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Abstract. High-quality research developed during the 19th century established the foundations of rock strain
investigations. Careful observation and description of rock fabrics and deformed objects in rocks allowed early
researchers to obtain mathematical expressions that are still used today to quantify strain. Thus, in a span of a few
decades, and applying basic scientific methodology, these researchers developed the concept of the strain ellip-
soid, defined mathematically the difference between constant-volume and volume-loss deformation, constructed
the basic equations that define pure and simple shear deformation, and discovered the mechanism of pressure–
solution deformation. These advances were fundamental to seminal works on strain analysis and deformation
fabrics in the mid-20th century. However, they are rarely addressed in modern studies, which suggests a lack of
awareness among current researchers. In order to bring attention to these landmarks of strain research, I provide
a historical review of the high standards of analysis that led to the definition of the fundamental equations and
concepts on strain during the 19th century.

1 Introduction

During the 19th century, a number of researchers realized
that some rocks provide excellent insights into their deforma-
tion history. Aside from folds, the most notorious evidence of
deformation, these rocks bore constituent objects such as fos-
sils or some minerals that were also deformed. In those rocks
in which metamorphism was not so intense, the finite strain
state could be determined, and a relationship between this
state and the deformation fabrics, such as fractures and cleav-
age, could be discussed. This discussion was very prolific,
and its legacy included a great deal of accurate observations
and deductions that led to the assemblage of the fundamen-
tal equations on which we base our present understanding of
rock strain.

Further developments on strain during the first part of
the 20th century were strongly based on these older stud-
ies. Many of them were reviewed by structural geology text-
books between the 1960s and 1970s (De Sitter, 1964; Ram-
say, 1967; Hobbs et al., 1976), leading to novel techniques
of strain analysis (e.g., Ramsay, 1967; Ramsay and Huber,
1983, 1987). In the last 40 years, introduction of advanced

computing, statistical methods, and simulations, as well as
techniques of electron microscopy, geochronology of min-
eral phases involved in deformation, and anisotropy of mag-
netic susceptibility, among other techniques, have resulted in
significant advances in the field (Hobbs, 2019; Wenk et al.,
2020; McCarthy et al., 2020). However, a simple search in
citation repositories of some of the more fundamental papers
from the 19th century shows a scarce acknowledgement of
them in the last 15 years (between zero and three citations
per year, most of them incidental). As pointed out in a recent
volume celebrating 50 years of John Ramsay’s book, Fold-
ing and Fracturing of Rocks (Bond and Lebit, 2020), much
of the research developed in the last decades and in this book
applied strain analysis techniques to perform mathematical
models of rock deformation. However, many definitions and
findings put forward by Ramsay (1967) and other contempo-
rary researchers (Cloos, 1947; Breddin, 1955; Galvin, 1959;
Elliott, 1970, among others) were based on mathematical
contributions settled during the previous century. There have
been some important historical reviews of the development
of concepts relating to deformation fabrics, such as cleav-
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age or cataclastic rocks (e.g., Higgins, 1971; Siddans, 1972),
but I think that a thorough review of the significant concep-
tual definitions and mathematical improvements made in that
early research is lacking and will help to put into perspective
their fundamental contribution to our current knowledge on
strain.

In this paper I make a review of the timeline of develop-
ment of fundamental concepts regarding strain studies in the
19th century. I will emphasize the quality of these early stud-
ies, with focus on the main landmarks regarding the defini-
tion of concepts that persist today (with slight terminology
or conceptual modifications) and the accurate mathematical
reasoning and precise observations that established the foun-
dations of the more modern strain analysis techniques devel-
oped during the last century. Hopefully, this contribution will
help to give due visibility to papers that are usually neglected,
with the only excuse of a lack of awareness, since at present
they are largely available in electronic format.

2 The association of cleavage and finite strain

During the first decades of the 19th century, a slate was
defined in textbooks, such as Bakewell (1813), as a “tran-
sitional rock” (between primary and secondary) that could
be split into thin laminae, which were often used as roof
slates. This capacity to split was referred to as cleavage by
British geologists, but aside of its usefulness to construct
roofs, its importance as a record of rock structure remained
poorly understood until Adam Sedgwick, in 1835, published
the first scientific study on the subject. Sedgwick (1835) em-
phasized the distinction between cleavage, stratification, and
jointing (pp. 471–472, 480) and noticed the continuity of the
strike of cleavage across large areas and its general paral-
lelism with the strike of bedding. Sedgwick, however, sug-
gested that cleavage was the result of chemical action (“crys-
talline forces”) and disregarded its connection with mechan-
ical processes (p. 481). He based his conclusion on the no-
torious parallel arrangement of flaky minerals (e.g., chlorite
and mica) “which not merely define the planes in question
but strike in parallel flakes through the whole mass of the
rock” (p. 471). Nevertheless, it is very interesting that he as-
cribed these chemical changes in slates to metamorphism,
comparing these rocks to mica schists. Charles Robert Dar-
win (1846) also interpreted that the “power” that formed
cleavage in slates “has tended to modify its mineralogical
character in parallel planes” and that “in most cases foliation
and cleavage are parts of the same process” (metamorphism);
“the foliation [of schists and gneiss] is the extreme result of
that process, of which cleavage is the first effect” (pp. 163–
167). This was later also supported by Sharpe (1852) upon
observations in northern Scotland, although neglecting meta-
morphism as the cause.

In 1844, John Phillips reported his observations on the in-
ternal structure of rocks and reaffirmed the concept of cleav-

age parallel to “the great anticlinal axes” (Phillips, 1844,
p. 61), an observation comparable to Sedgwick (1835) re-
garding parallelism of bedding–cleavage strike. This was
also emphasized by Darwin (1846) from observations in the
southernmost Andes, where cleavage strike is parallel to the
“main axes of elevation” (pp. 162–163) (see Table 1 for mod-
ern terminology), and later by Rogers (1857), who included
the concept of folds’ axial planes to which cleavage is par-
allel. Phillips was among the first to notice that fossils were
deformed in the slates, what he considered the result of a
“creeping” along cleavage planes; but more importantly he
envisaged the usefulness of measuring the distortion of fos-
sils as one of a series of steps towards a mechanical theory
of rock deformation.

This line of thought was more or less contemporaneously
faced by Daniel Sharpe (1847), who published the first de-
tailed analysis on the relationship between distorted fossils
and cleavage formation, emphasizing the mechanical nature
of this relationship. Sharpe’s observations led him to this
premise: “if we could find out that the changes of form in
the [fossil] shells followed any certain law we might make
allowance for them and thus discover the original form of the
shell” (p. 75), a statement of the rationale of practical strain
determinations from deformed objects! He continued: “the
impressions of several shells (. . . ) were all distorted in the
same direction; the change having no reference to the orig-
inal figure of the shells, but to their position on the stone:
it appeared as if every specimen had been contracted in the
same direction”. This direction, he found, was perpendicular
to the orientation of the cleavage planes, and the amount of
distortion was proportional to the degree of cleavage devel-
opment. In addition, he also observed that the fossils were
stretched parallel to the cleavage dip and assumed constant-
volume deformation: “the compression of the mass between
the cleavage planes has been counterbalanced by its expan-
sion in a direction corresponding to the dip of the cleavage”
(p. 81). If any geologist has asked himself how the concept
of strain has been at some moment related to penetrative rock
fabrics, reading Sharpe’s paper will give the answer.

Sharpe (1849), in a second communication on slaty cleav-
age, extended his research to non-fossiliferous slates. He
found evidence supporting his previous conclusions, which
we may call by its modern name: strain markers. In this case
the markers were imbedded clasts (“pebbles or fragments”)
in slaty breccias, with their flattest sides parallel to cleav-
age planes. Sharpe concluded that this flattening was due to
shortening perpendicular to cleavage, since the clasts’ long
axes were occasionally found normal to bedding (if bedding
and cleavage were normal), thus in “a position which they
never could have reached if their forms had been originally
those we now find” (p. 112). He further related the forces
causing shortening to “the elevation of great masses of rock
under conditions of which we are ignorant”, giving a tectonic
interpretation of his results (pp. 128–129).
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Table 1. Explanation of symbols used in the text and list of terms used in the revised bibliography with their modern equivalents.

Symbol Explanation Terms used in reviewed articles (reference) Modern equivalence

a > b > c strain ellipsoid semiaxes main axes of elevation (Darwin, 1846) morphostructural trend

ϕ,ϕ′ angle of a line with the maximum extension di-
rection before and after deformation

lateral pressure/compression (several authors) used as synonym to shortening/contraction

R strain ellipse ratio (a/c) contortions/contorted, plications, puckerings
(several authors)

folds/folded, crenulation folds

aH semiaxis parallel to cleavage–bedding intersec-
tion in strain ellipsoid from Haughton (1856)

ultimate particles/crystalline granules
(several authors)

constituents (crystals, clasts)

bH semiaxis parallel to cleavage dip in strain ellip-
soid from Haughton (1856)

green spots (Sorby, 1853) reduction spots (accretionary lapilli
in some cases)

cH semiaxis perpendicular to cleavage in strain el-
lipsoid from Haughton (1856)

small triangular spaces adjacent to larger grains,
protected from deformation (Sorby, 1853)

strain shadows

ρ,ρ′ minor semiaxis of the ellipse formed by the
intersection between the strain ellipsoid from
Haughton (1856) and any plane passing through
aH

linear graining (Sorby, 1853) lineation

φ,φ′ angle between the major semiaxis of an ellipse
and an arbitrary line (when this angle is between
the shear plane and the major semiaxis of the
strain ellipse, it is θ ′ in modern terminology)

joints of encrinites (Sorby, 1856, 1879) crinoid ossicles

M line parallel to the length of a fossil before de-
formation

ultimate-structure cleavage/ultimate cleavage
(Sorby, 1858)

continuous cleavage/foliation

N line parallel to the breadth of a fossil before de-
formation

close-joints cleavage (Sorby, 1858) spaced cleavage/foliation

m line parallel to the length of a fossil after defor-
mation

pressure of superincumbent strata (Sorby, 1879) overburden stress

n line parallel to the breadth of a fossil after de-
formation

cleavage–foliation (Sorby, 1880) schistosity/micaceous foliation

r initial radius of a sphere pressure structure in banded rock
(Bonney, 1884)

transposition cleavage

ψ shear angle ellipsoid of distortion (Fisher, 1884b) strain ellipsoid

δ angle complementary to shear angle crumpled (Fisher, 1885) shortened

γ,s shear strain frilling (Fisher, 1885) boudinage

α,β angles that the length and breadth of a deformed
fossil make with the bedding dip line

decrease/diminution/condensation of bulk
(Harker, 1885b)

compaction/volume loss

µ ratio between the volumetric stretch of two de-
formed lithologies

Ausweichungsclivage (Heim, 1878) crenulation cleavage

linear cleavage (Harker, 1885b) L fabric

plane cleavage (Harker, 1885b) S fabric

pure shortening (Van Hise, 1869) pure shear

maximum tangential strain (Becker, 1904) maximum shear strain

flow cleavage (Leith, 1905) continuous cleavage/foliation

fracture cleavage (Leith, 1905) spaced cleavage/foliation

irrotational strain (Leith, 1905) pure shear

rotational strain (Leith, 1905) simple shear

incipient parallel fractures/welded fractures that
remain planes of weakness (Leith, 1905)

cleavage domains

slip surfaces (Sorby, 1908) pressure–solution seams/cleavage domains

tooth-like structure stylolites
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Using magnification, Sharpe observed that in the finer
slates the constituent particles were also “flattest between
the cleavage planes and longest along the dip of the cleav-
age” (p. 113). He arrived at the conclusion that the property
of slates of splitting in a preferred direction (i.e., the cleav-
age) was a secondary character caused by the preferred ori-
entation and shape of their deformed constituent particles.
Accordingly, “the rock can offer less resistance (. . . ) down
the plane of cleavage (. . . ), than in any other direction; for
that plane (. . . ) pass along the flat surfaces of many of the
particles and intersect a smaller number of them than any
other plane” (p. 114). In addition, he put forward the first
detailed description of what we know now as cleavage re-
fraction, which he attributed to “beds of different hardness
offering different degrees of resistance to pressure” (p. 118),
i.e., a purely mechanical origin.

3 The development of strain measurement
techniques

Another pioneer in the study of rock strain, Henry Clifton
Sorby, published in 1853 the results of his study on the ori-
gin of slaty cleavage based on observations in the field and
on thin sections. In this later methodology he was definitely
leading. He corroborated the conclusions of Phillips (1844)
and Sharpe (1847, 1849) on the relationship of cleavage to
shortening, both in orientation and intensity. Sorby used a
different kind of strain marker: folds. By studying their ge-
ometries and relationships to cleavage, he found the coinci-
dence between cleavage and the axial surface of folds and
concluded that they indicated a “considerable amount of lat-
eral pressure”, with bed thickness changes between limbs
and hinges indicating elongation parallel to cleavage and
shortening perpendicular to it (Sorby, 1853, p. 138). While
describing the geometry of disharmonic folds (“contortions”)
on sandy beds in shale, he applied bed-length balancing to
conclude a shortening of 75 %, which in the shaly matrix
was accommodated “by absolute forcing together of their ul-
timate particles, but also by elongation in the line of dip of
cleavage” (p. 139), i.e., by a change in dimension of the rock.

Adding to his observations, Sorby analyzed the change
of shape of “green spots” in slates, which are concretionary
forms that in the undeformed state are either spherical or el-
lipsoidal, with elongation in the bedding plane (i.e., with an
original shape fabric). When deformed, the spherical vari-
eties attained an ellipsoidal shape, with the long axis parallel
to the cleavage dip and the shortest axis perpendicular to it,
while in the cases of an original shape fabric, the long axes
were positioned intermediately between cleavage and bed-
ding. These observations reinforced the theory of shortening
perpendicular to cleavage planes.

From his study of deformed ellipsoids, Sorby arrived at in-
teresting conclusions regarding constant-volume plane strain
deformation: using simple mathematic calculations and nu-

merous measures of deformed green spots, he obtained the
mean ratio between the three ellipsoid semiaxes a > b >
c and found that in the plane perpendicular to cleavage,
the ratio a/c was more than 2 times larger than expected
for constant-volume plane strain deformation of an origi-
nal sphere (where b is equal to the initial sphere radius, and
a/c = a2/b2). This meant an excess shortening of 57 % par-
allel to c. Even if this amount is considered rather large, he
concluded that the studied slates had reduced their original
volume to one-half, due to “the forcing of the particles more
closely together, so as to fill up the spaces left between them
(. . . ); their very close packing, as seen in thin sections, agrees
well with this supposition” (Sorby, 1853, p. 142).

While describing slates under the microscope, Sorby un-
derlined the preferred orientation of micas and other non-
equiaxed particles (e.g., sand grains, shells and coral frag-
ments) at angles close to the cleavage planes and argued that
this fabric constituted a structural weakness responsible for
the “fissile character” of slate. This led him to develop the
equation that gives the final angle ϕ′ of randomly distributed
lines (non-equiaxed particles in a rock), with respect to the
extension direction, when the initial angle ϕ and the strain
ellipse ratio R are known (see Appendix A):

tanϕ′ =
tanϕ
R

. (1)

This equation demonstrates that the final angle of the long
axes of these particles will be closer to the most stretched
axis of the ellipsoids (the cleavage dip direction) after defor-
mation (Sorby, 1853). Sorby also tested his theoretical pre-
dictions with analog experimentation, being also a pioneer in
this subject. He mixed scales of iron oxide in clay to imitate
randomly oriented micas in shale, compressed the mixture,
and baked it and obtained the predicted results: the scales did
rotate and attained a preferred orientation perpendicular to
the applied force.

Sorby’s observations under the microscope were of such
a quality that he even described what would later be called
strain shadows:

On each side of the larger rounded grains of mica,
in the line of cleavage, in well-cleaved slates, the
particles are arranged evenly at all angles, over
small triangular spaces, having their bases towards
the grain. This is just the part which would be pro-
tected from change of dimensions by its presence
[by the larger mica grain]; and this fact is there-
fore very good evidence of the slate having had
originally such a structure [random orientation of
micas]. (Sorby, 1853, p. 145)

Sorby further noticed, like Sharpe, the relationship be-
tween cleavage intensity and magnitude of strain and also
the characteristic refraction when crossing beds of different
competency. He deepened the mechanical explanation of this
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Figure 1. Graphic representation of Sorby’s ideas (Sorby, 1853)
on the superposition of the deformation caused by volume loss
(only possible normal to bedding) on the deformation due to general
shortening of the rock and how this causes different but compatible
finite strain ellipses in each lithology. Cleavage parallels the finite
strain ellipses, being thus refracted. Figure based on Ramsay and
Huber (1987, Fig. 21.24).

phenomenon, which he correctly associated with the differ-
ent rheology of each layer, evidenced, for example, by the
fanning out of cleavage in shaly horizons when approach-
ing the convex surface of an anticline in a sandy layer and
the cleavage fans developed in the competent beds. When
explaining his theory for refraction, he realized that the dif-
ferent amount of deformation on each bed is inexistent along
the bedding plane; in his words, “the amount of elongation
in the line of dip [of bedding] could not vary” (since no de-
tachment was observed; Sorby, 1853, p. 145). Therefore, the
shale can accommodate more contraction (with volume loss)
than the sandstone only in a direction normal to bedding,
resulting in a cleavage plane more inclined towards the in-
terface (Fig. 1). We will see how Harker (1886) further ex-
plained this concept, but still Sorby’s theory remained as one
of the possible explanations for strain refraction in multilay-
ers: the difference in bedding–normal compaction across the
surface (Ramsay and Huber, 1987).

It is also interesting that Sorby (1853) underlines the oc-
currence of a “linear graining (. . . ) due to small puckerings
of the [schist] beds and may be called plications of the first
order” (p. 147). He observed the regional parallelism of these
“plications” with the strike of cleavage in slates and of larger
fold axes. This may be one of the first descriptions of crenu-
lation lineation in the literature. He also compared the move-
ments and changes in dimensions of rocks predicted by his
theory with the slow flow of other solids, such as glacier ice
and brittle pitch.

One of the most important contributions of Sorby to our
present knowledge of strain is the introduction of the most
elemental two-dimensional expression of rock deformation:

the strain ellipse. This was done almost contemporaneously
with Samuel Haughton, who applied the principle to three-
dimensional deformation (deformation ellipsoid). Both re-
searchers published their results in the same volume of the
Philosophical Magazine, with months of separation, in 1856.
Although he did not call it by its present name, which will be
used for the first time more than 20 years later (see Siddans,
1972), Sorby (1856) defined the strain ellipse principle as
follows:

If a rock has not been compressed, we may express
this by saying that the ratio of the alteration in any
two directions at right angles to each other is as
1 : 1; whilst if it had been compressed in such a
manner that the proportion between lines of equal
length before compression was changed so that in
the line of pressure the length was one-sixth of that
perpendicular to it, we may say that the ratio is as
1 : 6. If, for instance, before compression we had
a circle, afterwards it would be an ellipse, whose
axes were as 1 : 6. (p. 27)

Going further with his study of deformed objects in
cleaved rocks, Sorby (1856) described deformed encrinites
in which the crinoid ossicles (“joints of encrinites”) were dis-
torted as a result of shortening perpendicular to cleavage and
extension parallel to its dip, with an axial ratio (a : c) of 4 : 1.
He also described the distortion of calcite crystals in slaty
limestones (broken crystals, bent cleavage), interpreting this
as deformation without need of heat, “by the gradual move-
ment of the ultimate atoms one over the other” (p. 33). This
deformation caused the following:

The crystalline granules have a very unsymmet-
rical character, having their axes in the plane of
cleavage very much longer than perpendicular to it,
as though the compression indicated by the joints
of the encrinites and larger crystals had affected the
smallest, constituting the ultimate structure of the
rock. (p. 34)

Again, the interpretation for cleavage is that the line of
weakness in such a rock would be along the longer axes of
the deformed crystals and ossicles, i.e., perpendicular to the
maximum shortening.

Haughton (1856) made another brilliant contribution to
the study of rock strain by contrasting the mechanical theory
of cleavage formation by “accurate numerical investigation”.
His work, therefore, stated a firm basis for further theoreti-
cal development. Haughton collected and measured a great
number of deformed fossils and analyzed them under a sim-
ilar rationale to Sharpe (1947):

Each species of fossil has a certain normal undis-
torted form which may be ascertained, and (. . . )
the measurements of the different parts bear, within
certain narrow limits, a constant ratio to each other;
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Figure 2. (a) Strain ellipsoid of Haughton (1856), intersected by a
bedding plane (gray shaded) with strike parallel to aH and dip direc-
tion parallel to the bHcH plane. (b) Plane view of the bedding with
examples of deformed fossils of length n and breadthm. (c) Section
of the strain ellipsoid across the bHcH plane.

so that when we examine a distorted fossil, we
can calculate the amount of relative extension or
compression it has undergone in any direction.
(Haughton, 1856, p. 410)

Haughton developed the concept of Cauchy’s ellipsoid of
distortion to understand rock strain. I will treat his deduc-
tions in detail since they are relatively simple and give good
results, considering the premises. Among these, the strain el-
lipsoid is assumed to be with aH (major semiaxis) parallel
to the cleavage–bedding intersection (the suffix “H” is used
to differentiate from the semiaxes of the ellipsoids consid-
ered by later authors and in modern notation, where aH = b),
cH (minor semiaxis) perpendicular to the cleavage plane, and
an intermediate semiaxis, bH, parallel to the cleavage dip.
The intersection of this ellipsoid with any plane parallel to
aH (e.g., bedding) is an ellipse, whose semiaxes are ρ and
aH, parallel to the dip and strike of the plane, respectively
(Fig. 2a, b). The ratio ρ/aH is the distortion (or axial ratio,
in modern terminology) parallel to the dip direction, whilst
aH/ρ is the distortion parallel to the strike. Haughton as-
sumed aH to be equal to unity in his equations; thus the for-
mer ratio would be just ρ and the latter ρ−1. However, as
discussed by Harker (1886; see below), this condition is not
widely verified in nature, so it is better to use the general
forms.

If we consider the ellipse formed by the intersection of the
strain ellipsoid and a plane parallel to bHcH and the inter-
section of this plane with the one containing ρ (Fig. 2c), it
follows from the equation of the ellipse that the relationship
between ρ and the semiaxes bHcH is

1
ρ2 =

cos2φ

b2
H
+

sin2φ

c2
H
, (2)

where φ is the angle between the plane containing ρ and the
bH semiaxis (Fig. 2c). If we use axial ratios to aH 6= 1, we

obtain the more adequate general form (cf. Harker, 1886)

a2
H
ρ2 =

a2
Hcos2φ

b2
H
+
a2

Hsin2φ

c2
H

, (3)

which allows us to determine the distortion ρ/aH in any
plane making an angle φ with cleavage (the aHbH plane). If
these planes of interest are bedding planes, and we find two
(with angles φ, φ′) on which we can calculate the distortions
aH/ρ and aH/ρ

′, then we can determine the ratios of the axes
of the strain ellipsoid with the following equations, which re-
sult from working out Eq. (3) in each case (see Appendix A):

aH

bH
=


(
aH sinφ
ρ′
+
aH sinφ′

ρ

)(
aH sinφ
ρ′
−
aH sinφ′

ρ

)
sin(φ+φ′) sin(φ−φ′)


1
2

(4)

aH

cH
=


(
aH cosφ′

ρ
+
aH cosφ
ρ′

)(
aH cosφ′

ρ
−
aH cosφ
ρ′

)
sin(φ+φ′) sin(φ−φ′)


1
2

. (5)

To obtain the distortions aH/ρ and aH/ρ
′, Haughton used

the ratios between pairs of orthogonal lines in undeformed
fossils, for example, length and breadth (lines M and N ),
which remain orthogonal in deformed fossils (m and n)
(symmetric fossil forms; cf. Ramsay and Huber, 1983). For
this condition to be met, one line should be parallel to aH
and the other parallel to the dip of bedding (direction of ρ)
(Fig. 2b, fossil forms 1 and 2). If, for example, m is parallel
to ρ (fossil 1 in Fig. 2b), the distortion in the bedding plane
is

ρ

aH
=
m

n

N

M
. (6)

If m is parallel to aH (fossil 2 in Fig. 2b), the same equa-
tion gives aH/ρ for that bedding plane. In Haughton’s exam-
ples, aH is considered unity; therefore by Eq. (6) we would
obtain the linear strain (stretch) parallel to m. He applied
this methodology to deformed brachiopods and trilobites and
obtained the axial ratios of the strain ellipsoids, which in-
dicate a majority of nearly oblate shapes. He found others
that showed a greater amount of distortion, however, such
as the same brachiopods described by Sharpe (1847), with
a mean axial ratio of 1 : 0.669 : 0.102 (long axis horizontal).
From this quantitative approach, Haughton (1856) could also
appraise the different intensity of shortening and degree of
cleavage development in sandstones, which showed the less
distorted fossils, concluding the following:

Sandstones resist the cleavage action or pressure
better than slate or mud. This singular fact, of a less
compression existing in sandstones than in slates,
and a proportionably less-developed cleavage, is a
solid argument in support of the mechanical theory
of cleavage. (pp. 417–418)
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Haughton also challenged Sharpe’s observation of “an ex-
pansion parallel to the cleavage dip and no change in the di-
rection of strike”. He suggested that these were generaliza-
tions, since no data existed on the “absolute compression or
expansion undergone by the rock in any direction” (p. 420).

4 A preliminary classification of cleavage

In the following years, Sorby (1858) made new original con-
tributions to the study of cleavage, as always based on care-
ful observations and measurements. He distinguished, for
the first time, between two particular types of cleavage that
represent the ancestry of the modern morphological classi-
fication between continuous and spaced cleavages (or foli-
ations) (see Gray, 1977; Powell, 1979). These types, as de-
fined by Sorby (1858), were “ultimate-structure cleavage”
(continuous cleavage), which is the one present in the slates
used for his studies on strain, that “would result from the
rock yielding to pressure as a plastic substance”, and “close-
joints cleavage” (spaced cleavages), due to very close part-
ings (joints) that are “often so close as to be quite undis-
tinguishable unless a thin section is examined with the mi-
croscope”. The spaces between these cleavage planes (mi-
crolithons in modern language) have an independent fabric,
which may be related to other planes (e.g., bedding). He men-
tions, although gives no detail, experiments on which this
kind of cleavage would result from the rock being subjected
to a “change of dimensions like a rigid body, by the forma-
tion of close cracks”. Although he initially did not clarify the
kinematic nature of these cracks, many later researchers and
Sorby himself assumed them to be shear fractures.

It is most interesting that a concluding remark on this dis-
tinction of cleavage types suggests their utility to indicate
differences in rheology during deformation and also differ-
ences in strain rate:

These two kinds of cleavage obey materially dif-
ferent laws; but at the same time, in like manner
as there is a gradual passage from rigidity to plas-
ticity, so there is also between these two kinds of
structure (. . . ); and thus the structure affords an in-
dication of the actual condition of the rocks at the
time when they were compressed and perhaps also,
in some cases, indicates whether the movements
of elevation were sudden or gradual. (Sorby, 1858,
p. 93)

5 The pressure–solution paradigm

Some years later, Sorby (1863a) published another paper in
which he described the correlation of “mechanical and chem-
ical forces”. The more important geological outcome of this
research was that he started to envisage the importance of
pressure in the increase or decrease of solubility of some
minerals and its influence on the creation of cleavage:

A number of facts connected with metamorphic
rocks and the phenomena of slaty cleavage (. . . )
are readily explained if mechanical force be di-
rectly correlated to chemical action, and if in some
cases the direction in which crystals are formed be
more or less related to pressure. (p. 549)

These first ideas were developed in more depth in two sub-
sequent papers (Sorby, 1863b, 1865), in which the study of
limestone pebbles penetrating into one another (impressing
each other) showed that it was possible to “produce chemical
changes by mechanical pressure” (Sorby, 1865, p. 460). His
observations showed that the impressions “were produced
by the actual removal of material and not by its yielding
as a plastic substance”, and while the soluble material was
removed, “the insoluble earthy portion [was] left behind at
the bottom of the depressions” (p. 460). He concluded that
“striking examples are met with in the case of rocks affected
with slaty cleavage” (p. 461). As was expressed by Durney
(1978, p. 370), Sorby “had discovered pressure–solution, al-
though he did not give the process this name until 1908”.

From this point, Sorby incorporated the action of
pressure–solution into his mechanical theory of cleavage, at
least in calcareous rocks. A beautiful example of his under-
standing of rock strain is given in a paper published in 1879,
in which he describes a deformed limestone band from Ilfra-
combe, reproduced in Fig. 3a (his Fig. 10). The description
states the following:

[A thin limestone band] has been bent up into
a number of contortions, though the upper and
lower beds are not contorted, no doubt because
they yielded to the pressure as plastic substances,
whereas the calcareous band did not so yield.
Though no doubt the band was originally of nearly
uniform thickness, (. . . ) the carbonate of lime has
been entirely removed where it would be nipped
[squeezed] between two other portions of hard
limestone, and thus exposed to the full effects of
pressure, whilst it remains where it would be rela-
tively protected from pressure, at the curved ends
of the contortions. (. . . ) It would, I think, be dif-
ficult to find a better illustration of the influence
of mechanical pressure on solvent chemical action,
(. . . ) showing, as it does so clearly, that solution
has taken place where there was great pressure and
stress, and deposition where they were relatively
less. (Sorby, 1879, pp. 88–89, italics are mine)

Emulating Durney, we could say that Sorby had discov-
ered rootless folds and transposition cleavage, without giving
the names.

In addition to this face evidence, Sorby confirmed his in-
terpretation under the microscope (Fig. 3b) (his Fig. 11):

Some joints of Encrinites [crinoid ossicles] have
been dissolved and their outline altered from the
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Figure 3. (a–b) Figures redrawn from Sorby (1879), no scale in the original (see original description in text). (a) Folded limestone band
from Ilfracombe, in which Sorby described rootless folds and transposition cleavage, formed by pressure–solution along folds’ limbs. (b) A
crinoid ossicle seen under the microscope, with dissolved edges and calcite fibers in the strain shadows and with the interpreted direction
of maximum stress. (c–d) Figures redrawn from Sorby (1880), showing the progressive deformation of a slate. Textual captions between
brackets (see text for original description). (c) “Slate, Liskeard, with minute contortions”; the fine micaceous sedimentary lamination is
deformed into open or gentle microfolds. (d) “Slate, Liskeard, with planes of discontinuity”; further contraction causes the formation of an
imperfect cleavage, in which Sorby recognized the concentration of oxides. (e) “Slate, Shap, disturbed by pressure”; in this case the first
stage does not develop gentle folds, instead disturbing the original layers into a randomly oriented fabric with possibly minor kinks. This
may also be the case of a rock without a clear primary fabric. (f) “Slate, Llanberis, with well–developed cleavage”; this final stage shows a
continuous cleavage developed under higher deformation.

original (shown by the dotted lines) and mutually
penetrate when in the direction of pressure (shown
by the arrows), whilst the dissolved material has
crystallized out on each side where more protected.
(Sorby, 1879, p. 89)

This effect, he states, has also been observed in uncleaved
limestones where it is due to the “pressure of superincumbent
strata”.

A few years before, Edward Hitchcock put forward new
evidence of the effects of ductile deformation on sedimen-

tary rocks, from his studies in the Purgatory Conglomer-
ate of southern Rhode Island, in the United States (Hitch-
cock, 1961). He reported that the clasts of this conglomer-
ate were highly flattened and, especially, elongated, with the
maximum stretch parallel to the regional structural trend. He
pointed out that the clasts were “indented often deeply by one
being pressed into another” (p. 374), which is a feature simi-
lar to that Sorby would describe from his impressed pebbles
(Sorby, 1865). Hitchcock intuitively concluded that the clasts
should have been in a “plastic state” in order to allow for
their shape change, since in their current, non-plastic state,
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“the attempt to change their present form would result only
in fracture and comminution” (Hitchcock, 1961, p. 375).

6 Early developments of progressive deformation
models

Sorby (1880) also contributed to the description of non-
calcareous rocks and highlighted his observations on the ori-
gin of cleavage in these rocks. Building on theories briefly
presented in 1858, and upon observation of numerous thin
sections, as well as improved optical techniques, he revised
his interpretation on the origin and significance of mica
in slates and therefore on the origin of cleavage on mica-
ceous slates and schists. He considered, thus, that mica in
slate is detrital, “derived from the disintegration of an older
rock” such as “fine-grained micaceous felsites” (Sorby, 1880,
p. 70). This argument, however, led to the problem of an
original fabric in the undeformed rock, namely the fine lam-
ination of micaceous mudstones, which would lack the ran-
domly oriented non-equiaxed particles used by Sorby in his
initial theory for cleavage formation (Sorby, 1853). In his
words, “I had never found any uncleaved slate rock having
now the exact structure which I assumed that the cleaved
rocks had originally” (Sorby, 1880, p. 72).

Thus, while examining several thin sections to compare
slates with different degrees of cleavage development, Sorby
again found the two types of cleavage mentioned in his pa-
per from 1858: ultimate cleavage and close-joints cleavage;
and he put forward a theory that relates both in a progressive
deformation scheme. In Fig. 3c–f, we reproduce his figures
3 to 6 (from Sorby, 1880), where this progressive deforma-
tion is illustrated. An imperfectly cleaved slate shows a very
fine sedimentary lamination, formed by the parallel arrange-
ment of minute mica flakes, which after an amount of con-
traction is deformed into open or gentle microfolds (Fig. 3c).
“Such a rock could yield in this manner only to a very moder-
ate extent without the contortions breaking and the detached
portions moving one over the other, so as to give rise to a sys-
tem of approximately parallel planes of discontinuity or close
joints” (p. 72) (Fig. 3d). The resultant cleavage is an imper-
fect one, “due to the lateral yielding of a rock composed of
material not truly plastic in its ultimate constitution” (p. 73).
Notably, Sorby observed that the original laminated fabric fa-
vored the development of this type of cleavage and that “the
joints are still further marked by the subsequent introduc-
tion of black oxide of iron”, which leads towards the idea of
pressure–solution seams. In other cases, the mica flakes may
be “thrown out of their original position” without the devel-
opment of contortions, resulting in a broken primary fabric
that leaves the mica flakes randomly oriented (Fig. 3e). “Fur-
ther yielding of the rock would totally efface all evidence of
the first stages of the process and cause the constituent lami-
nae to become approximately parallel to one plane” (Fig. 3f).
This later stage corresponds to the ultimate cleavage type

or continuous cleavage in modern terminology. The passage
from the state of Fig. 3e to f thus concurs with his initial
theory of reorientation of randomly oriented particles during
deformation (Sorby, 1853).

Studying the relationship between slates and mica schists,
Sorby (1880) described the development of what he calls
“cleavage foliation”, formed by crystallization and recrys-
tallization of metamorphic minerals (especially mica and
quartz) along the prior cleavage planes (see also Forbes,
1871). He relates this to the model of Fig. 3c–f, citing for
example that along the “planes of discontinuity” of Fig. 3d,
large “crystals of mica have grown, with their faces and
cleavage parallel to the walls”. In some samples of this type
“the mica, thus formed along the planes of cleavage discon-
tinuity, increases in amount until, in some parts, it altogether
preponderates over the contorted laminae which are roughly
parallel to the bedding, and we see a foliation due to large
plates of mica lying in a plane corresponding to true slaty
cleavage, inclined at a high angle to the stratification”. When
this cleavage is perfectly developed, it is “not only parallel to
the axis planes of the larger contortions but has all the other
characteristic relations of true slaty cleavage” (p. 90). I want
to emphasize here how valid this model of evolution of cleav-
age in progressive deformation and metamorphism still is,
which with the simplification given by time is usually found
in current textbooks (Twiss and Moores, 2007, pp. 411–413).

Once the study of the “mountains under the microscope”,
as inspired by Sorby, caught researchers’ attention, further
contributions started to put forward more evidence regarding
the relationship of cleavage with pressure–solution and trans-
position of the original fabric of sedimentary rocks. Thomas
George Bonney (1884) made some interesting observations
on that matter. In studying thin sections of slates cut per-
pendicular to cleavage, he described a “moderately clear,
finely granulated ground mass, divided into minute lenticu-
lar streaks by dark lines of variable thickness (. . . ) which are
parallel with the cleavage planes [and] are due to the pres-
ence of carbonaceous matter, perhaps graphite, with proba-
bly some iron oxide” (p. 17). In addition, Bonney described a
“pressure structure in banded rock”, which he details as being
due to the obliteration of bedding, causing a “new and more
conspicuous structure (. . . ) which is parallel to the planes of
cleavage” (p. 19). This structure, which we may call transpo-
sition cleavage, was described by Bonney as follows:

The more gritty bands are squeezed out into long
lenticular streaks, as if the bedding coincided with
the cleavage. Where the gritty bands are broadest,
there the ends are all “frayed out” (. . . ); where the
banding has been fine and rather close, there it has
been entirely obliterated and replaced by this new
structure of parallel lenticular streaks or elongated
“eyes”. (p. 20)

Bonney remarks the importance of this structure for the
following reason:
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If the action of heat, pressure, and alkaline wa-
ter (. . . ) had been sufficiently prolonged, we can
hardly doubt that the darker laminae would have
been converted into bands of mica, the greyer
streaks into lenticular aggregates of quartz and
feldspar. All trace of the original bedding might
thus have been lost, and the presumption from the
general aspect of the foliation would have been that
the original stratification had been parallel to it.
(p. 21)

7 Shearing versus compression

Between 1884 and 1885, a most interesting discussion arose
between Osmond Fisher and Alfred Harker in the pages of
the Geological Magazine. Fisher (1884a) proposed that the
rock strain associated with cleavage, including a flattening
perpendicular to cleavage and a lengthening parallel to its
dip, was the result of “a pressure combined with a shear”
(p. 269), which would explain the lineations parallel to the
cleavage dip often seen in slates. He illustrated this concept
with his Fig. 1 (reproduced in Fig. 4a), which is the first dia-
gram of simple shear applied to rock strain that I have record
of. He argued that this shear was due to the “sinking” of an el-
evated region after folding (cf. Sharpe, 1847; Phillips, 1857)
and showed mathematically how vertical movements of the
crust would generate velocity differences in adjacent portions
of rock, causing “viscous shearing, without separation of the
rock along the surfaces of shear” (p. 273). According to his
view, this was the cause of cleavage.

Four months later, however, Fisher modified a part of his
theory in a second communication. Here, apparently follow-
ing a suggestion by Harker, he inquired “whether the greater
diametral plane of the ellipsoid of distortion may not be
the cleavage plane” (Fisher, 1884b, p. 398), while he pre-
viously had considered the cleavage plane a plane of shear.
He then compared the diagrams of distorted spiriferids of
Sharpe (1847) with the geometry of the strain ellipse resul-
tant from a simple shear and concluded that “the plane of
cleavage, therefore, does not lie in the direction of movement
among the ultimate particles of the rock but is inclined to it
(. . . ) the two directions may become nearly, though never
quite, identical as the shear is increased”. Further on, the el-
lipse “will have two diameters which are equal to the diam-
eter of the circle. One of these will be in the direction of the
shear and the other similarly situated on the other side of the
minor axis. Objects found along these diameters will not be
distorted, while those lying nearer to the major axis will be
lengthened and those nearer to the minor shortened” (Fisher,
1884b, p. 400).

According to the observation that cleavage should have
formed after folding, Fisher explained the near-parallelism of
folds’ axial surfaces and cleavage by interpreting the folds to
be further distorted, by his simple shear model, after initial

Figure 4. (a) Simple shear deformation according to Fisher (1884a,
his Fig. 1). Deformed shape 1 corresponds to simple shear and 2 to
simple shear plus contraction normal to the shear plane. Dashed
lines and red arrows are added to the original figure to illustrate the
shear angle ψ and its complementary δ. (b–c) Redrawn Figs. 1 to 3
of Van Hise (1896), showing pure shear (b) and simple shear (c) de-
formation of circular objects in a layer (ABCD). Cleavage will be
parallel to linesB ′C′ orR′S′, respectively. Red arrows are additions
to the original figures.

formation. This would explain cleavage fans around folds,
as well as “the bending and crowding of the cleavage sur-
faces, to accommodate themselves between the folds of the
less yielding rock”, implying that “when we see a fold in a
cleaved region, we can no more assert that it is of its original
form” (p. 401).

Harker (1885a) discussed Fisher (1884a, b) first by stating
that in simple shear, assuming no volume change and plane
strain, a sphere of radius r = b would turn into an ellipsoid
of radii a > b > c, and ac = b2. However, the strain ellip-
soids calculated from deformed fossils (e.g., from Haughton,
1856) indicate that a and b are often similar, whereas c is
relatively very small, “thus giving an ellipsoid very like a flat
oblate spheroid” (Harker, 1885a, p. 16), implying a decrease
in volume proportional to the ratio ac/b2 (assuming that b is
unchanged, i.e., plane strain).

Harker (1885a) further argued against the shear-related
deformation associated with cleavage formation in Fisher’s
theory, mostly because the amount of shear and the pre-
dicted cleavage orientations are “very different from any-
thing recorded as occurring in nature” (p. 17). However, in
giving his calculations, Harker did put forward the mathe-
matical equations that describe the geometry of the strain el-
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lipse in simple shear deformation! His first equation,

cotδ =
a− c
√
ac
, (7)

relates the major and minor semiaxes of the strain ellipse
(a > c), with the shear strain γ = tanψ = cotδ (see Fig. 4a
and Appendix A). The second equation relates the angle φ
between cleavage (long axis of the ellipse) and the shear
plane (θ ′ in modern notation), with the ratio between the
principal axes of the ellipse (see Appendix A):

tanφ =
√
c

a
. (8)

In his reply, Fisher (1885) considered that the results of
oblate ellipsoids obtained by Haughton (1856) were at least
problematic, especially because of the assumption of a larger
elongation in the cleavage–bedding intersection, which con-
trasts with much of the observed slates with stretching paral-
lel to their cleavage dip. In explaining the progressive defor-
mation during simple shear, Fisher remarked that the limbs
of folds “would be alternately compressed and elongated”,
depending on the changing orientation of bedding to the di-
rection of shear:

If that were such that [bedding] made at first an
acute angle with the direction of the shear [it]
would be more and more crumpled as the shear
went on, until such time as the axis of the folds
became perpendicular to the direction of the shear.
When that position had been passed, they would
begin to be straightened out again (. . . ) If, how-
ever, the bedding of the layers was at right angles,
or at an obtuse angle, to the shear, they would never
be crumpled at all but begin at once to be torn to
pieces. Thus it appears that even the same amount
of shear, which at one locality produces frilling
[boudinage], may in another, not far off, produce
schistosity: the difference of effect depending upon
different inclinations between the layers and the
shear at the two places. (Fisher, 1885, pp. 175–
176)

This explanation indicates an outstanding understanding
of the kinematics of simple shear deformation, which would
explain, for example, folded boudins and boudinaged folds
(cf. Ramsay and Huber, 1983).

8 A refinement of Sorby’s progressive deformation
model

Almost simultaneously with discussing Fisher’s ideas,
Harker published a remarkable model for development of
cleavage during progressive deformation of a sedimentary
rock (Harker, 1885b). He started pointing out that the dif-
ference between simple shear and flattening was the volume

loss related with the latter, which would result in an oblate
strain ellipsoid, in opposition to the prolate ellipsoid resultant
from constant-volume simple shear. Therefore, his aim was
to evaluate whether the cleavage was formed by flattening
(compression perpendicular to cleavage planes) or by shear
(cf. Fisher, 1884b, 1885), and he simplified the problem to
the question “whether the cleaved rocks have or have not suf-
fered a total diminution of bulk” (Harker, 1885b, p. 266).

The model of Harker (1885b, pp. 266–267) starts with
the lateral compression of a rock composed largely of long
and flat fragments, without an original fabric. Compression
would cause lateral shortening, “involving a corresponding
decrease of bulk, and effected by the closer packing of the
constituent fragments, accompanied by the expulsion of the
greater part of the interstitial water”. Packing would tend to
arrange the fragments in a position normal to the compres-
sion, forming an initial cleavage and resulting in a strain el-
lipsoid of the form a ≈ b > c, i.e., an oblate strain ellipsoid
comparable to the one described by Haughton (1856), for
which Harker gives the first genetic interpretation.

After the packing reaches a limit, volume loss by this pro-
cess is hampered; thus “continued pressure would give rise to
a vertical expansion of the mass compensating the horizontal
compression” (Harker, 1885b, p. 267). The deformation in
this stage is of constant volume, with an increase of the long
axis of the ellipsoid and a proportional decrease of the short
axis (a > b > c), and the cleavage is best developed due to
the more perfect arrangement of the long and flat particles
perpendicular to the compression (cf. Sorby, 1853).

A further stage of continued shortening would result in
the involvement of mineralogical and chemical processes,
with the formation of a coarser foliation due to metamor-
phism and without constant volume. The related ellipsoid
would turn out as an “excessively elongated and flattened”
one (a� c). This model as put forward by Harker (1885b),
like the model mentioned above by Sorby (1880), is remark-
ably still valid today, as a description of the progressive strain
in sedimentary rocks (see Ramsay and Huber, 1983, pp. 185–
188, fig. 10.24).

In relation to the relative timing of folding and cleav-
age, examples of which were provided by Fisher (1884b),
where it seemed that cleavage always postdated folding,
Harker (1885b) considered that they were two distinct modes
of satisfying compression. He also considered the following:

Contortion of the strata should precede cleavage
is a matter of no surprise, if the latter involve an
actual condensation of bulk while the former is a
mere change of position. In accordance with this
we frequently find contortion without cleavage, but
cleavage without contortion never. (p. 267)

He also related microfolds with “a first step towards
a cleavage structure”, making reference to the Auswe-
ichungsclivage of Heim (1878) and the close-joints cleavage
between crenulation folds of Sorby (1880, Fig. 3d).

https://doi.org/10.5194/hgss-12-197-2021 Hist. Geo Space Sci., 12, 197–216, 2021



208 P. J. Torres Carbonell: On the high scientific quality of early strain research

9 State of the art during the late 19th century

Harker’s study of rock strain and cleavage crystallized in his
report to the British Association for the Advancement of Sci-
ence (Harker, 1886, read in 1885). This paper was an up-to-
date compilation of facts and theories concerning strain, but
I will highlight here the original contributions that arise from
Harker’s own careful observations and mathematical deduc-
tions. At first, he gives some “order of thoughts” to several
parameters dispersed throughout the previous literature, such
as the concept of ratio of volume change of the strain el-
lipsoid (volumetric stretch in modern textbooks), which is
abc/r3 (deformed volume over volume of the undeformed
sphere of radius r). In plane strain, b = r; thus the ratio is
defined by ac/b2. For oblate ellipsoids where a = b, the ra-
tio is c/b.

In more depth, Harker explains mathematically the simple
shear deformation, complementing the foregoing discussion
of Fishers’ papers. His equations for the axes of the strain
ellipsoid are

s+
√
s2+ 4
2

: 1 :

√
s2+ 4− s

2
, (9)

where s is the shear strain (γ in modern notation) and equals
the tangent of the shear angle (ψ) (cf. with Eqs. (3)–(67) of
Ramsay, 1967; see Appendix A). Harker states a firm argu-
ment against the theory of Phillips (1844), Laugel (1855),
and Fisher (1884a), which ascribes the planes of cleavage as
planes of shear, since that theory implies “(i) no compres-
sion of the rock in a direction perpendicular to the cleavage
planes and (ii) no distortion of plane objects lying in planes
parallel to the cleavage” (Harker, 1886, p. 819), both oppo-
site to observed facts. Harker considers that simple shear
can be regarded (and is simpler to do so) “as a compres-
sion perpendicular to the cleavage planes accompanied by
a compensating expansion along the cleavage dip (. . . ) with
the necessary rotation concurrent with it” (pp. 819–820).
This would give an ellipsoid different from the one obtained
by Sorby (1856) (with volume loss) and Haughton (1856)
(oblate, a ≈ b). Harker’s argument was completely that of
a strain-dependent fabric, i.e., independently of the mech-
anism and the presence or lack of volume loss, the cleav-
age as a resultant fabric of deformation would be parallel to
the larger diameter of the strain ellipsoid or the XY plane
in modern notation. This would apply even to constrictional
strain ellipsoids (a� b ≈ c), which cause “the fibrous struc-
ture which Professor A. Heim denominates linear cleavage as
distinguished from ordinary plane cleavage” (Harker, 1886,
p. 820).

Another important observation in Harker’s work is the fact
of the underestimation of the bulk strain of a rock determined
from the measurement of strain in fossils (or other imbed-
ded objects). “A hard substance imbedded in a softer matrix
would evidently yield but slightly, or not at all, to any com-
pression to which the mass as a whole might be subjected”, as

is effectively observed in rocks where some “fossils of more
solid substance or stouter form are comparatively unchanged
in shape, while those of slighter build exhibit a marked de-
formation” (p. 525).

Harker (1886) discussed with much clearness Haughton’s
equations and methodology (Haughton, 1856) and added two
equations that widen their applicability. First, when the un-
deformed shape of the fossil is unknown, but one finds in
the same bedding plane two deformed fossils in orthogonal
positions, the first with length (m) perpendicular to aH, the
second with breadth (n) in that position (e.g., fossils 1 and 2,
respectively, of Fig. 2b), it is possible to obtain ρ/aH:(
ρ

aH

)2

=
m1

n1

n2

m2
. (10)

The second equation allows us to obtain ρ/aH when the
undeformed shape is unknown, and one deformed fossil lies
in the bedding plane with length and breadth oblique to dip
and strike, α and β being the angles that length and breadth
make with the bedding dip line, respectively (fossil 3 in
Fig. 2b):(
aH

ρ

)2

= tanα tanβ. (11)

Harker also discussed in depth the different cleavage re-
fraction relationships, summarizing the concepts put forward
by several researchers before him but paying special atten-
tion to the explanation of this phenomenon in terms of strain.
He demonstrated mathematically the conclusions of Sorby
(1853), obtaining the general equation of the strain ellipse
in the ac plane (XZ plane) for the less competent and more
competent lithologies (e.g., shale and sandstone in Sorby’s
example), which are ellipses rotated angles φ and φ′ from
the bedding plane, respectively (Fig. 5). The equation for the
shale’s strain ellipse is (Harker, 1886)

(x cosφ+ y sinφ)2

a2 +
(y cosφ− x sinφ)2

c2 = 1, (12)

where x and y are the Cartesian axes parallel and perpen-
dicular to bedding, respectively. If a and c are the semiaxes
of the strain ellipse for the shale and a′,c′ the corresponding
semiaxes for the sandstone, then the ratio between the volu-
metric stretches of both lithologies is µ= ac/a′c′. Accord-
ing to Sorby (1853), the change in volumetric stretch across
the lithologic boundary is only possible in a direction normal
to bedding, therefore parallel to the y axis (Fig. 5). Thus the
equation for the strain ellipse in the sandstone can be conve-
niently written (Harker, 1886)

(x cosφ+µy sinφ)2

a2 +
(µy cosφ− x sinφ)2

c2 = 1. (13)

For any ellipse centered at the origin and inclined to the
coordinate axes an angle α, with the general equation Ax2

+
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Bxy+Cy2
= 1, we know that tan 2α = B/(AC). Therefore,

we can relate angles φ and φ′ using this relationship and
Eq. (13), from which we obtain coefficients A, B, and C:

cot2φ′ =

(
cos2φ

a2 +
sin2φ

c2

)
−

(
sin2φ

a2 +
cos2φ

c2

)
2µsinφ cosφ

(
1
a2 −

1
c2

) (14)

cot2φ′ =
cotφ

(
µ2a2

− c2)
− tanφ

(
a2
−µ2c2)

2µ
(
a2− c2

) . (15)

This equation, developed by Harker (1886), demonstrates
that except when cleavage is normal or parallel to bedding, φ′

will be always larger than φ. This is because µ < 1 when the
volume loss of the shale is larger than that of the sandstone,
as observed.

Harker (1886) also noticed that the equation for the strain
ellipse of the sandstone is also useful to explain the thickness
increase in the fold hinges of contorted beds within a shaly
matrix. Using Eq. (13) (see Appendix A), he gave the follow-
ing equation that relates the semiaxes of the sandstone strain
ellipse (a′,c′) with the angle φ:

a′
2
+ c′

2
=

(
1+µ2)(a2

+ c2)
−
(
1−µ2)(

a2
− c2)cos2φ

2µ2 . (16)

From this equation and the relationship ac/µ= a′c′, it is
possible to obtain the axial ratio a′/c′ of the strain ellipse
for the sandstone and evaluate its variations with the position
of a fold. When φ is 90◦, i.e., in the positions of the fold
where bedding and cleavage are perpendicular (hinges), this
ratio is largest, or the stretch parallel to the axial surface is
a maximum. With smaller values of φ in the fold limbs, the
ratio decreases.

In an extensive discussion regarding the close-joints cleav-
age of Sorby (1858, 1880), and its likeness with the Auswe-
ichungsclivage of Heim (1878), Harker (1886) concluded
that this spaced cleavage structure could not be regarded as
true joints which form due to extension of the rock. However,
he considered them faults, i.e., associated with shearing at a
microscopic scale during lateral compression. This may be
considered an incorrect interpretation by modern structural
geologists, but see Bell and Hobbs (2010).

10 Refinement of concepts and differences between
pure and simple shear

Nearly at the same time, Charles Richard Van Hise, with the
aid of the mathematician Leander Miller Hoskins, deepened
the discussion of rock strain and cleavage formation. Van
Hise (1896) considered that the parallel alignment of old and
new particles, either flattened (cf. Sharpe, 1947) and/or ro-
tated (cf. Sorby, 1853), was the main cause of the cleavage,
the latter understood as the property of some rocks to part in

Figure 5. Geometry of the strain ellipses of the sandstone and shale
layers of Fig. 1, which are rotated ellipses with reference to the
Cartesian x, y coordinates. µ is the ratio between the volumetric
stretches of both lithologies.

a preferred orientation. Even if Van Hise highlighted the dif-
ference between pure shear (pure shortening as he called it)
and simple shear, he supported the premise, as Harker (1885,
1886) did, that the cleavage planes in both deformation types
would form parallel to the largest diameter of the strain el-
lipsoid (Fig. 4b–c). In the case of simple shear, though, he
clarified the following:

The cleavage is at right angles to the direction of
greatest shortening of the area in its final position
(. . . ) This resultant position is not normal to the fi-
nal direction of greatest pressure, but at any given
moment the deformation occurring is itself normal
to the pressure (. . . ) Thus the cleavage develops
strictly in the normal planes, but its position by the
rotation of simple shearing is inclined to the final
direction of pressure. (Van Hise, 1896, p. 457, ital-
ics are mine)

This seems aimed to explain, in a still rudimentary manner,
the difference between instantaneous and finite strain and its
relation to stress.

Another researcher, George Ferdinand Becker, discussed
the applicability of his theories on the characteristics of ho-
mogeneous strain (Becker, 1893) to the development of rock
fabrics, especially cleavage (Becker, 1896, 1904). He argued,
following Phillips (1844), that “cleavage is due to weaken-
ing of cohesion along planes of maximum tangential strain”,
and consequently “a belt of slate is equivalent to a great fault
distributed over an infinite number of infinitesimal steps”
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(Becker, 1904, pp. 11–12). The theoretical outcome of this
has already been discussed when asserting Harker’s contri-
butions, but it is worth mentioning that Becker (1904) de-
veloped analogue models designed to test his ideas against
what he called “Sharpe’s theory” (cleavage perpendicular to
the smallest axis of the strain ellipsoid). He made a series of
experiments subjecting pieces of wax, ceresin, and clay to ei-
ther uniaxial compression (simulating experiments made by
Tyndall in 1856) or to simple shear using a “scission engine”.
In all cases, after the experiment he indurated the deformed
cake by cooling the ceresin or baking the clay, and afterward
he hammered the cake to separate it in the supposed cleavage
planes. The planes of separation, which are actually shear
fracture planes, are obviously oblique to the applied com-
pression in all cases. In his own words: “In no case have I
broken a cake which behaved as it should on Sharpe’s the-
ory” (Becker, 1904, p. 19). This is most evident for the ex-
periments with simple shear, since Becker clearly considered
that the cleavage formed parallel to the shear plane or planes
of constant area, which he also attributed to planes of max-
imum shear strain. This latter assumption is not in general
justified (Hobbs et al., 1976; see Ramsay and Huber, 1983,
Appendix D), and it is clear that Becker’s cleavage in his sim-
ple shear models is actually a set of shear fractures (Becker,
1904, Figs. 24–27).

Later, Charles Kenneth Leith in 1905 published a very
good memoir where he kept the distinction, originally rec-
ognized by Sorby (1853, 1880) and later by Heim (1878),
between what we know today as continuous and spaced
cleavage (see above). Leith proposed the genetic terms “flow
cleavage” for the first, which is “the cleavage developing dur-
ing rock flowage (or the deformation of rock without con-
spicuous fracture)”, and “fracture cleavage” for the latter,
a cleavage “developing through the deformation of rock by
fracture and subsequent cementation” (Leith, 1905, p. 19).
This latter term has had relative success of usage, persisting
for almost a century. In a more descriptive note, Leith high-
lighted that flow cleavage included structures that exist due
to the parallel arrangement of the mineral constituents, while
fracture cleavage groups structures that do not depend on that
arrangement. His explanation for fracture cleavage was that it
“occurs through the development of incipient fractures or the
welding or cementation of parallel fractures, yielding parallel
planes of weakness” (p. 66).

In his paper, Leith made a great contribution to the study
of ductile deformation leading to flow cleavage, especially
noticing many microstructures characteristic of mylonitic de-
formation, as we know them today. He described a number of
structures that showed the relationship between the cleavage
and the directions of shortening and elongation in the rock
(pp. 102–106), concluding the following:

Wherever the directions of shortening and elonga-
tion of a rock mass can be determined with cer-
tainty, any flow cleavage which may be present

is normal to the total [finite] greatest shortening
which the rock has undergone. (p. 106)

Leith (1905) followed the lineaments stated by Van
Hise (1896) regarding the relationship between pure shear
(irrotational strain), simple shear (rotational strain), and de-
velopment of flow cleavage:

During irrotational strain, flow cleavage tends to
develop uniformly in the plane normal to the great-
est principal stress [or instantaneous strain] (. . . )
During rotational strain flow cleavage tends to de-
velop at any instant in planes or lines normal to the
greatest stress (. . . ) in which elongation is occur-
ring at that instant (. . . ) but rotation constantly car-
ries it from this position. Just as the total elongation
of the rock mass in rotational strain is the net result
of all the strains developed at successive stages of
deformation, so cleavage, (. . . ) is the net result of
all the strains, and its average position may be fi-
nally inclined somewhat to the greatest principal
stress. (Leith, 1905, pp. 112–113)

This reflects a deep understanding of the relationship be-
tween strain and structure and defines this type of cleavage
as a non-material foliation according to modern terminology
(see Twiss and Moores, 2007, pp. 399–400). In this manner it
also laid the difference with the parallel arrangement of origi-
nal particles due to rotation as material planes or lines during
deformation, which in simple shear will rotate towards the
shear plane at different velocities than the non-material foli-
ation (the finite strain axes), although “whether the deforma-
tion is by rotational or irrotational strain a sufficient amount
of it may bring about substantial parallelism of all particles,
new or old” (Leith, 1905, pp. 114–115).

11 “Fracture” versus pressure–solution cleavage

Fracture cleavage is of special interest here, since it con-
nects with the last part of this paper. This type of cleavage,
as mentioned, includes basically two kinds of structures that
in modern terminology are crenulation cleavage and disjunc-
tive cleavage (Powell, 1979). Both kinds are characterized by
a domainal structure, in Leith’s words an “intermitted char-
acter, by which is meant its confinement to certain definite
planes separated by considerable thicknesses of rock which
show no tendency to cleave” (Leith, 1905, p. 120), in mod-
ern terms cleavage domains and microlithons. The cleavage
domains are what Leith called “incipient parallel fractures
or actual fractures which by subsequent welding or cementa-
tion remain planes of weakness” (pp. 119–120). His Fig. 34
(from Dale, 1896) illustrating “fracture cleavage in slate em-
phasized by ferruginous staining” is an excellent example of
a smooth disjunctive cleavage. Since the cleavage domains
were considered as minute faults or shear fractures, it is obvi-
ous that the interpretation that follows is that fracture cleav-
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age must be “inclined to the elongation of the rock mass”
(Leith, 1905, p. 121).

Two months prior to passing away, Sorby’s last paper was
read before the Geological Society of London (Sorby, 1908).
It is not surprising that the dissertation was related in part
to the study of rock strain and less surprising that on his
last work Sorby pointed in the direction in which future re-
search would assist to a highly improved understanding of
penetrative rock structures related to strain. In the part of this
paper of more interest to us, he described the microscopic
structure of the so-called “slip surfaces” related to his close-
joints cleavage, or fracture cleavage in the terminology of
Leith (1905):

As seen under the microscope, these slip surfaces
in section look like very thin black lines, on the
whole perpendicular to the line of pressure, as
shown by small contortions of the bedding; yet
they are seldom straight, being, as it were, drawn
by a shaking hand. They are sometimes parallel for
a short distance but usually unite with or branch
into each other. (Sorby, 1908, pp. 222–223)

Sorby also described the differential development of these
surfaces in lithologies of varying hardness, always describing
them as microfaults.

However, in the same paper he further discussed the pro-
cess of pressure–solution (coining this name) that he had de-
scribed decades before (Sorby, 1863b, 1865). A description
of a “tooth-like structure”, stylolites in modern terminology,
as “layers of dark, apparently bituminous, material extend-
ing over a considerable area, passing up and down like larger
and smaller interlocking teeth”, inclined him to the interpre-
tation that “the most probable origin of the bitumen is that
it is a residue of the solution of the limestone and that solu-
tion of carbonate of lime has occurred is clearly proved (. . . )
it seems as though both pressure and solution have acted”
(Sorby, 1908, p. 225). The relationship between these sur-
faces of pressure–solution and the development of cleavage
in calcareous slates was manifest, as well as the occurrence
of pressure–solution perpendicular to the overburden during
diagenesis, although Sorby recognized that the cause of these
structures was one “about which we know little or nothing”
(p. 226).

12 Concluding remarks

High-quality research on rock strain is carried out regu-
larly in current times. Modern technologies, such as electron
microscopy or isotope geochronology, among others, allow
geoscientists to constrain variables that were unimaginable
more than a century ago. Many of the recent advances in
strain studies are anchored in theoretical concepts and def-
initions established around the mid-20th century, which have
been encompassed in seminal structural geology textbooks

and scientific papers. In turn, most of these concepts have
been taken from landmark discoveries made during the 19th
century. However, the lack of citation of these older papers
in recent years suggests that many modern researchers are
unaware of them.

As an example, consider Eqs. (2) and (6) from
Haughton (1856), which constitute the basic equation relat-
ing length changes and strain and the first equations used
to obtain strain from distorted fossils. These were com-
mented on in Ramsay’s books (Ramsay, 1967; Ramsay
and Huber, 1983) and remained the mathematical basis of
some strain quantification techniques (cf. Breddin, 1955), but
Haughton’s contribution is rarely mentioned in modern pa-
pers. Equation (1) from Sorby (1853) constitutes another in-
teresting example. This simple equation relating changes of
angles with an imposed strain is at the basis of many methods
of deformation analysis (Wettstein, 1886; Ramsay, 1967),
and Sorby should be given the merit of obtaining this equa-
tion by means of observation, experimentation, and the abil-
ity of putting into a simple algebraic expression the logical
explanation of his results. Similarly, we may emphasize that
during 1884–1885, discussion of contrasting ideas between
Fisher and Harker resulted in the mathematical descriptions
of simple shear deformation (Eqs. 7–9), and further analysis
by Van Hise and Leith developed a profound understanding
of the differences between pure and simple shear deforma-
tion.

In order to bring attention to these landmark works from
the 19th century, I reviewed here the research that gave ori-
gin to the foundations of rock strain investigations, especially
regarding deformation fabrics such as cleavage. These basic
concepts include the relationship between shortening direc-
tions with cleavage formation, elemental equations leading
to strain quantification, constant-volume versus volume-loss
deformation, the strain ellipsoid concept, line rotation dur-
ing progressive strain, simple versus pure shear strain ge-
ometries, or pressure–solution deformation mechanisms. I
focused also on some of the more prominent mathematical
conclusions made during that span, which I developed in
depth in the Appendix with the aim that their significance
is widely acknowledged. All these concepts were born in a
span of 73 years, obtained by the simple model of scientific
methodology: intelligent observation, precise measurements,
and the proposal of logical ways to explain the data. I hope to
have succeeded in showing the high standards of observation
and mathematical analysis that led to these landmarks more
than 100 years ago.

Appendix A

The following section is intended to give a detailed expla-
nation of where the equations mentioned in the text come
from, in some cases using concepts that are commonplace in
modern structural geology texts. Unfortunately this kind of
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detail lacks in most technical papers, but I believe that this is
of detriment to the understanding of the mathematical back-
ground of many fundamental concepts on rock strain.

Consider a Cartesian coordinate system with a circle of
radius r centered at the origin, which deforms into an el-
lipse of semiaxes a = r

√
λ1 and c = r

√
λ2, where

√
λ1
√
λ2

are the principal stretches of the given deformation, with
√
λ1/
√
λ2 = R. Line OP makes an angle ϕ with the x co-

ordinate axis, and this line transforms after deformation in
line Op at an angle ϕ′ with the same axis (Fig. A1). Equa-
tion (1) establishes the relationship of the tangent of angle ϕ
with the tangent of angle ϕ′. In the example of Fig. A1 it is
clear that the length from the x axis to point P is tanϕr . This
distance becomes tanϕr

√
λ2 after deformation, which is the

length from the x axis to point p. Therefore, this allows us to
conveniently write

tanϕ′ =
tanϕr

√
λ2

r
√
λ1

tanϕ′ = tanϕ
√
λ2
√
λ1
= tanϕR−1, (A1)

which gives the relationship of the angles ϕ,ϕ′ with the axial
ratio R = a/c.

Equation (2) is obtained from the general equation of an
ellipse aligned with the coordinate axes and centered at the
origin, such as illustrated in Fig. A2. From that figure, we
know that

x1 = cosφρ (A2)
y1 = sinφρ. (A3)

Therefore, we replace x and y for x1 and y1 in the equation
of the ellipse:

1=
cos2φ

b2
H
ρ2
+

sin2φ

c2
H
ρ2 (A4)

and obtain the form of Eq. (2):

1
ρ2 =

cos2φ

b2
H
+

sin2φ

c2
H
, (A5)

from which Eq. (3) is obtained. We want to find aH/bH and
aH/cH using Eq. (3) for a pair of planes of angles φ, φ′ and
known distortions aH/ρ and aH/ρ

′:

a2
H
ρ2 =

a2
Hcos2φ

b2
H
+
a2

Hsin2φ

c2
H

(A6)

a2
H

ρ′2
=
a2

Hcos2φ′

b2
H

+
a2

Hsin2φ′

c2
H

. (A7)

We can simplify a2
H because it has no effect in our problem

and convert these expressions into two linear equations with

Figure A1. Relationship between orientations of lines before and
after deformation.

Figure A2. Geometry of an ellipse like the one in Fig. 2c, in the
Cartesian coordinate system.

two unknowns, where 1/b2
H = x, 1/c2

H = y, and 1/ρ2
= c1,

1/ρ′2 = c2.

c1 = cos2φx+ sin2φy (A8)

c2 = cos2φ′x+ sin2φ′y. (A9)

Using Cramer’s rule,

x =
c1sin2φ′− c2sin2φ

cos2φsin2φ′− sin2φcos2φ′
(A10)

y =
c2cos2φ− c1cos2φ′

cos2φsin2φ′− sin2φcos2φ′
. (A11)

Replacing 1/ρ2
= c1, 1/ρ′2 = c2, multiplying (−1/ − 1) in

both equations, and solving the differences of the squares in
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Figure A3. Deformation of a circle inscribed in a square into an
ellipse inscribed in a parallelogram (red).

the numerators and the denominators gives

x =

(
sinφ
ρ′
+

sinφ′
ρ

)(
sinφ
ρ′
−

sinφ′
ρ

)
(
cosφ sinφ′+ sinφ cosφ′

)(
sinφ cosφ′− cosφ sinφ′

) (A12)

y =

(
cosφ′
ρ
+

cosφ
ρ′

)(
cosφ′
ρ
−

cosφ
ρ′

)
(
cosφ sinφ′+ sinφ cosφ′

)(
sinφ cosφ′− cosφ sinφ′

) . (A13)

Replacing 1/b2
H = x, 1/c2

H = y, multiplying both sides of
the equations for a2

H, and using the identity sin(x± y)=
sin(x)cos (y)± cos(x) sin(y) in the denominators, we obtain
the forms of Eqs. (4) and (5).

Harker (1885) used interesting geometric principles to ob-
tain a useful relationship between the shear strain and the
maximum and minimum semiaxes of the strain ellipse in
simple shear (i.e., plane strain, equal area deformation). This
is given in Eq. (7), which can be derived from the follow-
ing example. Consider a circle of radius r inscribed in a
square, which after simple shear becomes an ellipse of semi-
axes a > c inscribed in a parallelogram, such as in Fig. A3.

We know thatOQ=OS = r and that the uppermost point
on the circle was displaced to the right by a distance x = SP .
We also know that the area of the circle equals that of the
ellipse; thus

πr2
= πac

r =
√
ac. (A14)

Consider triangle OSP , from which we obtain that

OS
2
+ SP

2
=OP

2

r2
+ SP

2
=OP

2
. (A15)

Since OP and OQ are conjugate diameters of the ellipse,
we know from the second theorem of Apollonius that they

Figure A4. Geometry of the ellipse from Fig. A3, and its angle φ
with the shear plane, considering Cartesian coordinates parallel to
semiaxes ac.

have the following property:

OQ
2
+OP

2
= a2
+ c2.

Replacing from Eqs. (A14) and (A15),

r2
+

(
r2
+ SP

2
)
= a2
+ c2

ac+ ac+ x2
= a2
+ c2

x2
= a2
+ c2
− 2ac

x = a− c. (A16)

Finally, Eq. (7) from Harker (1885) gives the shear strain
γ = tanψ = cotδ as x/r , which from Eqs. (A14) and (A16)
is

γ =
a− c
√
ac
. (A17)

To obtain Eq. (8) from Harker (1885), consider the follow-
ing system of equations that are solved by the coordinates
(x,y) of point Q when the coordinate axes coincide with the
principal axes of the ellipse (Fig. A4):{
x2
+ y2
= ac

x2

c2 +
y2

c2 = 1.
(A18)

The first one is the equation of the circle of radius r =
√
ac (Eq. A14) and the second one the equation of the ellipse

centered at the origin with semiaxis a parallel to coordinate
axis x. Both contain point Q.

The solutions of x2,y2 that satisfy this system are

x2
=

a2c

(a+ c)
(A19)

y2
=

ac2

(a+ c)
. (A20)

Consider now the angle of interest, φ, which is the slope
of the ellipse with respect to the shear plane parallel to OQ.
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We know that tanφ = y/x, and from Eqs. (A19) and (A20),
we can obtain the following relationship:

y2

x2 =

ac2

(a+c)
a2c

(a+c)

=
c

a

y

x
=

√
c

a
= tanφ, (A21)

which is Eq. (8) from Harker (1885).
The expressions used by Harker (1886) for the semiaxes

a and c of the strain ellipsoid in Eq. (9) are comparable to
Eq. (3-67) of Ramsay (1967), since from Eq. (9),

a orc =
±s+

√
s2+ 4

2

(a orc)2
=

(
±s+

√
s2+ 4

2

)2

a2
=
s2
+ 2+ s

√
s2+ 4

2
(A22)

c2
=
s2
+ 2− s

√
s2+ 4

2
. (A23)

These are equivalent to the mentioned equation from Ram-
say (1967), where γ is used instead of s, and a2, c2 are the
quadratic extensions λ1,λ2.

Equation (10) allows us to obtain the distortion in a plane
when two symmetric fossil forms of the same kind are found
with length and breadth conveniently oriented (Fig. 2b, fos-
sils 1 and 2). From Eq. (6) it follows that for fossil 1, with
length m1 parallel to ρ and breadth n1 parallel to aH,

ρ

aH

M

N
=
m1

n1
, (A24)

where M and N are the unknown length and breadth of the
undeformed fossil. For fossil 2, in a position perpendicular
to the former,

aH

ρ

M

N
=
m2

n2
. (A25)

Therefore, if we divide the deformed ratiosm/n of the two
forms, as in Eq. (10), we obtain(
ρ

aH

M

N

)/(
aH

ρ

M

N

)
=

(
ρ

aH

)2

. (A26)

If we found only one deformed fossil with length and
breadth (m, n), forming angles α and β with the direction
of ρ (fossil 3 of Fig. 2b), and unknown undeformed shape
(M and N ), then accounting for Eq. (6) we can express the
ratios aH/ρ as a function of the tangents of these angles in

Figure A5. Relationship between angles of length m and breadth n
of fossil 3 in Fig. 2b and their undeformed counterparts M and N .

the deformed and undeformed state (Fig. A5):

aH

ρ
=
xm

ym

yM

xM
=

tanα
tanα0

(A27)

aH

ρ
=
xn

yn

yN

xN
=

tanβ
tanβ0

. (A28)

From these equations, it follows that

tanα =
aH

ρ
tanα0 (A29)

tanβ =
aH

ρ
tanβ0. (A30)

Since α0+β0 = 90◦, then tanα0 tanβ0 = 1; therefore

tanα tanβ =
aH

ρ
tanα0

aH

ρ
tanβ0 =

(
aH

ρ

)2

, (A31)

which gives Eq. (11).
Equation (16) is obtained from considering the equation of

the strain ellipse of the sandstone, as an ellipse of semiaxes
a′,c′, in a standard position (centered at the origin, aligned
with the coordinate axes):

x2

a′2
+
y2

c′2
= 1. (A32)

The matrix of the quadratic form associated with this equa-
tion is(

1/a′2 0
0 1/c′2

)
. (A33)

The trace of this matrix is 1/a′2+1/c′2 (the sum of the co-
efficients of x2 and y2), which is invariant with respect to a
rotation of the axes. We can consider that the rotated ellipse
represented by Eq. (13) is obtained after a rotation of the
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standard ellipse of Eq. (A26). The matrix of the quadratic
form associated with the equation of a rotated ellipse cen-
tered at the origin is(

A B/2
B/2 C

)
, (A34)

and the trace of this matrix is A+C. Therefore, since the
trace of both matrices is the same, it follows that

1

a′2
+

1

c′2
=

(
cos2φ

a2 +
sin2φ

c2

)

+

(
µ2sin2φ

a2 +
µ2cos2φ

c2

)
(A35)

1

a′2
+

1

c′2
=

cos2φ+µ2sin2φ

a2 +
sin2φ+µ2cos2φ

c2 , (A36)

where in Eq. (A35) we replaced the values of A and C

from Eq. (13) (see Eq. 14). Using the identities sin2φ =

(1− cos2φ)/2 and cos2φ = (1+ cos2φ)/2, and remember-
ing that ac = a′c′µ, Eq. (A36) can be rearranged into
Eq. (16).
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