into the skull was avoided to prevent 

unwanted damage to the skull and brain. If bleeding occurred, a sterile Q-tip was used to absorb 

excess liquid until bleeding ceased.  

 

A screwdriver was used to advance 0.10 inch stainless steel screws halfway into the holes of the 

headmount and into the skull. The screws served as electrodes for EEG signals but also had the 

purpose of securing the headmount. Screws were added diagonally to allow the headmount to sit 

as evenly as possible. A minimal amount of two-part epoxy was placed between the screw head 

and the headmount holes to ensure there is a solid electrical contact between the screws and the 

headmount board. Following epoxy application, all screws were tightened. 
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EMG wires were inserted by making a small pocket in the nuchal muscles and using forceps to 

carefully bend the wire and insert into the opening. The wire was positioned straight in the 

cavity, not requiring any additional anchoring.  

 

Sealing of Headmount and Suturing  

 

Two-part dental sealant coating was used to coat all screws on the headmount to insulate and 

protect the EEG leads. The sealant was applied around the entire base of the headmount. Upon 

the drying of the sealant, a 19nm nylon surgical suture was used to close the incision around the 

headplate. Each suture was secured with two knots.  

 

Following the suturing, the surgery was complete. The mouse was returned to the home cage for 

recovery. A heating pad was placed under the home cage until the mouse recovered from the 

anesthesia. The mouse was monitored over the next few hours and few days for signs of 

neurological damage or infection. All mice were given at least a week of recovery time before 

any experimentation was performed.  

 

EEG Recording of Mice under Anesthesia  

 

This project involved observing and comparing the EEG/EMG signals of wildtype mice and 

different transgenic and knockout mice to learn more information about how changes in primary 

cilia are related to neurological patterns. Since anesthesia slows brain activity, anesthesia can be 

a useful tool in observing changes in neurological activity recorded by EEG. The following 

procedure was performed for each mouse to obtain EEG and EMG data of mice under 

anesthesia.  

 

A recording cable was prepared with a connector plug to connect the mouse to the recording 

device. The cable consists of a standard flat-ribbon cable with 4 insulated leads. The recording 

wires were connected to the mouses headmount through the 6-pin connector. The wires and 

headmount are very fragile and were handled with care to prevent damage. The mice were 

allowed to habituate to the cable and new house cage for at least 6 days before experimentation 

persisted. 

 

The software used to record EEG and EMG signals was Sirenia Acquisition (1.0.3). The 

recordings were set to the following conditions: sample rate of 1000Hz, preamp Gain of 100, 

EEG gain of 1 and filter of 25,000, and EMG gain of 1 and filter of 100,000. For each anesthesia 

treatment, the EEG/EMG signal was recorded for 5 minutes while the mouse was still in the 

home cage. After the 5 minutes, the mouse was transferred to the anesthesia box at 2% isoflurane 

at 500L O2. The EEG signal was recorded for 15 minutes under the isoflurane anesthetic. After 

the 15 minutes, the mouse was moved back to the home cage, where the EEG recording was 

continued for a minimum of 5 minutes. This isoflurane anesthesia treatment was repeated four 

times for each mouse. After the first test, the mouse was allowed to rest for 1 hour, followed by a 
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1 hour shock training test. After 30 minutes of rest, the second isoflurane treatment was 

performed. The mouse was allowed to rest for 1 hour, followed by another 1 hour shock training 

test. After 3 hours of rest, the third isoflurane treatment was performed. Lastly, the mouse was 

allowed 24 hours to rest before the fourth and final isoflurane treatment.  

 

EEG Recording Annotation Analysis 

 

Each EEG recording was analyzed using the Sirenia Sleep software (1.0.3). For each recording, 

annotations were placed at times which marked the start of the anesthesia treatment, each minute 

of the 15-minute anesthesia treatment, and the end of the anesthesia treatment. These annotations 

were used to observe and quantify the EEG/EMG signals throughout the anesthesia treatment, to 

help compare signal differences between each of the four anesthesia experiments, and to help 

compare signal differences between each mouse genotype.  

 

The mouse genotypes compared in this study were wildtype, Intraflagellar Transport (IFT) 

protein 88 knockout, and Arl13b-mCherry transgenic mice. The purpose of using these mice was 

to see how EEG signals differ in mice with a cilia-related knockout or transgene versus the 

wildtype mouse. After annotating the plot of each of the 14 mice tested by EEG, one mouse from 

each genotype was chosen for the detailed comparison and analysis. Information about the three 

mice can be found in Table 1. These mice were chosen for comparison due to their strong EEG 

and EMG signals. For comparison of all EEG/EMG recordings, the plots were observed directly 

from the Sirenia Sleep Software. For the best resolution and visual for each signal type, each plot 

was observed with the EEG 1 and 2 signals on a scale of +/- 200 µV and the EMG signal on a 

scale of +/- 100 µV in Sirenia Sleep. Plots were compared to each other by observing changes in 

signal amplitude, frequency, and consistency. Differences from the first isoflurane treatment to 

the fourth treatment were also observed and compared between the different genotypes. The goal 

of the EEG analysis was to find distinct changes between the three genotypes to help provide 

more information about how ciliary-related defects affect neurological function and patterns. 

 

Table 1. Information on the representative mice chosen for detailed comparison of EEG and EMG.  

Genotype Test # Ear Tag DOB Surgery 

Date 

EEG/EMG 

Test Date 

Wildtype 14 950 5/21/2021 9/22/2021 10/12/2021 

IFT88 KO 9 23 5/24/2021 9/15/2021 9/29/2021 

Arl13b-mCherry 3 915 3/2021 7/9/2021 9/7/2021 

 

 

RESULTS 

 

Summary 

 

The EEG and EMG signals from mice with a cilia-related knockout or transgene were compared 

to the signals of a wildtype mouse under anesthesia to help draw conclusions about ciliary 
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involvement in neurological function and patterns as well as provide potential means for 

diagnosis of cilia-related disorders. Three mice were chosen for EEG comparison. One mouse 

was a wildtype mouse, acting as a control representing normal ciliary function. The second 

mouse was a Intraflagellar Transport protein 88 (IFT 88) knockout. Since IFT 88 is crucial for 

the formation and maintenance of primary cilia, the knockout of this gene is associated with loss 

of primary cilia.4,5 The third mouse studied in this project was an Arl13b-mCherry transgenic 

mice. This transgenic mouse refers to changes in the gene which encodes a member of the ADP-

ribosylation factor-like family called Arl13b, which is involved in regulating ciliary protein 

trafficking, the Sonic Hedgehog pathway, and neural development. This double transgenic 

mouse type also has a mCherry fluorescence reporter which labels Arl13b-positive cilia, 

representing mice with an overexpression of primary cilia.6 This transgenic mouse with ciliary 

defects was also compared to the wildtype mouse for changes in neurological patterns.  

 

For comparison of all EEG/EMG recordings, the plots were observed directly from the Sirenia 

Sleep Software with the EEG 1 signal on the top (blue), the EEG 2 signal in the middle (orange), 

and the EMG signal on the bottom (green). The following analysis of each genotype’s EEG plot 

was done by comparing changes from the first isoflurane treatment with the fourth treatment and 

observing changes in EEG/ EMG signal amplitude, frequency, and consistency. The goal of the 

EEG analysis was to find differences between the genotypes to lead to more information about 

how ciliary-related defects affect neurological patterns and how these defects are diagnosed. 

 

Whole Plot Analysis 

 

The entire range of the EEG/EMG plot from each mouse genotype was first analyzed to make 

distinctions in EEG/EMG signals before, during, and after isoflurane treatment. General 

differences were also observed between the first and fourth isoflurane treatments from each 

mouse. Figure 2 shows the whole plot of each genotype (A and D for Wildtype, B and E for IFT 

88 Knockout, and C and F for Arl13b transgenic mice) from the first and fourth isoflurane 

treatments.  

 

First, observations were made from the plots from the first isoflurane treatment. In general, all 

EEG and EMG signals can be seen with a relatively high amplitude directly before and after 

administration of isoflurane treatment. During the 15 minutes of the isoflurane treatment, EEG 

signal amplification decreases significantly for each genotype. All genotype plots appear to take 

a minimum of 5 minutes under isoflurane to decrease in amplitude and stabilize to consistent 

EEG signals. The Arl13b (C) EEG signal appears to take the longest to stabilize, taking around 7 

or 8 minutes to produce a consistent signal. Some differences can be seen in amplitude of EEG 

signals during isoflurane treatment, such as Arl13b having the highest amplitude and IFT (B) 

having the lowest amplitude. Another interesting difference is that the wildtype (A) and Arl13b 

plots show large spikes in EEG activity throughout the isoflurane treatment. The IFT knockout 

plot appears to be most consistent, with no large spikes throughout isoflurane treatment.  
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Many changes in the plots can be seen from the fourth isoflurane treatment. All genotypes 

experienced higher amplitude EEG signals throughout the 15 minutes of the fourth isoflurane 

treatment compared to the first treatment. All genotypes also take a longer time to show an 

amplitude decrease and stabilization of EEG signals during the fourth treatment, with the 

stabilization time increasing to 6+ minutes for all genotypes. The IFT knockout (E) took the 

shortest amount of time (~6 minutes) for the EEG signal to stabilize, but the plot experienced 

large EEG signal spikes periodically throughout the isoflurane treatment. The wildtype (D) and 

Arl13b (F) EEG signals both never appear to fully stabilize during the isoflurane treatment, but 

rather their EEG signal amplitude appear to periodically decrease throughout the 15 minutes. The 

wildtype plot experienced the greatest increase in signal amplitude from the first treatment. The 

wildtype plot also displayed an extremely dense EEG 1 signal (blue), most likely resulting from 

a signal connection issue.  

 

There can be several general conclusions drawn from these plots. First, the EEG signals during 

the 15 minutes of isoflurane administration increase in amplitude and experience less deviation 

from the normal EEG signals after multiple treatments have been performed. The IFT mouse 

displayed unique behavior compared to the other genotypes, as there was an apparent 

stabilization in EEG signals after 5 or 6 minutes, no matter what the treatment number. The 

wildtype and Arl13b EEG signals behaved very similarly to each other when observing the 

whole plots, as they both showed large signal spikes throughout the 15 minutes of the first 

isoflurane treatment. In addition, both wildtype and Arl13b EEG signals never seemed to 

stabilize in the fourth isoflurane treatment, but rather decreased gradually throughout the 15 

minutes. Based on these plots, differences were observed that could potentially serve as a basis 

for distinguishing IFT knockouts from wildtype and Arl13b mice.  
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Figure 2. Whole EEG/EMG plot from each genotype (Wildtype, IFT88 Knockout, and Arl13b transgenic 

mice). This figure shows plots from the Wildtype mouse from the first isoflurane treatment (A), the IFT 

knockout mouse from the first isoflurane treatment (B), the Arl13b transgenic mouse from the first 

isoflurane treatment (C), Wildtype mouse from the fourth isoflurane treatment (D), the IFT knockout 

mouse from the fourth isoflurane treatment (E), and the Arl13b transgenic mouse from the fourth 

isoflurane treatment (F). 

 

Detailed Plot Analysis 

 

The last two minutes (minute 13 and 14) of the EEG/EMG spectra from each mouse genotype 

was analyzed to allow for more detailed observations to be made about signal amplitude, 

frequency, and consistency. Some more detailed distinctions were also made between the first 

and fourth isoflurane treatments from each mouse. Figure 3 shows the whole plots of each 
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genotype (A and D for Wildtype, B and E for IFT 88 Knockout, and C and F for Arl13b 

transgenic mice) from the first and fourth isoflurane treatments. 

 

First, observations were made from the first isoflurane treatment plots. When observing the plots 

on a minute-to-minute scale, small and relatively consistent spikes in EEG signals can be seen. 

The wildtype (A) plot displayed the most frequent and consistent spikes, occurring around every 

1-2 seconds. The Arl13b (B) displayed the second most frequent spikes, occurring around every 

4-5 seconds. The IFT knockout (C) displayed the least frequent and least consistent spikes, 

ranging from every 2-3 seconds to every 10 seconds.  

 

There are many similarities and differences in the plots from the fourth isoflurane treatment. 

First, it is important to point out that the wildtype plot (D) is displaying extremely frequent EEG 

1 signals, most likely a result of a signal problem. However, the EEG 2 signal for the wildtype 

appears to be normal. In the fourth isoflurane treatment, the wildtype still has the most frequent 

EEG signal spikes, now occurring around every 2-3 seconds. The wildtype EEG signal spikes 

became slightly less frequent, less consistent, and with a higher amplitude than from the first 

isoflurane treatment. The Arl13b (F) plot still displays the second most frequent spikes, 

occurring around every 3 seconds. The Arl13b EEG signal spikes became more frequent and 

more consistent than from the first isoflurane treatment. The IFT knockout plot still has the least 

frequent EEG signal spikes, occurring around every 3-4 seconds. The IFT knockout signal spikes 

also became more consistent compared to the first isoflurane treatment.  

 

Some conclusions can be drawn from these plots. First, the IFT knockout and Arlb both shows 

more consistency and frequency in their EEG signal spikes after four isoflurane treatments. The 

wildtype differed from the other genotypes in this aspect, as the wildtype EEG signal spikes 

became less consistent after the four isoflurane treatments. This information can be used to help 

distinguish between the Wildtype versus the IFT knockout and Arl13b transgenic mice.  
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Figure 3. Detailed EEG/EMG plot from each genotype (Wildtype, IFT 88 Knockout, and Arl13b 

transgenic mice) from the last two minutes of isoflurane treatment. This figure shows plots from the 

Wildtype mouse from the first isoflurane treatment (A), the IFT knockout mouse from the first isoflurane 

treatment (B), the Arl13b transgenic mouse from the first isoflurane treatment (C), Wildtype mouse from 

the fourth isoflurane treatment (D), the IFT knockout mouse from the fourth isoflurane treatment (E), and 

the Arl13b transgenic mouse from the fourth isoflurane treatment (F). 

 

 

Discussion 

 

The purpose of this project was to provide more information on the involvement of cilia in the 

neurological functions and to offer a potential means for diagnosis of cilia-related disorders by 

comparing the EEG and EMG signals of wildtype mice will with the signals of IFT88 knockout 

and Arl13b-mCherry transgenic mice. The study was successful in identifying several potential 
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points of comparison in the EEG/EMG plots of wildtype, IFT88 knockout, and Arl13b-mCherry 

transgenic mice. First, when looking at the entirety of the EEG/ EMG plots, the IFT88 knockout 

mouse displayed a stabilization in EEG signals significantly sooner than the other mice under 

anesthesia, regardless of the anesthesia treatment number. In addition, the wildtype and Arl13b 

mice displayed EEG signals which never seemed to stabilize in the fourth anesthesia treatment, 

but rather decreased gradually throughout the 15 minutes. When looking at the detailed plot 

analysis of the last two minutes of the anesthesia treatments, the IFT knockout and Arl13b 

transgenic mice showed more consistency and a higher frequency in their EEG signal spikes 

after four anesthesia treatments, whereas the wildtype mice EEG signal peaks became less 

consistent after the four isoflurane treatments. These differences in the EEG/EMG plots can 

potentially be used to distinguish between the different genotypic mice.  

 

This project had several limitations. One limitation was that changes or differences in EEG/EMG 

signals could have been a result of changes in the EEG/EMG signal being stronger or weaker in 

some mice versus others. This limitation can be reduced by continuing this study with more mice 

to confirm the comparisons made. When continuing the study, it will also be important to handle 

mice and the EEG/EMG recording cables with care to prevent damage which may affect the 

EEG or EMG signals. Another limitation was that there was a decent sample size of mice 

observed for this study, but many of the mice displayed poor EEG and EMG signals that could 

not be used for comparison and analysis in this study. To avoid this, consistency in surgical 

methods is very important.  

 

Despite its limitations, this project can serve as a launching point for important neurological 

research regarding primary cilia function in neurological behavior. Primary cilia have been 

known to regulate neurological functions, as primary cilia exist on astrocytes and neurons in the 

mature brain.1 More is being discovered about primary cilia and their role in the vertebrate 

nervous system; however, little is known about their functions and molecular pathways in the 

mature brain. There also lacks methods of diagnosis for primary cilia-related defects and 

diseases. The purpose of this project was to provide more information on the involvement of cilia 

in the neurological functions and offer a potential means for diagnosis of cilia-related disorders. 

Using wildtype mice, IFT88 knockout mice, and Arl13b-mCherry transgenic mice, this study 

compared the EEG and EMG signals of these mice under a 15 minute anesthesia treatment. By 

comparing these mice with genotypic differences in primary cilia function, some differences 

were discovered regarding EEG patterns under a series of anesthesia treatments. These 

differences can be informative of how changes in ciliary prescence and functions affects 

neurological functions. In addition, with more data and analysis, the changes in EEG patterns 

discovered in this project can potentially serve has a basis of diagnosis for primary cilia-related 

disorders and diseases. Much more data must be collected and analyzed, but the comparisons 

found in this project could be important in furthering knowledge of how we understand, study, 

and diagnose neurological patterns and abnormalities in humans.  
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