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ABSTRACT
We present a four-component relativistic approach to describe the effects of the nuclear spin-dependent parity-violating (PV) weak nuclear
forces on nuclear spin-rotation (NSR) tensors. The formalism is derived within the four-component polarization propagator theory based on
the Dirac–Coulomb Hamiltonian. Such calculations are important for planning and interpretation of possible future experiments aimed at
stringent tests of the standard model through the observation of PV effects in NSR spectroscopy. An exploratory application of this theory to
the chiral molecules H2X2 (X =17O, 33S, 77Se, 125Te, and 209Po) illustrates the dramatic effect of relativity on these contributions. In particular,
spin-free and spin–orbit effects are even of opposite signs for some dihedral angles, and the latter fully dominate for the heavier nuclei.
Relativistic four-component calculations of isotropic nuclear spin-rotation constants, including parity-violating electroweak interactions,
give frequency differences of up to 4.2 mHz between the H2Po2 enantiomers; on the nonrelativistic level of theory, this energy difference is
0.1 mHz only.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065487

I. INTRODUCTION

Parity non-conservation was postulated in weak interactions
by Lee and Yang1 and first verified experimentally by Wu et al.2
The parity non-conservation law states that the mirror symmetry
of nature, i.e., the symmetry regarding inversion of the coordinates
of all particles in a system, is broken down for physical phenomena
due to the weak interactions, which are responsible for the nuclear
β-decay.

When the parity non-conservation law is applied to molecular
systems, the electromagnetic forces play an important role as well.
Electroweak theory states that the exchange of Z0 bosons between
electrons and nuclei should cause an electronic energy splitting for
the two enantiomers of a chiral molecule due to parity-violating
(PV) effects.3,4 While the exchange of Z0 bosons between (stable)
nuclei and electrons in a molecule is expected to dominate the
appearing PV effects,5 the exchange of the W± bosons is also impor-
tant for describing such effects. In particular, it is responsible for

the PV interactions between nucleons, which give rise to a nuclear
anapole moment that is coupled to the electrons by means of electro-
magnetic interactions. In addition, the exchange of the weak inter-
action Z0 and W± particles plays an important role in molecules
containing nuclei subject to β-decays.

The interest in experimental investigations of PV effects
increased after the work of Bouchiat and Bouchiat, who pointed out
that a considerable enhancement of sensitivity to these effects should
be expected for heavy atoms.6 Atomic parity violation was detected
in Cs in 1997;7 other experiments focused on atoms such as Tl, Pb,
Bi, and Yb.7–13 In the case of chiral molecules, an energy splitting
is expected to be found between the two enantiomers due to PV
interactions.5

Currently, experimental searches for PV effects in chiral
molecules involve resonance frequency splittings in the rotational,
vibrational, and electronic spectroscopies,4,14–17 as well as studies of
their influence on nuclear magnetic resonance (NMR) parameters
such as shieldings or spin–spin coupling tensors.18–28 In spite of the
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ever-improving precision of such experiments, PV effects in chiral
molecules have not yet been detected.

In this work, we focus our attention on the role of parity-
violating nuclear spin-rotation (PV-NSR) tensors. To our knowl-
edge, Barra, Robert, and Wiesenfeld were the first to publish a
nonrelativistic (NR) formulation of the PV-NSR tensors.19

Recently, we have derived a theoretical formalism and applied it
to molecular calculations, demonstrating that relativistic effects play
an important role in the description of parity conserving NSR ten-
sors.29–31 This was later confirmed by other research groups using
the same and also other theoretical derivations.32–34

Here, we apply the same formalism to perform the first four-
component (4c) relativistic calculations of the PV effects on NSR
constants. We investigate the PV-NSR tensors of the X nuclei in
the H2X2 series of molecules (with X =17O, 33S, 77Se, 125Te, and
209Po). The selection of this class of systems for study was not moti-
vated by their experimental potential. It is well-known that the NSR
interaction is the main hyperfine effect that produces line splittings
in spectra when the analyzed molecules contain nuclei with zero
electric quadrupole moment. This is not the case for some of the
systems under study in this work, making the disentanglement of
the different effects problematic. Furthermore, the H2X2 series of
molecules are not suitable candidates for experimental detection of
PV effects because the hydrogen atoms can be placed at almost all
angles around the X–X bonds (i.e., these are non-rigid structures).
The reason for selection of these molecules for the present study is
their simple structure and the fact that they were extensively used
in the past to investigate the influence of PV effects on molecular
properties within various theoretical frameworks.23,25–27,35–37 There-
fore, they are well suited to be considered as test systems for the first
investigation of PV effects on NSR tensors within a 4c relativistic
approach.

In this work, we report a systematic study of relativistic and
electronic correlation effects on the PV contribution to the isotropic
NSR constants of light and heavy nuclei in the P enantiomer of
the H2X2 chiral molecules. We used a linear response approach
within the random phase approximation (RPA) and also employed
density functional theory (DFT). The Dirac–Coulomb Hamiltonian
was used, and we also compare our 4c results with their NR limits,
obtained by using the Lévy–Leblond Hamiltonian. The spin–orbit
(SO) contributions are shown to be dominant for the molecules
containing heavy nuclei (125Te and 209Po).

This paper is structured as follows: In Sec. II, we present the
4c relativistic formulation of the calculations of the PV-NSR ten-
sors using a linear response approach. To achieve this goal, we first
show the employed 4c perturbed Hamiltonian as well as its NR
limit. In this way, we are in a position to compare the NR limit
of our 4c theory with previous formulations of PV-NMR-shielding
and PV-NSR tensors.19–21 In Sec. III, we provide the computational
details for all the calculations presented in this paper. In Sec. IV,
we start by studying the basis set convergence of 4c calculations of
PV-NMR-shielding and NSR constants. Then, a comparison with
results published in previous works for the PV-NMR-shielding con-
stants is introduced.23,26,27 Finally, the first 4c computations of PV
(isotropic) NSR constants are presented for the X nuclei (X =17O,
33S, 77Se, 125Te, and 209Po) of the H2X2 molecules. The effect of the
relativistic and electronic correlation effects is also discussed in this
part of the paper.

II. THEORY
In response theory, molecular properties can be calculated at

different levels of approximation within wave function, density func-
tional theory (DFT), or polarization propagator formalisms.38–40

Within Rayleigh–Schrödinger perturbation theory, second-order
corrections to the ground state electronic energy are given by

E(2)PQ =∑
n≠0

⟨0∣ĤP
∣n⟩⟨n∣ĤQ

∣0⟩
E0 − En

+ c.c., (1)

with c.c. standing for the complex conjugate of the preceding terms
and ∣n⟩ being a complete set of eigenstates of the unperturbed
molecular Hamiltonian. The operators ĤP and ĤQ are any pertur-
bative Hamiltonians. In addition, any static second-order molecular
property can also be calculated by using polarization propagator
theory as41

E(2)PQ = Re[⟨⟨ ĤP ; ĤQ
⟩⟩

ω=0
], (2)

where the linear response function at zero frequency

⟨⟨ ĤP ; ĤQ
⟩⟩

ω=0
= bP M−1 bQ (3)

is constructed from the property matrix elements bP and bQ (the
perturbators, as they were named within semi-empirical models)
and the principal propagator M−1.42 As the explicit calculation of
the principal propagator (which is the inverse of the electronic Hes-
sian) is computationally too expensive, the linear response function
is computed by first solving the response equation

M XQ
(ω) = bQ, (4)

where the solution vector of Eq. (4), i.e., XQ
(ω) =M−1bQ, is first

expanded in trial vectors. Then, it is contracted with the property
matrix bP.43

A. Parity-violating response properties
Within the relativistic framework, the PV electron–nucleus

effective interaction operator corresponding to the lowest order
Z0-exchange between electrons and nuclei is given by4,44,45

ĤPV
=

GF

2
√

2
∑

i,N
Qw,N γ5

i ρN(ri)

−

GF(1 − 4 sin2θW)
√

2
∑

i,N
λN αi ⋅ IN ρN(ri). (5)

The sums with indices i and N run over all electrons and
nuclei, respectively. GF is the Fermi coupling constant, whose
most recent value is GF/(̵h c0)

3
= 1.166 378 7 × 10−5 GeV−2, i.e., GF

≃ 2.222 516 × 10−14 Eh a3
0.46 Qw,N = ZN(1 − 4 sin2θW) −NN is the

weak nuclear charge with ZN and NN being the number of protons
and neutrons of nucleus N, respectively. While the most recent value
of the sine-squared weak mixing angle θW is 0.238 57(5),47 we use
sin2θW = 0.231948 as the Weinberg parameter throughout this work
for ease of comparison with earlier investigations.23,26,27 The 4 × 4 γ5

i
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and αi Dirac matrices operate on spinors of electron i and are
given by

γ5
i =
⎛

⎜

⎝

0 1

1 0

⎞

⎟

⎠

, αi =
⎛

⎜

⎝

0 σi

σi 0

⎞

⎟

⎠

, (6)

with 0, 1, and σi being the two-by-two zero, identity, and Pauli spin
matrices, respectively. ri is the position of electron i with respect
to the coordinate origin, ρN(ri) is the normalized electric nuclear
charge density of nucleus N at the position of electron i (given in
units of the inverse of cube distances), λN is a nuclear state depen-
dent parameter, and IN is the dimensionless nuclear spin operator.
The SI units are adopted in the present work.

The first and second terms on the right-hand side of Eq. (5)
are the nuclear spin-independent and spin-dependent one-electron
contributions to the PV Hamiltonian, respectively. In this work, we
do not address the spin-independent terms, and their effects will not
be analyzed here. We therefore set

ĤPV
= ĤPV

SD

= −

GF(1 − 4 sin2θW)
√

2
∑

i,N
λN αi ⋅ IN ρN(ri). (7)

For the sake of comparison with previous works,23,26 we have
set the parameter λN = 1 in all of our calculations. To be able to
compare our results with those obtained experimentally, the cal-
culations have to be scaled with the actual value of λN , which is
estimated to be of order 100 to 101 for heavy nuclei.49 The contri-
bution of the nuclear anapole moment was not taken into account
for the calculations of the PV-NMR-shieldings and PV-NSR tensor
elements.

1. Parity-violating nuclear spin-rotation tensor
The nuclear spin-rotation (NSR) tensor of a nucleus N, MN , is

obtained from the energy derivative,29,31

MN =− ̵h
∂2 E
∂IN∂J

∣

IN=J=0
, (8)

where ̵h = h
2π is the reduced Planck constant, IN is the dimension-

less spin of nucleus N, and J is the molecular rotational angular
momentum around the (molecular) center of mass.

In a relativistic framework, the perturbative Hamiltonian asso-
ciated with the molecular rotational angular momentum can be
written [for details, see Eq. (60) of Ref. 31] as29,50

ĤJ
= −ω ⋅ Je + ĤJ−Breit , (9)

where ω = I−1
⋅ LN is the molecular angular velocity, I−1 is the

inverse molecular inertia tensor with respect to the molecular center
of mass (CM) in the equilibrium geometry, and Je = Le + Se is the
4 × 4 total electronic angular momentum operator. In the present
work, we do not include the effects of the Breit electron–nucleus
interaction ĤJ−Breit due to their very small influence with respect to
its precedent term in Eq. (9).50

By combining Eqs. (7) and (9) with Eqs. (2) and (8), we
obtain the PV contribution to the NSR tensor as the linear response
function,

MPV
N = −

̵h
GF(1 − 4 sin2θW)

√

2 c0
λN⟨⟨ ρN(r) cα ; Je ⟩⟩ω=0 ⋅ I

−1, (10)

where 1
c0

is linearly proportional to the fine structure constant (in SI

units, the fine structure constant is 1
4πϵ0

e2

̵h c0
) and c is the speed of light

in vacuum, scalable to infinity at the NR limit.

2. Parity-violating NMR shielding tensor
The NMR shielding tensor of a nucleus N is the second deriva-

tive of the energy with respect to its nuclear magnetic moment, μN ,
and a uniform external magnetic field, B0, at zero frequency,

σN =
∂2 E

∂μN∂B0
∣

μN=B0=0
. (11)

At the 4c level of theory, the perturbation Hamiltonian related
with the external magnetic field is

ĤB
= −

e
2

B0 ⋅∑
i

c αi × (ri − RGO) (12)

with μN = γNh IN , where γN =
e

2mp
gN is the gyromagnetic ratio of

nucleus N and its g-factor gN . In addition, e is the fundamental
charge and RGO is the gauge origin position for the external magnetic
potential.

Therefore, the PV contribution to the NMR shielding tensor is
given by23,26,27

σPV
N =

GF(1 − 4 sin2θW)
√

2
2mp
̵h c0

1
gN

λN

× ⟨⟨ ρN(r) cα ;
c
2

α × (r − RGO) ⟩⟩
ω=0

. (13)

B. NR limit of PV response properties within
the LRESC model

The linear response within the elimination of small compo-
nent (LRESC) model allows us to expand second order relativis-
tic properties in terms of the fine structure constant. Within this
approach, the zeroth order terms of these expansions yield the NR
expressions of the properties, and their relativistic corrections are
obtained by employing the elimination of the small component
(ESC) approach.51,52 This model allows us to unveil the physical
mechanisms behind the relativistic effects of the analyzed properties.

The NR expressions for the PV-NMR-shielding and PV-NSR
tensors are derived in this section applying the LRESC approach. As
the details of this model were extensively discussed elsewhere,29,51–53

we only focus on the main steps to yield the NR limit for the proper-
ties of interest on this work. Their leading order relativistic correc-
tions may be also obtained employing this methodology, but this is
out of the scope of the present work.

The main purpose of this section is to obtain the NR expression
of the PV-NSR tensor starting from the relativistic theory derived
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in Sec. II A 1. In this way, it should be confirmed that the NR limit
of Eq. (10) must be equal to the expression derived by Barra and
co-workers within the NR domain.19

1. NR limit of response properties
within the LRESC model

Within the relativistic polarization propagator theory, it is well
known that the 4c expressions of second-order response properties
may be written as the sum two terms, one involving the positive
energy spectrum of electronic states [in other words, involving only
(e–e) excitations] and a second one where only excitations to nega-
tive energy electronic orbitals, i.e., virtual electron–positron pairs in
the QED picture, are allowed (e-p excitations).52

In other words, as the off-diagonal contributions to the princi-
pal propagator M−1 of Eq. (3) are smaller than the diagonal ones,54

the leading contributions to the linear response function will be
only related to the diagonal terms, meaning that Eq. (3) can be
approximated as

⟨⟨ ĤP ; ĤQ
⟩⟩ ≈ ⟨⟨ ĤP ; ĤQ

⟩⟩
(e−e)

+ ⟨⟨ ĤP ; ĤQ
⟩⟩
(p−p)

. (14)

In the NR limit, ⟨⟨ ĤP ; ĤQ
⟩⟩
(e−e) and ⟨⟨ ĤP ; ĤQ

⟩⟩
(p−p) are

usually the paramagnetic and diamagnetic contributions, respec-
tively, of any response magnetic property.

In order to expand the (e–e) contributions to a linear response
function within the LRESC model, we apply the ESC approach to
transform the 4c matrix elements of operators ĤP and ĤQ to the
Pauli space of spinors ϕ̃,

⟨ϕ(4)i ∣Ĥ
P
∣ϕ(4)j ⟩ ≃ ⟨ϕ̃i∣Ô(ĤP

)∣ϕ̃j⟩. (15)

Expanding Eq. (15), we can write the operator Ô(ĤP
) as

Ô(ĤP
) = ÔNR

(ĤP
) + O(c−2

), (16)

where ÔNR
(ĤP
) groups the zeroth order contributions of a series

expansion in terms of c−2 and O(c−2
) are all higher order terms.

Within this approximation, we obtain

⟨⟨ ĤP ; ĤQ
⟩⟩
(e−e)

= ⟨⟨ ÔNR
(ĤP
) ; ÔNR

(ĤQ
) ⟩⟩ + O(c−2

), (17)

where the first term on the right-hand side of Eq. (17) is the NR limit
of ⟨⟨ ĤP ; ĤQ

⟩⟩
(e−e).

On the other hand, the (p–p) contribution to a linear response
function can be expanded within the LRESC model, retaining only
leading order relativistic terms, by calculating52

⟨⟨ ĤP ; ĤQ
⟩⟩
(p−p)

≃
1

2mc2 [⟨Ψ0∣ĤPP̂pX̂(ĤQ
)∣Ψ0⟩

+ ⟨Ψ0∣ĤQP̂pX̂(ĤP
)∣Ψ0⟩], (18)

where Ψ0 is the 4c wave function corresponding to the ground state
solution of the Dirac–Hartree–Fock (DHF) approximation and P̂p is
the projector onto the positronic states. When the operator X̂(ĤP

) is
expanded in a series in terms of c−2 and only the leading order terms
are retained, it is found that51

X̂(ĤP
) = 2 ĤP

+
1

2mc2 [Ĥ
DCB, ĤP

]

= 2 ĤP
+

1
2
[β, ĤP

] + O(c−1
), (19)

where ĤDCB is the unperturbed Dirac–Coulomb–Breit molecular
Hamiltonian, β is the Dirac operator, and [ , ] refers to the commu-
tator between two operators.51,52

It can be shown that the zeroth order term of the expansion of
Eq. (18) is given by51–53

⟨⟨ ĤP ; ĤQ
⟩⟩
(p−p)

=
1

2mc2 [⟨Ψ
L
0 ∣Ĥ

P
LS X̂SL(ĤQ

)∣ΨL
0⟩

+ ⟨ΨL
0 ∣Ĥ

Q
LS X̂SL(ĤP

)∣ΨL
0⟩] (20)

because at this lowest order P̂p = (
0 0

0 1
) and ∣Ψ0⟩ = (

∣ΨL
0⟩

0
). To derive

Eq. (20), it was assumed that in the matrix representation, we can
express

ĤP
=

⎛

⎜

⎝

ĤP
LL ĤP

LS

ĤP
SL ĤP

SS

⎞

⎟

⎠

, X̂(ĤP
) =

⎛

⎜

⎝

X̂LL(ĤP
) X̂LS(ĤP

)

X̂SL(ĤP
) X̂SS(ĤP

)

⎞

⎟

⎠

. (21)

2. NR limit of the (e–e) contribution to MPV
N

In the particular case of the PV-NSR tensor, the perturbative
Hamiltonians are ĤPV and ĤJ [see Eqs. (7) and (9)].

The 4c matrix elements of ĤPV are

⟨ϕ(4)i ∣α ⋅ IN ρN(r)∣ϕ(4)j ⟩ ≃ ⟨ϕ̃i∣{(
σ ⋅ p
2mc
) , σ ⋅ IN ρN(r)}∣ϕ̃j⟩ + O(c−1

),

(22)
where {,} stands for the anticommutation of two operators.

In order to obtain Eq. (22), it was assumed that at the leading
order of approximation, the large and small components of ∣ϕ(4)i ⟩

are related by51

∣ϕS
i ⟩ ≈

1
2mc

σ ⋅ p ∣ϕL
i ⟩, (23)

and that at zeroth order, the “normalized” spinor ∣ϕ̃i⟩ is equal to
∣ϕL

i ⟩.51

Retaining only the leading order contribution to Eq. (22) in a
series expansion in terms of c−1, we obtain

⟨ϕ(4)i ∣α ⋅ IN ρN(r)∣ϕ(4)j ⟩ ≃
1

2mc
⟨ϕ̃i∣{σ ⋅ p , σ ⋅ IN ρN(r)}∣ϕ̃j⟩. (24)

By combining Eqs. (15), (16), and (24), it can be easily seen that

ÔNR
(ĤPV

) = −

GF(1 − 4 sin2θW)
√

2
∑

i,N

λN

2mc
{σi ⋅ pi , σi ⋅ IN ρN(ri)}.

(25)
If the Dirac identity

σ ⋅ A σ ⋅ B = A ⋅ B + iσ ⋅ A × B (26)

is applied to Eq. (25), then we get
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ÔNR
(ĤPV

) = −

GF(1 − 4 sin2θW)
√

2
∑

i,N

λN

2mc

× (IN ⋅ {pi , ρN(ri)} + i[pi , ρN(ri)] ⋅ IN × σi). (27)

This expression agrees with an equivalent one derived in
Ref. 26 by employing another methodology.

To obtain the NR limit of the PV-NSR tensor by employing
the LRESC model, the perturbed Hamiltonian of Eq. (9) should
also be replaced into the left-hand side of Eq. (15). By doing so, we
obtain29,52

ÔNR
(ĤJ
) = ĤBO−J

= ĤBO−L
+ ĤBO−S, (28)

with ĤBO−L and ĤBO−S being the Born–Oppenheimer perturbations
due to the rotation of the nuclear system and are associated with the
total electronic orbital (with respect to the molecular center of mass)
and spin angular momenta.

The LRESC series expansion of MPV(e−e)
N in terms of c−2 may

then be obtained from

MPV(e−e)
N = −

̵h
∂2

∂IN∂J
[⟨⟨ÔNR

(ĤPV
) ; ÔNR

(ĤJ
)⟩⟩] + O(c−3

), (29)

being the first term on the right-hand side of Eq. (29) the NR limit of
MPV(e−e)

N . It will be named MPV−NR
N , and it is easy to see that it is the

zeroth order contribution to MPV(e−e)
N in a series expansion in terms

of c−2,

MPV−NR
N = −

̵h
∂2

∂IN∂J
⟨⟨ÔNR

(ĤPV
) ; ÔNR

(ĤJ
)⟩⟩

= −
̵h

GF(1 − 4 sin2θW)
√

2
1

2mc
λN

× (⟨⟨{p , ρN(r)} ; (r − RCM) × p⟩⟩

+
̵h2
⟨⟨σ × [∇ , ρN(r)] ;

σ
2
⟩⟩) ⋅ I−1. (30)

For closed-shell electronic structure molecules, only the first
term on the right-hand side in the second line of Eq. (30) is nonzero.
Then, for these kinds of systems, we have

MPV−NR
N = −

GF(1 − 4 sin2θW)
√

2

̵h
2mc

λN

× ⟨⟨{p , ρN(r)} ; (r − RCM) × p⟩⟩ω=0 ⋅ I
−1. (31)

3. NR limit of the (p–p) contribution to MPV
N

To derive the (p–p) series expansion of a linear response func-
tion that involves the perturbed Hamiltonian ĤPV , this operator
should be replaced into Eq. (19). Retaining only the zeroth order
terms in the series expansion in terms of c−2, the operator X̂(ĤPV

)

will be proportional to

X̂(α ⋅ IN ρN(r)) = (2I + β) α ⋅ IN ρN(r), (32)

with I and β being the 4 × 4 identity and Dirac matrices, respectively.

On the other hand, it is well-known that for ĤJ we have,
retaining only the zeroth order expansion terms,29 that

X̂(ĤJ
) = −2 ω ⋅ Je. (33)

From Eqs. (32) and (33), and taking into account that only ĤLS
and X̂SL(Ĥ) are involved in Eq. (20), it can be shown that for the
perturbation operators needed to derive the NR limit of the PV-NSR
tensor [given in Eqs. (7) and (9)], we have

ĤPV
LS = −

GF(1 − 4 sin2θW)
√

2
∑

N
λN σ ⋅ IN ρN(r), (34)

ĤJ
LS = 0, (35)

X̂SL(ĤPV
) = σ ⋅ IN ρN(r), (36)

X̂SL(ĤJ
) = 0. (37)

As it was stated below, the (p–p) contributions to MPV
N may be

expanded in a series in terms of c−2 employing the LRESC model.
This expansion will be obtained by replacing Eqs. (34)–(37) into
Eq. (20). In this way, we get51,52

⟨⟨ ĤPV ; ĤJ
⟩⟩
(p−p)

= 0 + O(c−3
). (38)

Finally, as

MPV(p−p)
N ≃ −

̵h
∂2

∂IN∂J
(⟨⟨ ĤPV ; ĤJ

⟩⟩
(p−p)
)

= 0 + O(c−3
), (39)

and as the NR limit of MPV
N is of order c−1 [see Eq. (30)], then the

result of Eq. (39) implies that the NR limit of MPV(p−p)
N is exactly

zero. The same behavior is observed for the parity-conserving NSR
tensor, M(p−p)

N .29

An additional comment that should be emphasized is related
to the comparison between the NR limits of the PV-NMR-shielding
and PV-NSR tensors. It can be shown that for molecules with closed-
shell electronic structures, the NR limit of Eq. (13) is given by

σPV−NR−para
N = −

GF(1 − 4 sin2θW)
√

2
mp

2 ̵h m2 c
1

gN
λN

× ⟨⟨{p , ρN(r)} ; (r − RGO) × p⟩⟩ω=0. (40)

It is evident that the PV-NMR-shielding and PV-NSR tensors
are closely related to each other in the NR limit when the gauge ori-
gin of the magnetic potential is placed at the molecular CM.19 It
happens exactly as in the case of the parity-conserving analogous
properties, σNR−para

N and MNR−elec
N , which are related by the well-

known Ramsey–Flygare relationship.29,55,56 Actually, the NR relation
between σPV−NR−para

N and MPV−NR
N is given by

σPV−NR−para
N =

mp

m̵h2
1

gN
MPV−NR

N ⋅ I. (41)

As it can be seen in the NR expressions of the
PV-NMR-shielding [Eq. (40)] and PV-NSR tensors [Eq. (31)],
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the only difference between their linear response functions appears
in the electronic orbital angular momentum operator. For the
PV-NSR tensor, this operator may be evaluated with respect to the
molecular CM and not with respect to the gauge origin, as it was
reported in previous works.16,19

III. COMPUTATIONAL DETAILS
The H2X2 series of molecules (with X =17O, 33S, 77Se, 125Te,

and 209Po) was studied at different dihedral angles, with fixed bond
lengths and H–X–X angles taken from Ref. 35 and given in Table I.
The dihedral angles α of the C2 symmetric P-conformations are
taken in steps of 15○ while keeping constant all the remaining
internal structural parameters.

The employed nuclear g-factors were taken from Ref. 57. Their
values are −0.757 516 for 17O, 0.429 214 for 33S, 1.070 084 for 77Se,
−1.7771 for 125Te, and 1.376 for 209Po.

All the calculations of σPV and MPV have been performed using
a development version of the DIRAC program package.58,59 In all calcu-
lations, we have employed Dyall’s relativistic aae2z, aae3z, and aae4z
uncontracted basis sets (dyall.aae2z, dyall.aae3z, and dyall.aae4z) for
hydrogen (unpublished), oxygen, sulfur,60 selenium, tellurium, and
polonium.61–64 The common gauge origin approach was used, and
the gauge origin for the external magnetic potential has always been
placed at the center of the nucleus of interest.

The Dirac–Coulomb (DC), spin-free (SF), and Lévy–Leblond
(LL) Hamiltonians have been employed;65 we used the former two in
order to disentangle the SF and the SO effects on the calculated con-
stants. In the DC and SF calculations, the (SS∣SS) integrals were elim-
inated in both the self-consistent field and the linear response parts.
It is the default choice in the DIRAC code, and an energy correction is
used to avoid the explicit calculation of these integrals.66

The small component basis sets for the relativistic calculations
were generated by applying separately unrestricted kinetic balance
(UKB)54 and restricted kinetic balance (RKB) prescriptions. The
SF calculations were performed using RKB. The Gaussian nuclear
(GN) charge distribution model was used to obtain all the results
in this work,67 but in order to compare with previous results, the
point-charge nuclear (PN) model was also employed in the NR
calculations.

The response calculations were carried out at the 4c
polarization propagator RPA level of theory employing the
Dirac–Hartree–Fock wave functions. NR values of σPV and MPV

tensor elements were obtained employing the LL Hamiltonian.
For studying the influence of electron correlation effects,

Dirac–Kohn–Sham-DFT calculations were performed based on
the 4c-DC, 4c-SF, and NR-LL Hamiltonians. We used two
NR exchange–correlation functionals: the generalized-gradient-
approximation functional KT368 and the hybrid functional PBE0.69

TABLE I. Structural parameters for the H2X2 molecules (X = 17O, 33S, 77Se, 125Te,
and 209Po) used in the calculations of the PV-NSR and PV-NMR-shielding constants.

H2O2 H2S2 H2Se2 H2Te2 H2Po2

X–H (Å) 0.97 1.352 1.45 1.64 1.74
X–X (Å) 1.49 2.055 2.48 2.84 2.91
θ(HXX) (deg) 100 92 92 92 92

These functionals were selected due to their good performance in the
4c calculations of parity-conserving NSR constants, compared with
experimental values.70,71

The response of Eq. (4) was solved with respect to the property
gradient associated with the total electronic orbital and spin angular
momenta (to calculate MPV

N ) and with the external magnetic field
(for σPV

N ).

IV. RESULTS AND DISCUSSION
To the best of our knowledge, this work reports for the first

time the relativistic theory and calculations of the PV-NSR con-
stants. We have chosen the set of nuclei X = 17O, 33S, 77Se, 125Te,
and 209Po in the H2X2 molecules to test our PV-NSR implementa-
tion and to investigate the behavior of these properties. Alongside
the PV-NSR calculations, we also calculated the PV contributions
to the NMR (isotropic) shieldings in the same set of molecules, as
similar calculations have been presented in a number of previous
works.23,25–27

TABLE II. PV-NSR (isotropic) constants [MPV
iso (Se), in μHz] for the 77Se nucleus in the

P enantiomer of H2Se2 for a dihedral angle of 45○. The DC Hamiltonian was used.

RPA PBE0 KT3

Basis set RKB UKB RKB UKB RKB UKB

cc-pVDZ −1.97 −1.97 1.05 1.05 2.36 2.36
aug-cc-pVDZ −1.04 −1.04 1.42 1.42 2.59 2.59

cc-pVTZ −2.03 −2.03 0.86 0.86 2.41 2.41
aug-cc-pVTZ −1.94 −1.94 0.78 0.78 2.18 2.18

cc-pVQZ −2.03 −2.03 0.86 0.86 2.35 2.35
aug-cc-pVQZ −2.04 −2.04a 0.79 0.79 2.24 2.24

cc-pV5Z −2.10 −2.10 0.83 0.83 2.35 2.35
aug-cc-pV5Z −2.13 −2.13 0.78 0.78 2.27 2.27

dyall.v2z −1.91 −1.91 1.36 1.36 2.92 2.92
dyall.cv2z −2.14 −2.14 1.08 1.08 2.68 2.68
dyall.av2z −1.09 −1.09 1.56 1.56 2.93 2.93
dyall.acv2z −1.33 −1.33 1.29 1.29 2.70 2.70
dyall.ae2z −2.14 −2.14 1.08 1.08 2.68 2.68
dyall.aae2z −1.33 −1.33 1.29 1.29 2.70 2.70

dyall.v3z −2.19 −2.19 1.01 1.01 2.72 2.72
dyall.cv3z −2.38 −2.38 0.82 0.82 2.54 2.54
dyall.av3z −2.16 −2.16 0.89 0.89 2.48 2.48
dyall.acv3z −2.35 −2.35 0.71 0.71 2.30 2.30
dyall.ae3z −2.38 −2.38 0.82 0.82 2.54 2.54
dyall.aae3z −2.35 −2.35 0.71 0.71 2.30 2.30

dyall.v4z −2.29 −2.29 0.92 0.92 2.59 2.59
dyall.cv4z −2.48 −2.48 0.74 0.74 2.39 2.39
dyall.av4z −2.29 −2.29a 0.90 0.90 2.55 2.55
dyall.acv4z −2.48 −2.47 0.72 0.72 2.36 2.36
dyall.ae4z −2.48 −2.48 0.74 0.74 2.40 2.40
dyall.aae4z −2.48 −2.48 0.72 0.72 2.36 2.36
aCalculations with quasi-instabilities.
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In order to test the basis set convergence of MPV
iso (X), we looked

at the special case of X =77Se in the H2Se2 molecule at a dihedral
angle of 45○. We have performed calculations employing the DC
Hamiltonian at the RPA, DFT-PBE0, and DFT-KT3 levels of the-
ory using a finite Gaussian nuclear model. These results are given in
Table II for the various quality uncontracted basis sets, used for both
1H and 77Se atoms: dyall.vYz (valence), dyall.cvYz (core-valence),
dyall.avYz (valence with extra diffuse functions), dyall.acvYz (core-
valence with additional diffuse functions), dyall.aeYz (all-electron,
meaning that they include correlating functions for all shells), and
dyall.aaeYz (all-electron with extra diffuse functions), with Y = 2,
3, and 4 referring to double-zeta, triple-zeta, and quadruple-zeta
qualities, respectively.60 For the sake of comparison with previous
works, some correlation-consistent polarized Dunning’s (valence-
only) basis sets were also used: cc-pVWZ and aug-cc-pVWZ
(W = D, T, Q, and 5).72,73 Instabilities of the Kramer’s restricted
DHF wave functions appear in some of the RPA calculations. They
can be avoided by manually modifying some of the exponents of
the basis sets or by performing calculations applying the pure zeroth
order approach (PZOA), but this is out of the scope of the present
work. Nevertheless, in those cases where quasi-instabilities appear
for RPA calculations, reliable DFT values allow the analysis of the
complete sets of results even for large basis sets.

For Dyall’s basis sets, we observe good convergence with the
principle number, with the difference between the v4z and the v3z

basis sets just 0.09–0.13 μHz, depending on the method. Addition
of diffuse functions has an effect of about 10% on the v3z quality
basis set (when using PBE0-KT3) but becomes negligible in rela-
tion to the v4z basis. Finally, while adding correlation functions
for the core-valence region lowers the results significantly (cvYz
vs vYz basis), further increase in the number of correlating func-
tions (aeYz vs cvYz basis) has a negligible effect. This leads us to
conclude that in cases where computational costs are an important
factor the choice of either dyall.acv3z or dyall.cv4z is justified. Here,
as we are dealing with small systems, we proceed with the aeYz
basis sets.

The choice of functional has a significant effect on the absolute
values of the PV isotropic NSR constants at a given geometry; later
on, we will observe that the trends and behavior are consistent across
the method used in this work.

Tables III and IV show σPV
iso (X) and MPV

iso (X) for all the
molecules studied in this work, at a dihedral angle of 45○. We
present results obtained using the DC, SF, and LL Hamiltoni-
ans at the RPA and DFT-PBE0 levels of theory. The latter pro-
vide a comparison between the ab initio (RPA) and the DFT
calculations. DFT-PBE0 was chosen instead of DFT-KT3 because
while both reproduce experimental parity-conserving NSR con-
stants in a good fashion, DFT-PBE0 calculations show a better per-
formance.70,71 In all these calculations, the finite Gaussian nuclear
model was employed. The basis set convergence of σPV

iso (X) and

TABLE III. PV isotropic shielding constants (σPV
iso (X), in ppm) for the X nuclei in the P enantiomers of H2X2 molecules (X =17O, 33S, 77Se, 125Te, and 209Po) for a dihedral

angle of 45○. The dyall.aaeYz (Y = 2, 3, and 4) basis sets were employed.

RPA PBE0

Mol. Basis DC (UKB) DC (RKB) SF (RKB) NR (GN) DC (UKB) DC (RKB) SF (RKB) NR (GN)

H2O2

aae2z 5.06 × 10−9 5.07 × 10−9 5.27 × 10−9 5.21 × 10−9 4.95 × 10−9 4.96 × 10−9 5.46 × 10−9 5.40 × 10−9

aae3z 5.39 × 10−9 5.40 × 10−9 5.58 × 10−9 5.51 × 10−9 5.25 × 10−9 5.26 × 10−9 5.79 × 10−9 5.72 × 10−9

aae4z 5.64 × 10−9 5.64 × 10−9 5.83 × 10−9 5.75 × 10−9 5.50 × 10−9 5.50 × 10−9 6.06 × 10−9 5.97 × 10−9

Bast et al.a 6.06 × 10−9 6.06 × 10−9 6.23 × 10−9 6.12 × 10−9b

H2S2

aae2z −7.98 × 10−8
−7.98 × 10−8

−8.63 × 10−8
−8.26 × 10−8

−8.03 × 10−8
−8.03 × 10−8

−8.74 × 10−8
−8.37 × 10−8

aae3z −9.00 × 10−8
−9.01 × 10−8

−9.67 × 10−8
−9.13 × 10−8

−9.01 × 10−8
−9.01 × 10−8

−9.74 × 10−8
−9.19 × 10−8

aae4z −9.47 × 10−8
−9.47 × 10−8

−1.01 × 10−7
−9.49 × 10−8

−9.47 × 10−8
−9.47 × 10−8

−1.02 × 10−7
−9.54 × 10−8

Bast et al.a −9.98 × 10−8
−9.98 × 10−8

−1.05 × 10−7
−9.75 × 10−8b

H2Se2

aae2z 3.13 × 10−8 3.13 × 10−8
−2.37 × 10−7

−1.87 × 10−7 7.31 × 10−9 7.31 × 10−9
−2.61 × 10−7

−2.05 × 10−7

aae3z 1.19 × 10−8 1.19 × 10−8
−2.61 × 10−7

−1.97 × 10−7
−1.05 × 10−8

−1.05 × 10−8
−2.82 × 10−7

−2.12 × 10−7

aae4z 1.17 × 10−8 1.17 × 10−8
−2.68 × 10−7

−1.99 × 10−7
−1.21 × 10−8

−1.21 × 10−8
−2.89 × 10−7

−2.14 × 10−7

Bast et al.a 1.25 × 10−8 1.25 × 10−8
−2.72 × 10−7

−2.00 × 10−7b

H2Te2

aae2z −9.60 × 10−7
−9.60 × 10−7 5.75 × 10−7 3.08 × 10−7

−1.22 × 10−6
−1.22 × 10−6 6.30 × 10−7 3.38 × 10−7

aae3z −1.24 × 10−6
−1.25 × 10−6 6.04 × 10−7 3.12 × 10−7

−9.38 × 10−7
−9.38 × 10−7 6.49 × 10−7 3.34 × 10−7

aae4z −1.26 × 10−6
−1.26 × 10−6 6.11 × 10−7 3.12 × 10−7

−9.50 × 10−7
−9.50 × 10−7 6.55 × 10−7 3.33 × 10−7

Bast et al.a −1.29 × 10−6
−1.29 × 10−6 6.13 × 10−7 3.15 × 10−7b

H2Po2

aae2z 8.34 × 10−4 8.34 × 10−4
−5.95 × 10−6

−1.11 × 10−6 6.85 × 10−5 6.85 × 10−5
−6.44 × 10−6

−1.20 × 10−6

aae3z 1.66 × 10−3 1.66 × 10−3
−5.93 × 10−6

−1.12 × 10−6 6.63 × 10−5 6.63 × 10−5
−6.30 × 10−6

−1.18 × 10−6

aae4z 1.54 × 10−3 1.54 × 10−3
−5.91 × 10−6

−1.12 × 10−6 6.57 × 10−5 6.57 × 10−5
−6.28 × 10−6

−1.18 × 10−6

Bast et al.a 1.28 × 10−3 1.25 × 10−3
−5.25 × 10−6

−9.95 × 10−7b

aTaken from the most converged results at Table I of Ref. 26.
bCalculated using PN instead of GN (see Ref. 26).
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TABLE IV. PV-NSR (isotropic) constants [MPV
iso (X), in Hz] for the X nuclei in the P enantiomers of H2X2 molecules (X = 17O, 33S, 77Se, 125Te, and 209Po) for a dihedral angle

of 45○. The dyall.aaeYz (Y = 2, 3, and 4) basis sets were employed.

RPA PBE0

Mol. Basis DC (UKB) DC (RKB) SF (RKB) NR (GN) DC (UKB) DC (RKB) SF (RKB) NR (GN)

H2O2

aae2z −4.18 × 10−7
−4.18 × 10−7

−4.50 × 10−7
−4.53 × 10−7

−3.27 × 10−7
−3.27 × 10−7

−3.65 × 10−7
−3.70 × 10−7

aae3z −4.60 × 10−7
−4.60 × 10−7

−4.94 × 10−7
−4.95 × 10−7

−3.65 × 10−7
−3.65 × 10−7

−4.04 × 10−7
−4.09 × 10−7

aae4z −4.82 × 10−7
−4.82 × 10−7

−5.18 × 10−7
−5.18 × 10−7

−3.82 × 10−7
−3.82 × 10−7

−4.24 × 10−7
−4.27 × 10−7

H2S2

aae2z −2.39 × 10−6
−2.39 × 10−6

−2.50 × 10−6
−2.42 × 10−6

−2.50 × 10−6
−2.50 × 10−6

−2.62 × 10−6
−2.56 × 10−6

aae3z −2.61 × 10−6
−2.61 × 10−6

−2.71 × 10−6
−2.59 × 10−6

−2.74 × 10−6
−2.74 × 10−6

−2.86 × 10−6
−2.75 × 10−6

aae4z −2.74 × 10−6
−2.74 × 10−6

−2.84 × 10−6
−2.69 × 10−6

−2.88 × 10−6
−2.88 × 10−6

−2.99 × 10−6
−2.85 × 10−6

H2Se2

aae2z −1.33 × 10−6
−1.33 × 10−6

−9.53 × 10−6
−8.28 × 10−6 1.29 × 10−6 1.29 × 10−6

−8.65 × 10−6
−7.93 × 10−6

aae3z −2.35 × 10−6
−2.35 × 10−6

−1.03 × 10−5
−8.54 × 10−6 7.12 × 10−7 7.12 × 10−7

−9.40 × 10−6
−8.19 × 10−6

aae4z −2.48 × 10−6
−2.48 × 10−6

−1.06 × 10−5
−8.60 × 10−6 7.24 × 10−7 7.24 × 10−7

−9.63 × 10−6
−8.25 × 10−6

H2Te2

aae2z 4.27 × 10−5 4.27 × 10−5
−2.87 × 10−5

−1.89 × 10−5 2.47 × 10−5 2.47 × 10−5
−2.65 × 10−5

−1.95 × 10−5

aae3z 2.15 × 10−5 2.15 × 10−5
−2.95 × 10−5

−1.85 × 10−5 4.15 × 10−5 4.15 × 10−5
−2.73 × 10−5

−1.91 × 10−5

aae4z 2.18 × 10−5 2.18 × 10−5
−2.96 × 10−5

−1.84 × 10−5 4.21 × 10−5 4.21 × 10−5
−2.74 × 10−5

−1.90 × 10−5

H2Po2

aae2z 2.27 × 10−3 2.27 × 10−3
−1.17 × 10−4

−4.81 × 10−5 1.85 × 10−3 1.85 × 10−3
−7.28 × 10−5

−4.99 × 10−5

aae3z 2.67 × 10−3a 2.67 × 10−3a
−1.15 × 10−4

−4.64 × 10−5 1.79 × 10−3 1.79 × 10−3
−7.30 × 10−5

−4.82 × 10−5

aae4z 2.59 × 10−3a 2.59 × 10−3a
−1.14 × 10−4

−4.60 × 10−5 1.77 × 10−3 1.77 × 10−3
−7.22 × 10−5

−4.79 × 10−5

aCalculations with quasi-instabilities.

MPV
iso (X) is studied for the dyall.aaeYz (Y = 2, 3, and 4) basis sets.

We also compare our results with the previous work of Bast and
colleagues.26

Two values, employing RKB and UKB prescriptions, are given
for each DC calculation. Using the RKB prescription, the small com-
ponent basis set is obtained from the NR limit of the coupling
between large and small components of the wave function. It is
known that when an external vector potential is introduced in the
Dirac equation, the RKB prescription may lead to non-converged
NMR shieldings,54,74 and in those cases, the UKB calculations ensure

a better coupling of small and large components. It is also known
that the differences between RKB and UKB calculations decrease as
the basis set quality increases.75 In Tables III and IV, it is observed
that results employing the DC Hamiltonian with RKB and UKB
prescriptions have differences smaller than 1% for σPV

iso (X) in all
combinations of molecules and basis sets for both RPA and PBE0
levels of theory. These differences are even smaller in MPV

iso (X) than
in σPV

iso (X).
Our results are in good agreement with those of Bast, Schwerdt-

feger, and Saue for the PV NMR shieldings.26 The small differences

TABLE V. PV-NSR (isotropic) constants [MPV
iso (X), in Hz] for the 33S and 77Se nuclei in the P enantiomers of H2S2 and H2Se2 molecules for various dihedral angles α. The

results were obtained using the dyall.aae4z basis set.

H2S2 H2Se2

RPA PBE0 RPA PBE0

α (deg) DC (UKB) NR (GN) DC (UKB) NR (GN) DC (UKB) NR (GN) DC (UKB) NR (GN)

15 −1.14 × 10−6
−1.14 × 10−6

−1.21 × 10−6
−1.21 × 10−6 6.57 × 10−7

−3.56 × 10−6 2.12 × 10−6
−3.47 × 10−6

30 −2.08 × 10−6
−2.07 × 10−6

−2.20 × 10−6
−2.20 × 10−6

−5.58 × 10−8
−6.54 × 10−6 2.52 × 10−6

−6.33 × 10−6

45 −2.74 × 10−6
−2.69 × 10−6

−2.88 × 10−6
−2.85 × 10−6

−2.48 × 10−6
−8.60 × 10−6 7.24 × 10−7

−8.25 × 10−6

60 −3.11 × 10−6
−3.01 × 10−6

−3.25 × 10−6
−3.18 × 10−6

−6.14 × 10−6
−9.71 × 10−6

−2.70 × 10−6
−9.20 × 10−6

75 −3.23 × 10−6
−3.08 × 10−6

−3.37 × 10−6
−3.24 × 10−6

−1.04 × 10−5
−1.00 × 10−5

−6.93 × 10−6
−9.37 × 10−6

90 −3.18 × 10−6
−2.97 × 10−6

−3.31 × 10−6
−3.12 × 10−6

−1.47 × 10−5
−9.76 × 10−6

−1.13 × 10−5
−8.96 × 10−6

105 −2.99 × 10−6
−2.73 × 10−6

−3.10 × 10−6
−2.86 × 10−6

−1.86 × 10−5
−9.03 × 10−6

−1.52 × 10−5
−8.13 × 10−6

120 −2.67 × 10−6
−2.37 × 10−6

−2.77 × 10−6
−2.49 × 10−6

−2.12 × 10−5
−7.91 × 10−6

−1.79 × 10−5
−6.98 × 10−6

135 −2.22 × 10−6
−1.92 × 10−6

−2.30 × 10−6
−2.01 × 10−6

−2.16 × 10−5
−6.42 × 10−6

−1.85 × 10−5
−5.55 × 10−6

150 −1.61 × 10−6
−1.36 × 10−6

−1.68 × 10−6
−1.43 × 10−6

−1.84 × 10−5
−4.55 × 10−6

−1.58 × 10−5
−3.87 × 10−6

165 −8.56 × 10−7
−7.10 × 10−7

−8.91 × 10−7
−7.50 × 10−7

−1.08 × 10−5
−2.37 × 10−6

−9.30 × 10−6
−1.99 × 10−6

J. Chem. Phys. 155, 134307 (2021); doi: 10.1063/5.0065487 155, 134307-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE VI. Same as in Table V but for 125Te and 209Po nuclei in H2Te2 and H2Po2 molecules.

H2Te2 H2Po2

RPA PBE0 RPA PBE0

α (deg) DC (UKB) NR (GN) DC (UKB) NR (GN) DC (UKB) NR (GN) DC (UKB) NR (GN)

15 2.15 × 10−5
−7.68 × 10−6 3.15 × 10−5

−8.08 × 10−6 7.27 × 10−4a
−1.97 × 10−5 1.21 × 10−3

−2.08 × 10−5

30 2.98 × 10−5
−1.40 × 10−5 4.69 × 10−5

−1.47 × 10−5 9.62 × 10−4a
−3.55 × 10−5 1.81 × 10−3

−3.73 × 10−5

45 2.18 × 10−5
−1.84 × 10−5 4.21 × 10−5

−1.90 × 10−5 2.59 × 10−3a
−4.60 × 10−5 1.77 × 10−3

−4.79 × 10−5

60 1.29 × 10−6
−2.07 × 10−5 2.22 × 10−5

−2.12 × 10−5 1.51 × 10−3a
−5.16 × 10−5 1.34 × 10−3

−5.32 × 10−5

75 −2.63 × 10−5
−2.15 × 10−5

−6.11 × 10−6
−2.18 × 10−5 7.70 × 10−4

−5.36 × 10−5 7.18 × 10−4
−5.46 × 10−5

90 −5.69 × 10−5
−2.12 × 10−5

−3.75 × 10−5
−2.11 × 10−5

−3.96 × 10−5
−5.30 × 10−5 2.26 × 10−5

−5.34 × 10−5

105 −8.67 × 10−5
−1.99 × 10−5

−6.76 × 10−5
−1.96 × 10−5

−8.61 × 10−4
−5.04 × 10−5

−6.76 × 10−4
−5.02 × 10−5

120 −1.11 × 10−4
−1.78 × 10−5

−9.16 × 10−5
−1.72 × 10−5

−1.59 × 10−3a
−4.56 × 10−5

−1.30 × 10−3
−4.50 × 10−5

135 −1.21 × 10−4
−1.47 × 10−5

−1.03 × 10−4
−1.41 × 10−5

−2.22 × 10−3a
−3.84 × 10−5

−1.72 × 10−3
−3.75 × 10−5

150 −1.08 × 10−4
−1.06 × 10−5

−9.27 × 10−5
−1.01 × 10−5

−2.14 × 10−3a
−2.83 × 10−5

−1.74 × 10−3
−2.74 × 10−5

165 −6.53 × 10−5
−5.60 × 10−6

−5.63 × 10−5
−5.27 × 10−6

−1.38 × 10−3a
−1.51 × 10−5

−1.14 × 10−3
−1.46 × 10−5

aCalculations with quasi-instabilities.

are due to their use of contracted Dunning’s basis sets, whereas we
used uncontracted basis sets.

For the lighter molecules, relativistic effects play a small role
only, and the DC, SF, and NR results are generally in good agree-
ment. However, their influence becomes more significant from
H2Se2, with the SO interaction dominating for both properties.

For the NR results, we have furthermore analyzed the differ-
ences between modeling the electric charge distribution of the nuclei
as points or using Gaussian spherically symmetric functions. These
models are used for both the electron–nucleus Coulomb interaction
and the electric nuclear density distribution ρN(r) given in the lin-
ear response functions of Eqs. (10) and (13). The differences in the
results obtained for the two nuclear models are less than 0.004% for

O, 0.05% for S, 0.22% for Se, 0.53% for Te, and 1.1% for Po, for both
σPV−NR

iso and MPV−NR
iso (see Tables I–X of the supplementary material).

In Tables V and VI, we show calculations of MPV
iso (X) and

MPV−NR
iso (X) for the nuclei X = 33S, 77Se, 125Te, and 209Po in the

H2X2 series of molecules at different dihedral angles between 0○ and
180○. Because of mirror symmetry of these systems, the PV contribu-
tions to the isotropic NSR constants is bound to be zero for dihedral
angles α of 0○ and 180○. All the results given in Tables V and VI
were obtained using the biggest basis set employed in this work, the
dyall.aae4z one. The RPA and DFT-PBE0 calculations are shown in
order to compare electron correlation effects.

A comparison between equivalent calculations of MPV
iso and σPV

iso
for different dihedral angles is given in Figs. 1–3 for Se, Te, and Po,

FIG. 1. (a) MPV
iso (in Hz) and (b) σPV

iso (in ppm) for selenium-77 in H2Se2 at different dihedral angles employing the DC and LL Hamiltonians at the RPA, DFT-PBE0, and
DFT-KT3 levels of approach and using the dyall.aae4z basis set.
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FIG. 2. Same as in Fig. 1, but for (a) MPV
iso (in Hz) and (b) σPV

iso (in ppm) for tellurium-125 in H2Te2.

respectively. In Figs. 1–3, we compare the (4c-) Dirac–Coulomb and
(NR-) Lévy–Leblond calculations at the RPA (only for Se and Te),
DFT-PBE0, and DFT-KT3 levels of theory. There is a major dif-
ference between the NR limits of the PV contributions to NSR and
NMR shieldings: The NR limits of MPV

iso have a dependence with the
dihedral angle α that behaves as a function −sin(α), whereas for the
NR limit of σPV

iso we observe a −sin(2α)-like dihedral angle depen-
dence for Se and Po, while for tellurium this dependence behaves as
sin(2α).

The 4c calculations of the PV effects also show a differ-
ent dependence on the dihedral angle for the two properties. It
is important to stress at this point that whereas the PV-NMR-
shielding constants are simply given by a linear response function

[see Eq. (13)], the PV-NSR constants are obtained by multiply-
ing a linear response function by the inverse of the inertia ten-
sor I [see Eq. (10)]. As I changes with the dihedral angle α, the
dependence of MPV

iso on this angle is related to how both the lin-
ear response function of Eq. (10) and the inertia tensor change
with it. One point to stress regarding Fig. 1(b) is that the non-
smooth behavior found for the 4c-DFT calculations is due to partial
cancellations of the SO and SF contributions, where the first is a
function close to sin(2α), whereas the SF contribution behaves as
−sin(2α), but with different maximum values, and also different
roots.

The choice of correlation method (DFT-KT3 or DFT-PBE0)
does not visibly affect the overall trend in these properties with

FIG. 3. Same as in Figs. 1 and 2, but for (a) MPV
iso (in Hz) and (b) σPV

iso (in ppm) for polonium-209 in H2Po2.
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FIG. 4. Values of MPV
iso (17O) for H2O2 (in Hz) at different dihedral angles employing the DC, SF, and LL Hamiltonians at the (a) RPA and (b) DFT-PBE0 levels of approach,

employing the dyall.aae4z basis set. The SO contribution is given as the difference between DC and SF calculations.

respect to the dihedral angle. Furthermore, even the effect of corre-
lation altogether (difference between the RPA and the DFT results)
is minor, except for H2Se2, where the x-intercept is shifted to higher
angles for DFT.

In order to analyze relativistic effects on MPV
iso , we compare

the DC, SF, and NR calculations for all the molecules under study
in this work. Their dependence on the dihedral angle is shown in
Figs. 4–8. For oxygen, sulfur, selenium, and tellurium, we display
both RPA and DFT-PBE0 calculations to investigate the electron
correlation effects. For polonium, this was not possible because
for the RPA calculations we found quasi-instabilities of Kramer’s
restricted DHF wave functions with respect to the time reversal odd

perturbations, as was also reported in the past by Nahrwold and
Berger.27

Even for the lightest nucleus, the oxygen, it can be seen in Fig. 4
that relativistic effects are not entirely negligible. If the DC results
are split into the sum of SF and SO contributions, it can be seen that
for the RPA and DFT-PBE0 calculations, almost all the relativistic
effects of MPV

iso (17O) are due to the SO contribution, i.e., calculations
employing the SF and LL Hamiltonians are almost the same.

In the case of sulfur, it is easily seen in Fig. 5 that the SF and SO
contributions have similar maximum values. Nevertheless, the SF
relativistic effects are always negative, whereas the SO effects behave
as a sin(2α) function, with a node at α between 75○ and 90○.

FIG. 5. Same as in Fig. 4, but for 33S in H2S2 at the (a) RPA and (b) DFT-PBE0 levels of approach.

J. Chem. Phys. 155, 134307 (2021); doi: 10.1063/5.0065487 155, 134307-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 6. Same as in Fig. 4, but for 77Se in H2Se2 at the (a) RPA and (b) DFT-PBE0 levels of approach.

FIG. 7. Same as in Fig. 4, but for 125Te in H2Te2 at the (a) RPA and (b) DFT-PBE0 levels of approach.

For a qualitative analysis of MPV
iso , relativistic effects are not

needed when 17O and 33S nuclei are studied. This is not the case for
the nuclei belonging to the fourth row of the Periodic Table or the
heaviest ones. In Figs. 6 and 7, it can be seen that for 77Se and 125Te,
the SO effects are dependent on the dihedral angle α like a function
sin(2α), as in the case of their lightest homologous. For both sele-
nium and tellurium nuclei, the relativistic effects are dominated by
SO effects, and the inclusion of these effects is mandatory because
they change the magnitude, the qualitative behavior, and even, for
some dihedral angles, the sign of MPV

iso (for the behavior of σPV
iso , see

Figs. 1–3 of the supplementary material).
For the particular case of 209Po in H2Po2, Fig. 8 shows that

MPV
iso (209Po) has an almost purely relativistic nature. In other words,

its NR limit is negligible compared with 4c calculations. Further-
more, the SO interactions are responsible for these effects, whereas
the SF part is also negligible.

Table VII shows the scaling factor n (with respect to the atomic
number Z) of the absolute value of the PV-NSR (isotropic) constants
for nuclei X (X =33S, 77Se, 125Te, and 209Po) in H2X2 at a dihedral
angle of 45○, taking results for the oxygen nucleus as reference. In

FIG. 8. Values of MPV
iso (209Po) for H2Po2 (in Hz) at different dihedral angles employ-

ing the DC, SF, and LL Hamiltonians at the DFT-PBE0 level of approach, employ-
ing the dyall.aae4z basis set. The SO contribution is the difference between DC
and SF.
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TABLE VII. Isotropic PV-NSR constants MPV
iso (in Hz) of the X nuclei (X = 17O, 33S, 77Se, 125Te, and 209Po) for P enantiomers of the H2X2 series of molecules at a dihedral

angle of 45○ and employing the dyall.aae4z basis set. ZX is the atomic number of nucleus X . The values in parentheses are Z-scaling exponents n.

MPV
iso (X) n MPV

iso (X) n MPV
iso (X) n MPV

iso (X) n

ZX Method DC (RKB) SF (RKB) SO (RKB) NR (PN)

8 RPA −4.82 × 10−7
−5.18 × 10−7 3.54 × 10−8

−5.18 × 10−7

PBE0 −3.82 × 10−7
−4.24 × 10−7 4.14 × 10−8

−4.27 × 10−7

16 RPA −2.74 × 10−6 (2.51) −2.84 × 10−6 (2.45) 9.75 × 10−8 (1.46) −2.69 × 10−6 (2.38)
PBE0 −2.88 × 10−6 (2.91) −2.99 × 10−6 (2.82) 1.12 × 10−7 (1.44) −2.85 × 10−6 (2.74)

34 RPA −2.48 × 10−6 (1.13) −1.06 × 10−5 (2.08) 8.09 × 10−6 (3.75) −8.62 × 10−6 (1.94)
PBE0 7.24 × 10−7 (0.44) −9.63 × 10−6 (2.16) 1.04 × 10−5 (3.82) −8.27 × 10−6 (2.05)

52 RPA 2.18 × 10−5 (2.04) −2.96 × 10−5 (2.16) 5.14 × 10−5 (3.89) −1.84 × 10−5 (1.91)
PBE0 4.21 × 10−5 (2.51) −2.74 × 10−5 (2.23) 6.95 × 10−5 (3.97) −1.91 × 10−5 (2.03)

84 RPA 2.59 × 10−3a (3.65)a
−1.14 × 10−4 (2.30) 2.71 × 10−3a (4.78)a

−4.64 × 10−5 (1.91)
PBE0 1.77 × 10−3 (3.59) −7.22 × 10−5 (2.18) 1.85 × 10−3 (4.55) −4.83 × 10−5 (2.01)

aCalculations with quasi-instabilities.

other words, n is calculated employing the relation

∣MPV
iso (X)∣ = ∣M

PV
iso (O)∣ (

ZX

ZO
)

n
. (42)

It can be seen that the NR values scale as Z2.32±0.42, with a similar
behavior for to SF calculations whose scaling factor is Z2.45±0.37. On
the other hand, the SO contributions, which are responsible of most
of the relativistic effects in MPV

iso , scale as Z2.99±1.56. The total four-
component Dirac–Coulomb isotropic PV-NSR constant scales with
Z2.81±0.78 for all elements but selenium, where the DC results go from
negative to positive values at a dihedral angle of about 45○ and so the
scaling factor should be analyzed with care for this molecule. We can
thus conclude that the Z3±1 scaling inferred in Ref. 23 for PV NMR
shieldings is also satisfied for PV-NSR constants.

V. CONCLUSIONS
In this work, we have presented a four-component relativistic

theory of the nuclear spin-dependent contribution to the PV-NSR
tensor. By implementing this theory in the DIRAC code,58 we have
studied the influence of relativistic and electronic correlation effects
on isotropic PV-NSR constants taking the H2X2 molecules as test
systems (X =17O, 33S, 77Se, 125Te, and 209Po).

We calculated the SO and SF contributions to this property sep-
arately, as well as its NR limit. It was shown that for a dihedral angle
of 45○, the SO contributions scale approximately as Z4 for Se, Te, and
Po (for sulfur, it scales as Z1.5), whereas the SF contributions have a
scaling behavior of Z2 for all these nuclei. In addition, the SO and
SF contributions are of opposite signs. As expected, the total effect
of relativity increases with the increase in Z. For a dihedral angle of
45○, the relativistic effects go from 5% to 7% for oxygen, up to a dif-
ference of two orders of magnitude and change of sign for polonium.
In addition, the SO contribution to MPV

iso (209Po) is between 23 and 26
times greater than its SF counterpart. The SO effects are important
already for H2Se2 even from a qualitative point of view. They are
responsible for the change in the sign of total MPV

iso (77Se) and also for
the increase in its absolute value of up to three times, with respect to
its NR limit. On the other hand, correlation contribution does not

have a strong impact on the behavior of MPV
iso with respect to the

dihedral angle.
While the systems studied in this work are of minor interest

from an experimental point of view, we provide an investigation of
the expected size of the PV contributions to the NSR constants. We
have found that for 209Po in H2Po2, the PV-NSR contribution is of
the order of 1 mHz. It is important to stress that parity-conserving
isotropic NSR constants29 are also very dependent on the inclusion
of relativistic effects. In fact, the 4c-DC calculations of Miso(209Po) in
H2Po2 at RPA, DFT-PBE0, and DFT-KT3 levels of theory give val-
ues between −280 and −160 kHz for the different dihedral angles,
whereas their NR counterparts range between −140 and −120 kHz.
These results give us the opportunity to compare the differences
in the orders of magnitude of PV and parity-conserving contribu-
tions to the NSR (isotropic) constants. A natural extension of the
work presented here is to search for promising molecules for mea-
surements that are experimentally accessible and benefit from large
PV-NSR contributions. We will use the insights from earlier works
on PV-NMR-shielding28,76–81 as a starting point to identify potential
candidates for further computational investigations.

SUPPLEMENTARY MATERIAL

See the supplementary material for the complete set of calcu-
lations of PV-NSR and PV-NMR shieldings in the studied H2X2
(X =17O, 33S, 77Se, 125Te, and 209Po) molecules.
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B. Helmich-Paris, M. Iliaš, C. R. Jacob, S. Knecht, J. K. Laerdahl, M. L. Vidal, M.
K. Nayak, M. Olejniczak, J. M. H. Olsen, M. Pernpointner, B. Senjean, A. Shee, A.
Sunaga, and J. N. P. van Stralen, J. Chem. Phys. 152, 204104 (2020).
60K. G. Dyall, Theor. Chem. Acc. 135, 128 (2016).
61K. G. Dyall, Theor. Chem. Acc. 99, 366 (1998).

J. Chem. Phys. 155, 134307 (2021); doi: 10.1063/5.0065487 155, 134307-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0065487
https://doi.org/10.1103/physrev.104.254
https://doi.org/10.1103/physrev.105.1413
https://doi.org/10.1103/physrev.105.1413
https://doi.org/10.1002/anie.200290005
https://doi.org/10.1051/jphys:019740035012089900
https://doi.org/10.1126/science.275.5307.1
https://doi.org/10.1103/physrevlett.42.343
https://doi.org/10.1016/0370-2693(82)90736-5
https://doi.org/10.1103/physrevlett.51.2089
https://doi.org/10.1103/physrevlett.67.2784
https://doi.org/10.1103/physrevlett.103.071601
https://doi.org/10.1016/0375-9601(75)90064-x
https://doi.org/10.1002/chir.20911
https://doi.org/10.1080/00268976.2013.816444
https://doi.org/10.1070/qel16880
https://doi.org/10.1016/0375-9601(86)90072-1
https://doi.org/10.1209/0295-5075/5/3/006
https://doi.org/10.1080/00268979609484479
https://doi.org/10.1103/physreva.68.033402
https://doi.org/10.1002/cphc.200390070
https://doi.org/10.1063/1.1961321
https://doi.org/10.1103/physreva.74.032105
https://doi.org/10.1063/1.2218333
https://doi.org/10.1063/1.3103643
https://doi.org/10.1103/physreva.96.042119
https://doi.org/10.1103/physreva.96.042119
https://doi.org/10.1063/1.4721627
https://doi.org/10.1063/1.4796461
https://doi.org/10.1063/1.4797496
https://doi.org/10.1021/jz302146m
https://doi.org/10.1021/jz302146m
https://doi.org/10.1021/acs.jctc.5b00276
https://doi.org/10.1021/acs.jctc.5b00276
https://doi.org/10.1103/physreva.60.4439
https://doi.org/10.1063/1.480900
https://doi.org/10.1063/1.2436886
https://doi.org/10.1021/cr2002239
https://doi.org/10.1070/rc2013v082n02abeh004350
https://doi.org/10.1039/c3cp52685b
https://doi.org/10.1080/01442350903432865
https://doi.org/10.1063/1.1522407
https://doi.org/10.1103/physrevd.45.1602
http://physics.nist.gov/constants
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/physrevd.50.1173
https://doi.org/10.1016/0370-2693(84)90140-0
https://doi.org/10.1063/1.4819958
https://doi.org/10.1063/1.1525808
https://doi.org/10.1002/qua.25487
https://doi.org/10.1063/1.4901422
https://doi.org/10.1063/1.479181
https://doi.org/10.1063/1.1725962
https://doi.org/10.1021/cr60292a003
https://doi.org/10.1016/0092-640x(89)90008-9
http://dx.doi.org/10.5281/zenodo.3572669
http://www.diracprogram.org
https://doi.org/10.1063/5.0004844
https://doi.org/10.1007/s00214-016-1884-y
https://doi.org/10.1007/s002140050017


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

62K. G. Dyall, Theor. Chem. Acc. 108, 365 (2002).
63K. G. Dyall, Theor. Chem. Acc. 115, 441 (2006).
64K. G. Dyall, Theor. Chem. Acc. 131, 1217 (2012).
65T. Saue, in Advances in Quantum Chemistry, edited by J. R. Sabin (Academic,
San Diego, 2005), Vol. 48, pp. 383–405.
66L. Visscher, Theor Chem Acc 98, 68–70 (1997).
67L. Visscher and K. G. Dyall, At. Data Nucl. Data Tables 67, 207 (1997).
68T. W. Keal and D. J. Tozer, J. Chem. Phys. 121, 5654 (2004).
69C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
70I. A. Aucar, C. A. Giménez, and G. A. Aucar, RSC Adv. 8, 20234 (2018).
71D. F. E. Bajac, I. A. Aucar, and G. A. Aucar, Phys. Rev. A 104, 012805 (2021).
72T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).

73A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, J. Chem. Phys.
110, 7667 (1999).
74W. Kutzelnigg, Phys. Rev. A 67, 032109 (2003).
75A. F. Maldonado and G. A. Aucar, Phys. Chem. Chem. Phys. 11, 5615 (2009).
76R. Berger and J. L. Stuber, Mol. Phys. 105, 41 (2007).
77R. Zanasi, S. Pelloni, and P. Lazzeretti, J. Comput. Chem. 28, 2159 (2007).
78D. Figgen and P. Schwerdtfeger, Phys. Rev. A 78, 012511 (2008).
79V. Weijo, P. Manninen, and J. Vaara, Theor. Chem. Acc. 121, 53 (2008).
80V. Weijo, M. B. Hansen, O. Christiansen, and P. Manninen, Chem. Phys. Lett.
470, 166 (2009).
81S. Nahrwold, R. Berger, and P. Schwerdtfeger, J. Chem. Phys. 140, 024305
(2014).

J. Chem. Phys. 155, 134307 (2021); doi: 10.1063/5.0065487 155, 134307-15

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1007/s00214-002-0396-0
https://doi.org/10.1007/s00214-006-0126-0
https://doi.org/10.1007/s00214-012-1217-8
https://doi.org/10.1007/s002140050280
https://doi.org/10.1006/adnd.1997.0751
https://doi.org/10.1063/1.1784777
https://doi.org/10.1063/1.478522
https://doi.org/10.1039/c8ra03948h
https://doi.org/10.1103/physreva.104.012805
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.478678
https://doi.org/10.1103/physreva.67.032109
https://doi.org/10.1039/b820609k
https://doi.org/10.1080/00268970601126759
https://doi.org/10.1002/jcc.20708
https://doi.org/10.1103/physreva.78.012511
https://doi.org/10.1007/s00214-008-0447-2
https://doi.org/10.1016/j.cplett.2009.01.022
https://doi.org/10.1063/1.4852176



