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Abstract: The functional components of vibrating mesh nebulizers are a piezoelectric ceramic with
a mesh mounted on one side, a reservoir, and a driving circuit. The piezoelectric material vibrates
at a specific intrinsic frequency, and when the mechanical resonance frequency of the piezoelectric
ceramic and the frequency of the applied electrical signal match, the vibration amplitude of the
ceramic is greatest. In the present study, nebulizing performances were tested with respect to driving
voltage amplitude after automatic resonance frequency tuning (ARFT) and/or impedance matching
(IM) for salbutamol and glycerol solutions. A 1% mismatch of resonance frequency reduced the
output rate by 11.0~30.1% and increased particle size by 1.6~7.7% and power consumption increased
by 6.6~13.6%. Driving at 30 Vpp after ARFT and IM increased output rate by 45% and decreased
power consumption by 31% compared with operation at nominal resonance frequency without IM at
50 Vpp. Nebulization of viscous solutions was also enhanced by applying ARFT with IM. The study
shows the application of ARFT with IM improves vibrating mesh nebulizer performance and reduces
power consumption.

Keywords: drug delivery; nebulizer; resonance frequency; piezoelectric

1. Introduction

Nebulizers of various types are commercially available, such as jet, ultrasonic, and
mesh types, for the treatment of various respiratory diseases [1–4]. Jet nebulizers can be
used to aerosolize liquid, have simple constructions, and are trusted medical devices, but
vibrate and are large and noisy. On the other hand, ultrasonic nebulizers are relatively
quieter and smaller than jet nebulizer but involve heating liquids depending on operating
frequency, which damages drugs [1]. Vibrating mesh nebulizers generate aerosols using a
piezoelectric ceramic (Lead Zirconate Titanate, PZT) and mesh (Figure 1) and are portable,
relatively quiet, and do not heat nebulizing solutions.

Vibrating mesh nebulizers are composed of a piezoelectric ceramic with mesh mounted
on one side, a reservoir, and a driving circuit. The piezoelectric material vibrates at high
frequencies when driven at a specific frequency and voltage. In addition, nebulization
characteristics (output rate and particle size) are affected by the physicochemical properties
of solutions [5,6]. Much research has been performed to enhance nebulization characteris-
tics by optimizing mesh properties, such as mesh hole size, pitch, and hole number [7–13].
Recent research suggests a relationship exists between output rate and voltage at a fixed
resonance frequency and that output rate increases with driving voltage [14,15]. The
piezoelectric element vibrates most at its resonant frequency [15,16], and output rates
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peak when the driving frequency is close to the resonance frequency of the piezoelectric
ceramic [16]. However, actual resonance frequencies differ from the nominal resonance
frequencies issued by manufacturers. The resonance frequency is dependent on impedance
changes induced by temperature and pressure of the PZT and/or medium viscosity [17–19].
Automatic resonance frequency tuning (ARFT) was devised to find resonance frequencies
automatically [20,21]. Resonance frequencies can be determined by monitoring maxi-
mum driving current while changing driving frequency before driving the piezoelectric.
Impedance matching (IM) is a method of reducing the impedance difference between the
driving circuit and a PZT [22–24] and can improve energy transfer to a PZT and, thus,
generate larger vibrations.
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Figure 1. Vibrating mesh nebulizer working principle.

In this paper, we sought to determine the effects of driving frequency and voltage
on the output rate, particle size, and power consumption of a vibrating mesh nebulizer
and investigated the impacts of the driving voltage, impedance matching, and automatic
resonance frequency tuning using salbutamol and glycerol solutions.

2. Materials and Methods
2.1. PZT for Nebulizer

A PZT for a nebulizer must have a large displacement and be rigid enough to vibrate
the mesh. Of the ‘hard’ PZTs, one with a high Curie temperature (Tc), electromechanical
constant (Kt), elastic constant (Y33), and mechanical quality factor (Qm), should be consid-
ered [25]. In the present study, the PZT was made of a modified PZT-4 SMMOD14F135
(Steiner & Martins, Davenport, FL, USA). Figure 2 summarizes the parameters of the PZT
and metal mesh used.
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2.2. PZT Driving Circuit

A previously described vibrating mesh nebulizer demonstration circuit (microchip,
Chandler, AZ, USA) was modified for this study [21]. Figure 3 shows the automatic
resonance frequency tuning (ARFT) method used to find the resonance frequency by
monitoring the maximum driving current while changing the driving frequency from 90 to
160 kHz.
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2.3. Impedance Matching (IM)

Connecting the transformer to a PZT can change PZT impedance [22–24]. The winding
ratio of the transformer was calculated based on the assumption that the wattages of the
primary and secondary circuits were identical. The impedance of the PZT at resonance
frequency was measured using an impedance analyzer (E4990A, Keysight, Santa Rosa,
CA, USA) and fed into the equation below to calculate the winding ratio. The output
impedance of the driving system was 53.2 Ω. The transformer was made by winding a
0.2 mm diameter copper wire around a ferrite core (outer diameter 10 mm, inner diameter
5 mm, thickness 3 mm).

L1 : L2 =
√

Zout (driving circuit) :
√

Z(PZT) (1)

2.4. Output Rate

Test solutions (1 mL) were accurately weighed using a precision balance (XT320M,
Precisa, Dietikon, Switzerland) and placed in the nebulizer reservoir. After the driving
system had operated for 1 min, solution weight was remeasured, and the output rate was
calculated using the following equation. Volumes were determined gravimetrically, and
evaporation was negligible [26–28].

Output rate (mL/min) =
Charged volume (mL)− Residual volume (mL)

Nebulization time (min)
(2)

2.5. Power Consumption

To calculate power consumptions, voltages and currents applied to the PZT were
measured using an oscilloscope (DSOX4034A, Keysight, Santa Rosa, CA, USA).
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2.6. Particle Size

Particle sizes were measured as mass median diameters (MMDs) using a Spraytec
(Malvern Instruments, Malvern, UK), which analyzes droplet size distribution by laser
diffraction [27–29]. Fifty percent volume diameters (Dv(50)) were automatically calculated
by Spraytec software. Average sizes of particles generated over 1 min from 10 s after
starting delivery were recorded.

2.7. Nebulization Characteristics by Driving Frequency and Voltage

Output rates, particle sizes, and power consumptions were measured for salbutamol
solution, according to driving frequency and voltage after IM. Resonance frequencies (Fr)
of 3 PZT samples were determined by ARFT, and then driving frequencies were set to Fr ±
0~3% (in 1% steps). The driving voltage was set to 50, 60, 70, 80, or 90 Vpp (Table 1). Salbuta-
mol (Sigma–Aldrich Co., St. Louis, MO, USA) was prepared and used at 0.1% (M/V), which
is the standard for measuring particle sizes in ISO 27427:2013 [30], by dissolving salbutamol
powder in saline to a concentration of 1 mg/mL. Figure 4 shows the experimental settings
used for measuring output rate, power consumption, and particle size.

Table 1. Driving frequency and voltage conditions.

Voltage (Vpp) Frequency Impedance Matching

50~90 (10 Vpp interval) Resonance frequency (Fr) Applied
Fr ± 3% (1% interval)
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2.8. Nebulization Characteristics after ARFT and IM

Output rates, particle sizes, and power consumptions were measured for different
driving voltages (30, 40, 50 Vpp) with or without ARFT and/or IM (Table 2). Salbutamol
nebulizing solutions were used as is routinely used for nebulizer testing or 17.5%, which
has a viscosity of 1.48 mPa·s.

2.9. Temperature Profile during Nebulization

The increase in solution temperature caused drug degradation in the nebulizer [1]. The
temperature was measured to confirm the heating effect of ARFT and IM. Two milliliters
of saline and glycerol solution were nebulized by ARFT and ARFT + IM at 50 Vpp. The
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temperature was measured for 5 min in a reservoir using a digital multimeter (34465A,
Keysight, Santa Rosa, CA, USA) with a k-type thermocouple.

Table 2. Effects of automatic resonance frequency tuning (ARFT) and impedance matching (IM) on
experimental conditions.

Experimental Condition Purpose

50 Vpp + Nominal resonance frequency (NF) Control
50 Vpp + NF + Impedance matching (IM) IM effect

50 Vpp + Automatic resonance frequency tuning (ARFT) ARFT effect
50 Vpp + ARFT + IM ARFT + IM effect
40 Vpp + ARFT + IM ARFT + IM + driving voltage effect
30 Vpp + ARFT + IM ARFT + IM + driving voltage effect

2.10. Statistical Analysis

A two-way analysis of variance followed by Tukey’s test was used to determine the
significances of differences between the experimental condition and the 50 Vpp + nominal
resonance frequency as control in each solution. The paired t-test was used to compare
results for glycerol and salbutamol solutions. Statistical analysis was performed using SPSS
Ver. 25 (IBM, Armonk, NY, USA). Results are presented as means ± SDs, and p-values of
<0.05 were considered significant.

3. Results
3.1. Nebulization Characteristics by Driving Frequency and Voltage

As shown in Figure 5, output rates and power consumption increased significantly as
driving voltage increased. In Figure 5a, output rates for driving frequencies not equal to res-
onance frequencies were significantly reduced. Output rates were reduced by 11.0~30.1%,
17.5~45.2%, and 24.0~46.4% at driving frequency discrepancies of Fr ± 1%, 2%, and 3%,
respectively. Percentage output rates versus output rates at maximum voltage 70 Vpp sug-
gested by the manufacturer were −45.4~19.0%, −42.8~21.2%, −45.0~22.9%, −35.0~19.4%,
−40.8~32.1%, 47.5~41.2%, and −64.0~35.4% at these driving frequency discrepancies, re-
spectively. In Figure 5b, power consumptions decreased significantly at non-resonance
driving frequencies and reduced by 6.6~13.6%, 9.5~19.2%, and 11.0~22.5% for driving
frequency discrepancies of Fr ± 1%, 2%, and 3%, respectively. Power consumption changes
were −36.4~39.5%, −39.4~41.2%, −35.6~44.0%, −33.4~44.0%, −35.7~44.9%, −38.1~42.2%,
and −34.9~39.5% for 70 Vpp at these driving frequency discrepancies, respectively. Particle
sizes were significantly greater at non-resonance driving frequencies at constant driving
voltage (Figure 5c). Particle size increases by frequencies changes from the resonance
frequency were 1.6~7.7%, 1.8~11.3%, 4.0~15.0% at Fr ± 1%, 2%, and 3%, respectively.

3.2. Resonance Frequency Changes by Impedance Matching

Resonance frequencies were determined before and after impedance matching (Table 3).
Three PZT samples with the same nominal resonance frequency (135 ± 8 kHz) had different
measured resonance frequencies. Resonance frequency differences were 2.4~2.9% after IM
because of the inductance change caused by the transformer.

3.3. Dependence of Nebulization Characteristics on ARFT and IM

A shown in result Section 3.1, significant changes in nebulization characteristics were
observed when driving frequency was altered by only ± 1%. Resonance frequencies of
PZTs are known to depend on temperature, pressure, and medium viscosity [5,6,17], which
means the resonance frequencies of individual PZTs should be determined.
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Table 3. Resonance frequencies of piezoelectric ceramics (PZTs) before and after impedance matching.

PZT Sample
Resonance Frequency (kHz)

Before Impedance Matching After Impedance Matching

#1 144.80 ± 0.49 141.30 ± 0.36
#2 148.32 ± 0.26 144.10 ± 0.15
#3 153.47 ± 0.01 149.00 ± 0.00

Figure 6 shows the effects of ARFT and IM on output rate, particle size, and power
consumption. Experimental groups were compared with the control (50 Vpp and nominal
resonance frequency (NF)). Figure 6a shows the output rate of ‘50 Vpp + NF + IM’, ‘50 Vpp
+ ARFT’, and ‘50 Vpp + ARFT + IM’ changed by −25%, 60%, and 115% versus the control.
In combination, ARFT and IM increased output rates at the same driving voltage. The
output rates of ‘ARFT + IM’ at 40 and 30 Vpp were 21% and 33% lower than at 50 Vpp. The
output rate of ‘30 Vpp + ARFT + IM’ was 45% higher than that of the control. For glycerol
solution, ‘50 Vpp + NF’ and ‘50 Vpp + ARFT + IM’ were not nebulized. The output rates of
‘ARFT + IM’ at 50, 40, and 30 Vpp were 350%, 275%, and 125% higher, respectively, than
at ‘50 Vpp + ARFT’. Even when the driving frequency was at the resonance frequency, the
amplitude of mesh vibration was not enough to nebulize glycerol solution. As shown in
Figure 5a, the output rate of salbutamol solution was increased due to increasing driving
voltage. We expect a commercial nebulizer output rate of >0.25 mL/min for the glycerol
solution when a higher 50 Vpp is used in conjunction with ‘ARFT + IM’. The output rates
of glycerol solution were compared with salbutamol solution for each experimental group
(‘50 Vpp + ARFT’, ‘50 Vpp + ARFT + IM’, ‘40 Vpp + ARFT + IM’, and ‘30 Vpp + ARFT + IM’)
and were 87.5%, 58.1%, 55.9%, and 69.0% lower, respectively.
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Figure 6. Nebulization characteristics of salbutamol and glycerol solutions after automatic resonance
frequency tuning (ARFT) and impedance matching (IM): (a) Output rates; (b) Power consumptions;
(c) Particle sizes. Results are presented as means ± SDs. * p < 0.05 versus ‘50 Vpp + NF’ for salbutamol,
** p < 0.05 versus ‘50 Vpp + ARFT’ for glycerol, # p < 0.05 versus salbutamol.

Power consumptions of ‘50 Vpp + NF + IM’, ‘50 Vpp + ARFT’, and ‘50 Vpp + ARFT + IM’
were 14%, 15%, and 41% higher than that of the control (Figure 6b), which means that
ARFT and IM raised power transfer by matching output impedances of the driving system
and the PZT. The power consumptions of ‘ARFT + IM’ at 40 and 30 Vpp were −6 and
−31% that of the control, respectively. Considering the tradeoff between output rate and
power consumption, ‘30 Vpp + ARFT + IM’ was deemed acceptable for the achievement
of the minimum requirement because it had an output rate of >0.29 mL/min and 0.69 W.
For glycerol solution, power consumptions of ‘ARFT + IM’ at 50, 40, and 30 Vpp were 8%,
−40%, and −52%, respectively, compared with ‘50 Vpp + ARFT’. ‘ARFT + IM’ was more
effective at decreasing power consumption than ARFT. Power consumptions required for
the nebulization of glycerol solution in the experimental groups were 78.3%, 80.9%, 84.0%,
and 82.6% lower than in the correlation salbutamol experimental groups’. These results
suggested that the energy transfer to the PZT was reduced by the viscous solution because
of the impedance change [18,19].

In Figure 6c, particle sizes (MMDs) of ‘50 Vpp + NF’, ‘50 Vpp + NF + IM’, ‘50 Vpp
+ ARFT’, and ‘50 Vpp + ARFT + IM’ were 7.20, 7.42, 6.78, and 6.29 µm, respectively, for
salbutamol solution. These results show the ARFT and IM might reduce particle size. The
particle sizes of ‘ARFT + IM’ at 50, 40, and 30 Vpp for salbutamol solution were 6.29, 6.76,
and 6.92 µm, respectively. Considering output rate and power consumption, ‘30 Vpp +
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ARFT + IM’ was acceptable. The particle size requirement in ISO 27427:2013 is a mass
median aerodynamic diameter (MMAD) of <5 µm, which is 29% smaller than MMD for
salbutamol [30,31]. In addition, particle size could be reduced by increasing driving voltage
(Figure 5c). For glycerol solution, particle sizes of ‘50 Vpp + ARFT’, ‘ARFT + IM’ at 50, 40,
and 30 Vpp were 6.13, 5.20, 5.44, and 6.05 µm, respectively. The particle sizes of glycerol
solution in the experimental groups were 9.6%, 21.9%, 19.5%, and 12.6%, respectively, less
than that of salbutamol.

In Figure 7, the temperature of saline and glycerol was increased to 36.3 ◦C and 32.1 ◦C,
respectively. The unfolding temperature of proteins, such as chymotrypsin, insulin, BSA,
candida cylindracea lipase, and citrate synthase, was 48~77 ◦C [1,32,33].
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4. Discussion

The driving frequency of the PZT used in the present study was 127~143 kHz, that is,
6% removed from its nominal frequency of 135 kHz. Measured resonance frequencies of
before and after impedance matching differed by −7.3~13.3% and 4.4~10.4%, respectively.
Driving voltage and frequency significantly influenced output rates, power consumptions,
and particle sizes. As the driving voltage increased, particle size decreased significantly,
presumably because higher driving voltages deformed the nebulizing mesh [14,16]. For
a difference of only 1% in resonance frequency, output rates decreased by 11.0~30.1%,
particle sizes increased by 1.6~7.7%, and power consumption increased by 6.6~13.6%.

The PZT resonance frequencies were sensitive to medium temperature, pressure, and
viscosity. In addition, changes in resonance frequency due to IM should be considered.
Because it is not practical to determine the actual resonance frequencies of every PZT and
adjust driving frequencies accordingly, we propose using ARFT. In combination, ARFT and
IM provided better glycerol nebulization, higher output rates, and smaller particle sizes,
but increased power consumptions. Driving with ‘30 Vpp + ARFT + IM’ decreased power
consumption by 31% and increased output rate by 45% compared with 50 Vpp at a nominal
resonance frequency. Commercial nebulizers have an output rate of about 0.25 mL/min
and power consumption of 1.4~2 W. ‘30 Vpp + ARFT + IM’ produced an output rate of
0.29 mL/min at 0.69 W for salbutamol solution, which means ‘ARFT + IM’ enabled the
use of lower voltages at power consumptions but maintained performance and extended
battery lifetime. Ghazanfari et al. showed that higher concentrations of glycerol reduced
output rates [5], and in the present study, glycerol output rates were lower than salbutamol
output rates, and the use of ‘ARFT + IM’ increased output rates.
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The limitations of this study are that only one type of PZT was tested, particle sizes
were evaluated by MMD instead of MMAD, and the same impedance matching transformer
was used for salbutamol and glycerol nebulization. Although the driving voltages used
were up to 50 Vpp (Figure 6) in glycerol solution, higher output rates are expected by higher
driving voltage.

5. Conclusions

The resonance frequency and driving voltage should be considered for optimal nebu-
lization performance. Automatic resonance frequency tuning could enhance nebulization
performances in terms of output rates, particle sizes, and power consumption compared
with those achieved when nominal resonance frequencies without impedance matching
are used. Our findings showed that the use of ARFT and IM improves nebulization
characteristics at lower power consumption levels.
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