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Abstract. Recurring bursts of chirping Alfvén modes that were observed in JT-60U

tokamak plasmas driven by negative-ion-based neutral beams (N-NB) are reproduced

in first-principle simulations performed with an extended version of the hybrid code

MEGA. This code simulates the interactions between gyrokinetic fast ions and

magnetohydrodynamic (MHD) modes in the presence of a realistic fast ion source

and collisions, so that it self-consistently captures dynamics across a wide range of

time scales (0.01–100 ms). The simulation confirms that the experimentally observed

phenomena known as “fast frequency sweeping (fast FS) modes” are caused by bursts

of energetic particle modes (EPM) with dominant toroidal mode number n = 1. On the

long time scale (1–10 ms), the simulation reproduces the chirping range (40–60 kHz),

the burst duration (few ms) and intervals (5-10 ms). On the short time scale (0.01–0.1

ms), it reproduces pulsations and phase jumps, which we interpret as the result of

beating between multiple resonant wave packets. Having reproduced at multiple levels

of detail the dynamics of low-amplitude long-wavelength Alfvén modes driven by N-NB

ions, the next goal is to reproduce and explain abrupt large-amplitude events (ALE)

that were seen in the same experiments at longer time intervals (10–100 ms).

1. Introduction

In tokamak experiments with strong drive from fast ions, which are performed with the

goal of exploring burning-plasma-relevant regimes, one often sees intermittent bursts of

magnetohydrodynamic (MHD) wave activity as well as abrupt relaxation events. For

instance, when powerful negative-ion-based neutral beams (N-NB) were injected into5

high-beta JT-60U tokamak plasmas, so-called “fast frequency sweeping modes” (fast

FS modes) and “abrupt large-amplitude events” (ALE) were routinely observed [1, 2, 3]

and found to cause a significant amount of fast ion transport [4, 5]. Motivated by these

observations, the goals of the simulation study reported in the present paper and related

future publications are as follows:10
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(i) Reproduce the bursts of chirping modes and ALEs using numerical simulations and,

at the same time, validate the simulation code and mathematical model against

experimental measurements of MHD wave activity and fast ion transport.

(ii) Use the results of the validated first-principle simulations to study, interpret and

explain the physical mechanisms that are responsible for the observations.5

(iii) Pave the way for making reliable predictions for fast ion confinement in tokamak

experiments and burning plasmas, including the construction of reduced models to

be used for quick parameter surveys and the development of operational scenarios.

These are challenging tasks, because we have to assume that many of the relevant

processes can act and interact on comparable or overlapping time scales; namely,10

τwave . τbounce ∼ τpulse . τcoll ∼ τsrc < τequil. (1)

The relation τwave . τbounce ∼ τpulse means that the resonant instabilities and the

associated fast ion transport may occur in short pulses, whose length τpulse is comparable

to the bounce cycle τbounce of fast ions that are resonantly trapped inside MHD waves.

Moreover, both τpulse and τbounce may last only a few (. 10) wave oscillation periods15

τwave. By allowing the three time scales τwave . τbounce ∼ τpulse to overlap, one allows for

short but intense MHD wave activity. Concerning the right half of Eq. (1), note that the

primary role of collisions and sources is to fill and refill resonant regions in fast ion phase

space (x,v). Collisions also contribute to the draining of resonances and decorrelation

of wave-particle interactions. Consequently, their time scales τcoll and τsrc vary as widely20

as the widths of resonances (δx, δv), and we must assume that these time scales may

overlap with τbounce and τpulse. The only separation of time scales that we permit is

that all the above processes are assumed to be fast compared to the time scale τequil for

global changes in the equilibrium magnetic field geometry and bulk plasma profiles.

Because of the wide range of potentially overlapping time scales, and because the25

geometry and nonuniformity of the plasma as well as the specific form of the fast ion

source are likely to play an important role, the study of such phenomena relies heavily

on numerical simulations and their validation against experimental measurements. The

validation of the simulation results should be carried out on several levels of detail (e.g.,

short and long time scales) because the scope of the physics models and the resolution30

of the phase space covered by the simulations are limited by practical constraints (e.g.,

computational speed and memory), so it is difficult to ascertain a priori that all relevant

physical mechanisms have been included and are simulated with a sufficient degree of

realism.

Fortunately, as we will show in this and future papers, the numerical simulations35

that can be carried out on present-day supercomputers already perform remarkably well

for the chirping modes and ALEs that we are interested in. One important factor is that

these phenomena are dominated by electromagnetic fluctuations that are localized in

the core plasma, have long wavelength (toroidal mode numbers n = 1–3) and frequencies

in the band of shear Alfvén waves (f ∼ fA), so that they fall into the validity regime40
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Figure 1. Beam lines of the two negative-ion-based neutral beams (N-NB) in JT-60U

(a) and five examples of magnetic signals (b)-(f) taken during the time window 4–5 s,

where the safety factor in the plasma core is thought to be in the range 1 . q . 2 in

all five shots. Under these conditions, large spikes called “abrupt large events (ALE)”

and bursts of chirping fluctuations called “fast frequency-sweeping (fast FS) modes”

were routinely observed. A logarithmic color scale is used for the spectrograms in order

to show fluctuations with large and small amplitudes in the 30–70 kHz range. In this

paper. we reproduce and explain the chirping modes using numerical simulations.

of MHD models. A kinetic treatment is required only for the fast ions, so that an

MHD-kinetic hybrid model can be applied [6].

Another factor that raises the probability for the simulations to be both successful

and practically relevant, even if carried out only for very few test cases, is the remarkable

robustness with which bursts of chirping modes and ALEs occur in JT-60U experiments.5

These phenomena are routinely observed under a relatively wide range of experimental

conditions, as long as the safety factor in the plasma core lies in the range 1 . q . 2,

as is also envisioned for ITER and DEMO. Note also that, in JT-60U, these chirps and

ALEs occur in the presence of N-NBs injecting deuterons in the range 300–400 keV.

Similar MHD fluctuations driven by alpha particles that have slowed down to a few 10010

keV may help to reduce the accumulation of helium ash in the core of a burning plasma.

In the present paper, our goal is to reproduce the bursts of chirping modes seen

in N-NB-driven JT-60U plasmas using global nonlinear hybrid simulations performed

in realistic geometry, and including realistic fast ion sources and collisions. This

distinguishes the present work from similar earlier studies performed with simplified15

equilibria and fast ion sources [7, 8]. We use an extended version of the code MEGA

[9, 10], similar to the one that was recently used for long-time simulations of DIII-D
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tokamak scenarios with positive-ion-based neutral beams (P-NB) [11, 12].

Figure 1 shows the N-NB configuration in JT-60U and five examples of magnetic

fluctuation signals exhibiting short intense spikes (“ALEs”) interspersed with bursts

of chirping modes (“fast FS modes”). In these shots, one can see some common and

robust features, such as the frequency range where the fluctuations occur (30-70 kHz),5

as well as the intervals (5–10 ms) and duration of the bursts of chirping modes (few ms).

However, one can also observe differences, such as the dominance of up- or downward

chirping, or the coexistence of both. Presumably due to the (slow) evolution of the

plasma profiles, the chirping behavior may change during a single experiment on the

time scale of a few 100 ms, as is shown in Fig. 2 for shot E036378, where N-NB injection10

was (unintentionally) pulsed.

Our simulations can be regarded as successful if they reproduce the common robust

features as well as one of the specific chirping behaviors.

Shots E032359–E039672 in Fig. 1(b)–1(e) and Fig. 2 belong to campaigns where

chirping modes and ALEs were intensively studied in the past [1, 2, 4, 5]. Unfortunately,15

the N-NBs were unstable at that time, so attempts were made to produce similar

equilibria by tuning, shot by shot, the power of the P-NBs that produce ions with

relatively low birth energies of typically 85 keV and less. This led to some differences in

the densities and beta values as illustrated in Table 1, and it is likely that the shape of

the safety factor profile also varied. These differences are thought to be the main reason20

for the different mean frequencies and chirping behavior in Figs. 1 and 2.

Shot E048424 in Fig. 1(f) belongs to a campaign that followed an upgrade of a

digitizer for the magnetic sensors (E044000 and after). For instance, the upgrade allowed

to increase the sampling frequency for the so-called “saddle loop” coil system from 40

kHz to 500 kHz, so that it became possible to distinguish different toroidal harmonics25

n = 0–4 of fast-ion-driven modes in the 30–70 kHz range. Compared to Mirnov coils,

the saddle loops also offer a better signal-to-noise ratio for low mode numbers, owing to

the large surface area of each coil. Results of such measurements are presented in this

paper for the first time.

Spectrograms such as those shown in Fig. 1 are wide-spread in the literature, so30

that they have shaped the common image of chirping modes. However, since these

spectrograms are computed with Fourier transforms over relatively long time windows

of about 1 ms, they smear over more rapid dynamics that may be important for

constructing an accurate physical picture of the underlying processes. For instance,

the fluctuations often occur in short pulses that last only a fraction of a millisecond.35

Moreover, between many of these pulses, the phase of the oscillations appears to flip

abruptly. To our knowledge, this was first recognized in a study of chirping Alfvén modes

driven by ion-cyclotron-resonance-heated (ICRH) ions on JET [14]. More recently,

similar observations were reported from HL-2A in the presence of P-NB ions [15].

Here, we will demonstrate that our self-consistent hybrid simulations reproduce the40

chirps seen on the millisecond time scale in spectrograms such as those in Fig. 1, as

well as the pulsations and phase jumps that occur on the time scales of 0.01–0.1 ms.
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JT−60U shot E036378:  N−NB pulse 3.93 s − 4.27 s

ALE (± 2.3) ALE (± 6) ALE (± 4)

N−NB
off (75% pwr.) (100% pwr.) N−NB off

Time [ms]

N−NB on

(75% pwr.) (100% pwr.)

N−NB on N−NB off

(A) (B)

N−NB on

Figure 2. Different chirping patterns seen in JT-60U shot E036378 (A) shortly after

the restart of N-NB injection at tstart = 3.93 s, and (B) around the end of the N-NB

pulse at tend = 4.27 s. The N-NBs were off for nearly 200 ms, resumed operation at

tstart = 3.93 s at 75% of their peak power, and reached 100% around t ≈ 4.02, s. Note

that the spikes seen at t > 4.3 s, where the beams are off, are not ALEs and do not

cause fast ion avalanches.

Shot P-NB N-NB ENNB
0 ne li 〈β〉 Remarks and

[MW] [MW] [keV] 1019m−3 [%] references

E032359 0.8 4.0 360 1.1 1.2 0.52 Fig. 5 [1], Figs. 6+10 [2],

Fig. 2 [3], Fig. 1 in [13]

E036378 1.31 2.64 338 1.5 0.8 0.85 N-NB on and off

E036379 2.62 2.7 346 1.5 0.9 1.04 —

E036932 1.77 3.8 356 1.2 1.0 0.98 —

E039672 4.2 4.9 400 1.6 0.97 0.93 Fig. 12(d) in [3]

E048424 1.6 2.34 303 1.3 1.2 0.75 New digitizer (E044000+)

Table 1. This table shows how the beam power at the plasma entrance and N-NB

birth energy ENNB
0 varied between different shots due to experimental constraints, and

how this affected the line-averaged electron density ne, the internal inductance per

unit length li, and the volume-averaged beta 〈β〉. The values shown are for t = 4 s.

Furthermore, we will show that the pulsations and phase jumps can also be found in the

database of N-NB-driven JT-60U experiments, and we will present evidence suggesting

that these phenomena can be explained in terms of beat waves that result from the

interference between two or more coexisting Alfvénic wave packets.

This paper is organized as follows. In Section 2, we describe the scenario setup,5

physics model and numerical scheme. The simulation results and comparisons with

experimental measurements of chirping modes are presented in Section 3, followed by

a discussion of chirping and beating waves in Section 4. A summary, conclusions and

outlook to future work are given in Section 5.
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Location of magnetic axis R0 = 3.395 m, Z0 = 0.204 m

Toroidal field B0 = 1.203 T

Low-field side minor radius alfs = 0.66 m

Alfvén frequency fA0 = 209.1 kHz = vA0/(2πR0)

Deuterium ion density ni0 = 1.731× 1019 m−3

Plasma current Ip = 0.571 MA

Toroidal beta β0 = 3.37%

N-NB power, birth energy PNNB = 5 MW, E0 = 400 keV

Table 2. Plasma and beam parameters for the simulated scenario. The case is based

on JT-60U shot E039672 at 4 s [4]. Subscripts “0” indicate values at the magnetic

axis.

2. Scenario setup, physics model and numerical scheme

In order to be able to achieve our validation and interpretation goals, it is essential that

all relevant physical mechanisms are captured by the model equations. At the same

time, unnecessary physics overhead should be eliminated in order to make the desired

long-time simulations feasible on presently available computational resources. It is also5

preferable to set up the simulation scenario such that it represents the experimental

conditions as closely as possible within the experimental error bars. In this section, we

describe how we have set up this scenario and what choices we have made with regard

to the physics model in order to reproduce the dynamics of interest.

2.1. MHD equilibrium and coordinates10

Table 2 summarizes some key parameters of the scenario simulated, which is based on

a time slice of JT-60U shot E039672 at 4 s. Around this time, chirping modes and

ALEs were routinely observed in this and similar discharges, as Figs. 1 and 2 show. In

all cases, the plasma consisted primarily of deuterium. Impurities (mainly carbon) are

ignored. Plasma rotation (few kHz) is also ignored since we are concerned with modes15

at relatively high frequencies around 30–70 kHz.

Figure 3(a) shows the shape of the wall and plasma boundary in the poloidal (R,Z)

plane, as well as the contours of the poloidal magnetic flux function Ψ(R,Z). The

magnetic field B is expressed in terms of Ψ as

B = ∇ζ ×∇Ψ + I(Ψ)∇ζ. (2)20

The toroidal magnetic field BT = RB · ∇ζ = I/R and toroidal current density

JT = RJ · ∇ζ = Jζ/R are both positive along the angle ζ. Here, ζ is chosen to

be the reverse of the geometric toroidal angle ϕ = −ζ of the standard right-handed

cylindrical coordinate system (R,ϕ, Z).

The magnetic geometry given in terms of the functions Ψ(R,Z) and I(Ψ) was25

reconstructed by solving the Grad-Shafranov equation using the MHD equilibrium code

MEUDAS [16]. MEUDAS requires information about the magnetic coils in JT-60U as
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Figure 3. Plasma geometry and profiles based on experimental measurements made

in JT-60U shot E039672 at 4 s [4], which is used as a reference scenario in this work.

Panel (a) shows the contours of the equilibrium poloidal flux Ψ(R,Z), the plasma

boundary and the wall in a poloidal cross-section of the torus. Panels (b)–(d) show

the radial profiles of the safety factor q(ρ), the total toroidal beta β(ρ) of the plasma,

the number densities n(ρ) and temperatures T (ρ) of electrons (“e”) and thermal bulk

ions (“i”). We consider this to be a pure deuterium plasma. Note that the shape of

the safety factor near the plasma center is uncertain and there may have been a region

with negative shear in shot E039672 (cf. Appendix B).

well as estimates for the radial profiles of the safety factor q(ψ) = B ·∇ζ/B ·∇ϑf and

plasma pressure P (ψ).

For spatial Fourier analyses of the signals inside the plasma boundary, we use

toroidal flux coordinates (ψ, ϑf , ζ). Here, the poloidal angle ϑf lies in the poloidal plane,

so that it is orthogonal to the toroidal angle (∇ϑf ·∇ζ = 0). Its increment is given by5

∆ϑf = ∆ζBP/BT with BP = B ·∇ϑf/|∇ϑf |. The normalized flux 0 ≤ ψ ≤ 1 serves

as a radial-like coordinate defined to be zero at the (magnetic) axis‡ and unity at the

plasma boundary.

Figure 3(b) shows the profiles of the safety factor q(ρ) and total plasma beta

β(ρ) ≡ 2µ0P (ρ)/B2
0 as functions of ρ =

√
ψ. The on-axis value of the safety factor10

is q0 ≈ 1.35 and there is a q = 2 rational surface at about 2/3 of the plasma radius.

The plasma beta has a relatively high on-axis value of β0 ≈ 3.4%. The estimation of

q(ρ) and β(ρ) has been a challenging task because we are considering plasmas where

high β values were achieved by applying strong N-NB drive and by operating with a

relatively weak magnetic field strength of B0 ≈ 1 T. In such a weak field, motional Stark15

emission (MSE) measurements do not yield reliable information about the safety factor

in the plasma core. Thus, in addition to using global constraints such as the plasma

current Ip, the estimated shape of the q profile shown in Fig. 3(b) is largely based on

MHD spectroscopy as described in Appendix B. The procedure used to estimate the

beta profile β(ρ) is described in Appendix C.20

It is assumed that the background equilibrium defined by q(ρ) and β(ρ) remains

unchanged during the course of the simulation. This is reasonable because the total

pressure will vary by no more than 10% (even during ALEs) and because the longest

‡ Throughout this paper the term “axis” refers to the magnetic axis, where ∇Ψ = 0.
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time scale considered is about 50 ms (a typical ALE period), while τequil > 100 ms.

2.2. MHD model with fast ion coupling term

The dynamics of the bulk plasma are described by full MHD equations that are coupled

to the effective current density vector of fast ions, jh,eff , via the momentum balance

equation. The form of the equations solved by MEGA [9, 10] is as follows:5

∂ρb/∂t = −∇ · (ρbu) + χ∇2ρb + Sρ (3)

ρb∂u/∂t = − ρbu ·∇u−∇pb + (j − jh,eff)×B + Su

−
[
∇× (νρb∇× u) +

4

3
∇(νρb∇ · u)

]
, (4)

∂B/∂t = −∇×E, (5)

E = − u×B + ηj + SE, (6)

µ0j = ∇×B, (7)

∂pb/∂t = −∇ · (pbu)− (Γ− 1)pb∇ · u + χ∇2pb

+ νρb(Γ− 1)

[
(∇× u)2 +

4

3
(∇ · u)2

]
+ (Γ− 1)(j − jh,eff) · (ηj + SE) + Sp. (8)

Here, ρb and pb are the density and scalar pressure of the bulk plasma, u is the single-

fluid MHD velocity vector, B and E are the magnetic and electric field vectors, and

j is the total current density of the plasma, including the fast ion component. Since

equilibrium flows are ignored, E = δE(t) and u = δu(t) consist only of fluctuations

and are zero at t = 0. All other fields consist of a fixed non-zero equilibrium component10

and a fluctuating component; for instance, j(t) = jeq + δj(t). The source terms

Sρ = − χ∇2ρb,eq, (9)

Su = ∇pb,eq − (jeq − jh,eq)×Beq, (10)

SE = − ηjeq, (11)

Sp = − χ∇2pb,eq, (12)

are used to enforce equilibrium MHD force balance and compensate the diffusion and

dissipation of the equilibrium fields ρb,eq, pb,eq, jeq and Beq. The energy dissipated by

resistive and viscous diffusion is converted into heat in the thermodynamic equation of

state (8) for the bulk pressure pb.15

The values of the electric resistivity η, viscosity ν and thermal diffusivity χ are

fixed at µ0η = ν = χ = 10−6vA0R0. Compressibility is controlled by the specific heat

ratio, which is fixed at Γ = 5/3. For a justification of these values, see our recent

sensitivity study in Ref. [17]. There, it was also noted that the primary role of the

diffusion coefficients is to realize MHD closure by dissipating small-scale structures20

whose evolution is not described by the MHD model in a physical way. Moreover,

diffusion controlled by χ is also used to dissipate unphysical artifacts that may develop
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in the advected scalar fields ρb and pb in the course of long-time simulations due to the

absence of parallel streaming of particles in the MHD model.

The effective current density of fast ion guiding centers, jh,eff = jd,eff + jmag,

consists of drift and magnetization currents, which are computed from the guiding center

distribution Fh as5

jd,eff =

∫
d3vFhqh(Ugc − v∗E), jmag = −∇×

∫
d3vFhµb̂; (13)

where b̂ = B/B is the unit vector along the magnetic field, µ = mhv
2
⊥/(2B) is the

magnetic moment, qh the electric charge, and Ugc is the guiding center velocity defined

in Eqs. (14)–(17) below. By subtracting v∗E from the integrand of jd,eff in Eq. (13), we

enforce the exact quasineutral cancellation of the E×B drift and ignore the correction10

(1−B∗/B)vE, which is small for fast ions.S
The simulation domain is a rectangular torus set around the wall as shown in

Fig. 3(a), and it is discretized in cylinder coordinates (R,ϕ, Z), where ϕ = −ζ. The

MHD equations (3)–(8) are solved inside this domain using standard 4th-order Runge-

Kutta and finite difference schemes, while suppressing velocity fluctuations δu at and15

beyond the plasma boundary, which is shown as a dash-dotted line in Fig. 3(a). This

boundary condition suppresses external modes. In order to avoid possible numerical

problems at the magnetic X-point of the JT-60U divertor configuration, the plasma

boundary is defined to lie at 98% of the flux space within the separatrix.

Following the analyses presented in Refs. [17, 18], the cylinder coordinates (R,ϕ, Z)20

are discretized using (NR, Nϕ, NZ) = (384, 96, 352) grid points, which is sufficient

to simulate long-wavelength fluctuations with toroidal mode numbers n = 0–4.

Parallelization is performed through spatial domain decomposition. The self-consistent

long-time simulations were run using 4096 MPI processes (16 in each spatial dimension).

The time step for the MHD module is ∆tmhd×ωci = 0.05 in units of the deuteron Larmor25

frequency ωci = eB0/mD. This corresponds to ∆tmhd × ωA0 ≈ 1.1 × 10−3 Alfvén times

(≈ 1 ns), with ωA0 ≡ vA0/R0 = 2π × 209.1 kHz.

2.3. Guiding center equations of motion

The fast ion phase space is sampled by simulation particles, which follow the orbits of

guiding centers as prescribed by the following equations of motion [19]:30

Ṙgc =
(
v∗‖ + v∗E + vB

)
≡ Ugc, (14)

mhv‖v̇‖ = v∗‖ · (qhE − µ∇B) , (15)

with

ρ‖ ≡
mhv‖
qhB

, B∗ ≡ B[1 + ρ‖b̂ · (∇× b̂)], v∗E =
E × b̂

B∗
, (16)

S Since fast ions move at Alfvénic velocities, v‖/vA0 ∼ 1, the ratio of the term (1 − B∗/B)vE to the

curvature drift contained in v∗‖ is of order O(a/R0 × vE/v‖) ∼ (10−3...10−2), even during an ALE,

where the electric drift reaches a magnitude of vEϑ/vA0 ∼ 10−2 for a short interval of about 0.1 ms.
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Figure 4. N-NB ion birth distribution Fbirth used in OFMC simulations (a,d), and the

corresponding equilibrated source distribution Fsrc used in MEGA simulations (b,e).

Fbirth is represented by Nbirth = 5k test particles. Fsrc is represented by Nsrc = 131k

simulation particles, which are distributed along the unperturbed guiding center orbits

that start from the birth points given by Fbirth. (a)–(c): Beta fields β(R,Z) and their

radial profiles β(X) evaluated at Z = Z0 and plotted as functions of X = R − R0.

(d)–(f): Spatially averaged velocity distributions F (E,α) and F (E).

v∗‖ =
v‖
B∗

(
B + ρ‖B∇× b̂

)
, vB = − µ

qhB∗
∇B × b̂; (17)

where the magnetic moment is adiabatically conserved: µ̇ ≡ dµ/dt = 0. Using the

standard 4th-order Runge-Kutta scheme, the particles are pushed with time steps of

size ∆tpush × ωci = 0.20, which is four times larger than the MHD time step. The

simulation particles are allowed to exit the plasma and traverse the vacuum region as

shown in Fig. 2(a) of Ref. [20]. Particles that collide with the wall are considered lost.5

The evolution of the fast ion guiding center distribution Fh(Z, t) is represented with

the full-f method, and the first-order particle-in-cell (PIC) method is used to map the

field values to the particle positions and the particle weights to the spatial grid. Finite

Larmor radius (FLR) effects are taken into account using Ngyro = 4 satellite particles

that are placed around the guiding center positions as illustrated in Fig. 1 of Ref. [17].10

Electromagnetic forces acting on the simulation particles are computed by averaging

the field values at the satellite positions. The fast ion current density jh,eff is computed

by distributing the weights of simulation particles equally to all satellites and, from

there, mapping the weights to the spatial grid. After that, a Fourier filter is applied to

jh,eff(R,ϕ, Z) along the toroidal angle, keeping only the harmonics n = 1, 2, 3.15

2.4. Fast ion source

The fast ions are born along the two beam lines shown in Fig. 1(a). Their birth

distribution Fbirth(R,Z, ζ, E, v‖) was computed using the ionization model described

in Ref. [21], which was implemented in the code OFMC [22, 23]. Figure 4(a) shows its
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projection into the poloidal (R,Z) plane in the form of the toroidally averaged beta field

βbirth(R,Z) =
∫

dζ R0

2πR

∫
d3v
ni0

Fbirth
E

mhv
2
A0

. Its radial profile βbirth(X) at the height of the

magnetic axis, Z = Z0 = 0.204 m, is shown in Fig. 4(c) as a function of X = R − R0.

Figure 4(d) shows the spatially averaged velocity distribution Fbirth(E,α). The kinetic

energy E = mhv
2/2 is normalized by the nominal birth energy E0 = mhv

2
0/2 = 400 keV,5

so that there is a sharp peak around E/E0 = 1. Along the pitch angle α ≡ sin−1(v‖/v)

the birth distribution peaks near α/π ≈ 0.27 (v‖/v ≈ 0.75).

For historical reasons, we do not use Fbirth in MEGA directly but assume that

the fast ion birth distribution will have time to fully equilibrate before it is modified

by collisions. In other words, we assume that the fast ions will spread out along10

their unperturbed guiding center orbits before undergoing significant collisional slow-

down or scattering. This equilibrated source distribution Fsrc is obtained from Fbirth

by applying the orbit-based particle loading scheme described in Ref. [24]. The birth

distribution Fbirth, which consists of Nbirth = 5k samples, provides the initial positions

for unperturbed guiding center orbits. 622 orbits were discarded because they intersect15

the wall (so-called “prompt loss”). Each of the remaining orbits is sampled by 30

simulation particles that are distributed along the orbit contour at spatial intervals that

correspond to equal intervals in time (cf. Eq. (30) in Ref. [24]). This gave a 4-d source

distribution Fsrc(R,Z,E, v‖) that is sampled by Nsrc = 131k particles and whose 2-d

projections βsrc(R,Z) and Fsrc(E,α) are shown in Figs. 4(b) and 4(e).20

In Figs. 4(c) and 4(f), the 1-d projections βsrc(X) and Fsrc(E) (pitch-angle average)

of the equilibrated source distribution used in MEGA are compared to those of the

non-equilibrium birth distribution Fbirth used in OFMC. The difference seen between

the energy distributions Fbirth(E) and Fsrc(E) in Fig. 4(f) amounts to 12.4%, which is

precisely the fraction of particles in Fbirth that would be promptly lost in the absence of25

collisions.

At t = 0, the simulation starts without any fast ions. At each injection time

step ∆tinj, a certain number of new simulation particle is launched with initial guiding

center coordinates Zgc = (R,ϕ, Z,E, v‖) that are sampled randomly from the 4-d

source distribution Fsrc(R,Z,E, v‖) and the toroidal angle 0 ≤ ϕ < 2π. In the self-30

consistent MEGA simulation that includes MHD, sources and collisions, we inject one

new simulation particle per pushing time step, ∆tinj = ∆tpush, which gives 0.3M particles

per millisecond of physical time. During the 35 ms time interval examined in this paper,

about 10.5M particles are injected and 9.8M of them are still confined at the end of the

simulation. “Classical” MEGA simulations, which do not include MHD fluctuations,35

are run with fewer particles and larger time steps.

2.5. Fast ion collisions and sink

In MEGA simulations reported in earlier works by Todo et al. [8, 11, 12], who performed

long-time simulations for TFTR and DIII-D tokamak scenarios, a Monte Carlo collision

model formulated by Boozer & Kuo-Petravic [25] was used, which describes the slow-40
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Figure 5. Schematic illustration of the collision model given by Eqs. (18)–(23).

down and pitch-angle scattering processes explicitly as a gradual reduction of velocity

v =
√

2E/mh and a random diffusion along the pitch angle coordinate Λ = v⊥/v.

In the present work, we adopt the collision model used in the OFMC code [22].

As shown in Fig. 5, the model describes in a very elementary way how, during a time

step ∆tcoll, the velocity vector components of a fast ion change from v = (v‖, v⊥) to5

new values v′ = (v′‖, v
′
⊥) due to collisions with thermal bulk ions and electrons. Using

elementary geometric rules, Fig. 5 can be expressed mathematically as

(v′)2 = (vL + ∆vL)2 + ∆v2
T, (v′⊥)2 = (v′)2 − (v′‖)

2, (18)

v∗‖
vL + ∆vL

=
v‖
vL

,
v′‖ − v∗‖

∆vT sin Ω
=
v⊥
vL

,

which can be transformed into the following equations for the new velocity components:

v′‖ =
v‖
v

(v + ∆vL) +
v⊥
v

∆vT sin Ω, (19)

v′⊥ =
√

(vL + ∆vL)2 + ∆v2
T − (v′‖)

2. (20)

The subscripts “L” and “T” indicate components that are longitudinal and transverse

to the initial velocity vector v, so that v ≡ |v| = vL. The deflection angle Ω in the10

transverse plane is a random variable sampled uniformly from the interval 0 ≤ Ω < 2π.

The quantities ∆vL and ∆vT are random variables with Gaussian distributions. Their

mean values 〈∆v〉 and standard deviations 〈ṽ2〉 ≡ 〈(∆v − 〈∆v〉)2〉 are computed using

formulas taken from the textbook by Trubnikov [26]: for “test particles (t)” (i.e., fast

ions) colliding with Maxwellian “plasma particles (p)” (i.e., bulk ions and electrons),15
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we have 〈∆vT〉p = 0 and

〈∆vL〉p
∆tcollv2

A0/R0

= Cp
n̂p(ψt)

T̂p(ψt)

µ(χp(vt))

2χp(vt)
, (21)

〈∆ṽ2
L〉p

∆tcollv3
A0/R0

= Dp
n̂p(ψt)

T̂
1/2
p (ψt)

µ(χp(vt))

2χ
3/2
p (vt)

, (22)

〈∆ṽ2
T〉p

∆tcollv3
A0/R0

= Dp
n̂p(ψt)

T̂
1/2
p (ψt)

[
µ(χp(vt)) + µ′(χp(vt))

χ
1/2
p (vt)

− µ(χp(vt))

2χ
3/2
p (vt)

]
. (23)

The function µ(χ) and its argument are defined as

µ(χ) = Erf(
√
χ)− 2

√
χ

π
exp(−χ), µ′ ≡ dµ

dχ
, χp ≡

mpv
2
t

2Tp

=
v2

t

v2
p

. (24)

The scalar coefficients are defined as

Cp ≡
vβ
vA0

3
√
π

2

Mt

τ̂s0

Z2
p

(
mp

mt

+ 1

)
, Dp ≡

v2
β

v2
A0

3
√
π

2

Mt

τ̂s0

Z2
p

√
mp

mt

, (25)

with5

v2
β ≡

2Te0

mt

, Mt ≡
(
mt

me

)3/2(
1 +

mt

me

)−1

, (26)

The slowing down time is computed as

τ̂s0 = 6.3× 1014 × At(Te0 [keV])3/2

Z2
t ln Λe0ne0 [m−3]

vA0

R0

R0

ρA0

. (27)

with mass number At ≡ mt/mD, charge number Zt ≡ qt/e and Column logarithm

ln Λe0 = 16.10

The longitudinal slow-down 〈∆vL〉 dominates at high energies E > Ecrit due to

collisional drag from electrons. Ignoring impurities, the critical energy is approximately

Ecrit ≈ 14.8 × Te[keV] . 30 keV (cf. Eq. (15) in Ref. [27]). Transverse diffusion 〈∆v2
T〉

occurs mainly in the form of pitch-angle scattering through collisions with bulk ions,

and it plays an important role at lower energies, E . Ecrit. Finally, 〈∆v2
L〉 captures the15

longitudinal part of energy diffusion, which is weak in the cases considered here.

If the collision operation is applied at the position of a satellite particle, one obtains

a spatial diffusion effect that is associated with the nonuniform collisionality across the

diameter of a fast ion Larmor orbit. This may play a role at energies below 100 keV,

where pitch-angle scattering has a significant effect; although, the smaller Larmor radius20

may compensate it at least partially. In the high energy range of interest here, where

collisional slow-down is dominant, the spatial diffusion due to fast ion FLR was found

to cause a negligibly small difference: ∆βh(ρ)/βh(ρ) is within 2% after 100 ms. Thus, in

the present work, collisions are simply evaluated at the guiding center position, so that

spatial diffusion arises only through changes in the magnetic drift orbits caused by ∆vL25

and ∆vT.

In the MEGA simulations reported here, collisions are simulated at every particle

pushing time step, ∆tcoll = ∆tpush. Particles that slow down below Emin/E0 = 0.213 (85
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keV) are discarded. Below this energy, fast ions originating from P-NBs were present in

the JT-60U experiments, but they were not included in the source model Fsrc used here

because they are not expected to interact resonantly with the modes of interest.

3. Simulation results and comparison with experiments

Using the collision model described in Section 2.5 together with the source distribution5

Fsrc described in Section 2.4, MEGA can be operated as a “classical” orbit-following

Monte-Carlo code when the MHD solver is turned off. When the MHD solver is turned

on along with sources and collisions, we speak of a “self-consistent” simulation, where

only the background equilibrium and plasma profiles are held fixed.

In this paper, we focus on the dynamics of fast ions and MHD waves during the10

first 35 ms of physical time after the start of beam injection. On the supercomputer

Helios, the classical simulation of 35 ms accumulating 4.9M particles took 28 hours on

256 cores. The self-consistent simulation accumulating 9.8M particles took 39 days

using 4096 cores. Preliminary results obtained with fewer particles and simulating

only the dominant n = 1 mode were presented at meetings and conferences during15

the course of the last three years [28, 29]. The results of the self-consistent MEGA

simulations reported here were obtained with 4 times more simulation particles and

include fluctuations with toroidal mode numbers n = 1–4, where n = 1–3 are driven by

fast ions. The essential features of the earlier preliminary results are reproduced, so we

consider them to be numerically robust.20

First, in Section 3.1, we examine the collisional slow-down and transport of fast

ions. After benchmarking the results of a classical MEGA simulation against OFMC

results, we evaluate the fast ion transport caused by MHD activity in the self-consistent

MEGA simulation.

Second, we examine the MHD activity in detail while comparing the results of the25

self-consistent MEGA simulation with JT-60U experiments. The fundamental type of

shear Alfvén mode responsible for the chirping phenomena is identified in Section 3.2

and its nonlinear dynamics are examined in Sections 3.3 and 3.4.

We will compare our simulation results with experimental data from two JT-60U

experiments. One shot is E036378 after t = 3.93 s (cf. Fig. 2), where the beams resumed30

operation after having been off for nearly 200 ms. The other shot is E048424, where

we consider the dynamics following an ALE at t = 4.34 s (cf. Fig. 1(f)). A significant

portion of fast ions has been convected out during the ALE, and the beams have begun

to restore the fast ion population in the core plasma. These kinds of conditions are

thought to be most closely comparable to the simulated scenario, where beam injection35

starts at t = 0.



Self-consistent long-time simulation of chirping and beating EPMs in JT-60U 15

3 4

−1

0

1

 

 

Z
 [
m

]

0

2

4

6

x 10
−3

3 4

−1

0

1

 

 

 

 

P
it
c
h
 a

n
g
le

 α
 /
 π

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0

2

x 10
16

 

 

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

−1.5 −1 −0.5 0 0.5 1 1.5
0

2

4

6

8
x 10

−3

β
h
(X

) 
@

 Z
=

Z
0

 

 

0.2 0.4 0.6 0.8 1
0

5

10

15
x 10

15

F
h
(E

)

 

 

 

 

3 4

−1

0

1

 

 

 

 

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

OFMC

MEGA (classical)

MEGA (with MHD)

F
h
(E,α)

β
h
(R,Z)

(a)

R [m]R [m]

Energy E / E
0

Energy E / E
0

Energy E / E
0

R [m]

F
h
(E,α)

β
h
(R,Z)

MEGA (classical) MEGA (with MHD)OFMC using F
birth

(b) (c)

(e) (f) (g)

F
h
(E,α) F

h
(E,α)

β
h
(R,Z) β

h
(R,Z)

(h) Energy
distribution

(d) Beta profile
(Z=Z

0
 plane)

R
0
 = 3.395 m

Z
0
 = 0.204 m

X = R − R
0
 [m]

Energy E / E
0

Drop due
to MHD
activity

t = 32.5 ms
N

OFMC
 = 0.5M

N
class

  = 4.6M

N
MHD

 = 9.1M

E
0
 ≈ 400 keV

Fewer particles injected in
cold peripheral plasma on HFS
when using F

src
 instead of F

birth

Steady
state

Step:
9358000

Figure 6. Fast ion distribution at the end of three simulations covering 32.5 ms after

the start of beam injection. The simulations were performed using the OFMC code, the

classical MEGA code and the self-consistent MEGA code (with MHD). The respective

distributions are represented by NOFMC = 0.5M, Nclass = 4.6M, NMHD = 9.1M

simulation particles. Arranged as Fig. 4.

3.1. Collisional slow-down and transport of fast ions

Figure 6 summarizes results of three different simulations covering 32.5 ms after the

start of beam injection. The first was performed with the OFMC code, the second with

the classical MEGA code, and the third with the self-consistent MEGA code.

The contour plots of the beta fields in the poloidal plane, βh(R,Z) in Fig. 6(a)5

and (b), and the corresponding major radial profiles βh(X) evaluated at Z0 = 0.204

m in Fig. 6(d), show excellent agreement between the OFMC and classical MEGA

simulations. Across most of the plasma cross-section, they agree to within 5%. Only

near the plasma boundary — namely, around Xhfs ≈ −0.6 m on the high-field side

and Xlfs ≈ 0.8 m on the low-field side — the relative difference reaches 30–40%. This10

discrepancy in the plasma periphery is to be expected, because the equilibrated source

distribution Fsrc used in MEGA does not include particles that are born on prompt-loss

orbits, which intersect the wall due to large magnetic drifts. The underlying assumption

that collisions are negligible on the short time scale of the first poloidal transit does not

hold in the cold and highly collisional plasma near the boundary. There, the rapid15

collisional slow-down allows these particles to reduce their magnetic drift, so that some

of them may remain confined.

A comparison between the velocity distributions computed with OFMC and MEGA

confirm this explanation. In Fig. 6(h), one can see that the OFMC simulation contains

a group of particles that have already slowed down to E/E0 ≈ 0.25 (100 keV), while20

all particles in the classical MEGA simulation still have higher energies E/E0 & 0.4

(160 keV). Furthermore, the main differences in Figs. 6(e)–(g) can be seen at large pitch

angles α = sin−1(v‖/v) ≈ 0.4π. This region is populated by particles that are born near
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the high-field side plasma boundary, where the beam lines are almost tangential to B.

At t = 32.5 ms, the fast ion distribution has reached a steady state in the energy

range E/E0 & 0.85 (340 keV) as indicated in Fig. 6(h). Here, the sources and sinks

are already in balance. At lower energies, the ion population still grows as the sources

dominate.‖5

In the presence of this partially developed high-energy tail in the deuteron

distribution, resonantly driven modes with low toroidal mode numbers n & 1 are already

destabilized (cf. Fig. 4 of Ref. [18]). Figure 6(d) shows that, as a result of this low-n

MHD activity, the radial profile of the fast ion pressure in the core plasma near X ≈ 0

is reduced by as much as 20%. The properties and dynamics of these MHD modes are10

analyzed in the following Sections 3.2–3.4.

Note that, in the simulations discussed in this work, we do not observe any

significant influence of the relatively steep velocity space gradients seen in Fig. 6. The

dominant modes in the present simulations are primarily driven by radial gradients of

the fast ion pressure, which is not unusual for modes with high Alfvénic frequencies15

(ω ∼ ωA) and low but nonzero toroidal mode numbers (n & 1).P Meanwhile, indirect

effects of velocity space gradients — in particular, via zonal structures and other n = 0

modes that they can drive — are absent in the present simulations, because we substitute

into Eq. (4) only the n = 1, 2, 3 harmonics of jh,eff . Thus, the n = 0 harmonic is driven

only via MHD nonlinearities here, and we will ignore it in the following because its20

amplitude turns out to be typically 2 orders of magnitude smaller than the dominant

n = 1 harmonic.

3.2. Physical interpretation of chirping modes as bursts of n = 1 EPMs

Figure 7(a) shows a few bursts of chirping modes that occurred during the time window

4340 ms ≤ t ≤ 4375 ms after an ALE in shot E048424. Clearly, the n = 1 signal25

dominates during the chirping modes in the experiment. Figure 7(b) shows that similar

bursty mode activity dominated by n = 1 is reproduced in the self-consistent MEGA

simulations. Note that, due to the non-slip boundary condition (δu = 0) used in the

simulations, we are not able to measure magnetic fluctuations at the wall as in the

experiments. Instead, we have to use quantities measured in the plasma interior. This30

caveat limits somewhat the comparability of experimental and simulation results. The

“amplitude” An(t) = W
1/2
n (t) plotted in Fig. 7(b) is the square root of the volume-

integrated fluctuation energy Wn = 1
2

∫
d3x (|ρ1/2

b δu|2n + |δB|2n) for n > 0.

In order to clarify the physical nature of the chirping modes, it is essential to

determine the spatial structure of the fluctuations in addition to measuring their35

frequency spectrum. However, in the JT-60U experiments, it was not possible to obtain

‖ In the present case, it takes about 500 ms for the classical fast ion tail to reach a steady state down

to thermal energies of a few keV.
P This can be anticipated from the conservation of the quantity C = ωnPζ −nE, which would hold for

the time-dependent canonical toroidal momentum Pζ(t) and kinetic energy E(t) of a particle subject

to a fluctuating field characterized by a single toroidal harmonic n and constant frequency ωn.
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Figure 7. The chirping modes observed in JT-60U experiments (E) are reproduced as

bursts of n = 1 energetic particle modes (EPM) in the self-consistent MEGA simulation

(S). Panels (a) and (b) show the time traces of mode amplitude for n = 1, 2, 3. For the

dominant n = 1 harmonic in the simulation, panels (c) and (d) show a snapshot of the

electrostatic (ES) potential fluctuation spectrum |δφ|n=1(f, r) in the frequency-radius

plane obtained with FFTs over two different time windows: (c) ∆twin = 0.04 ms and

(d) 1 ms. White dotted lines represent the shear Alfvén wave (SAW) continua in the

slow-sound approximation with poloidal mode numbers m = 1, 2, 3.

information about the radial location of the modes. Soft X-ray diagnostics and detectors

used for reflectometry and interferometry were unavailable due to the high neutron

fluxes, and the electron cyclotron emission (ECE) diagnostics could not be operated at

the low magnetic field strength around B ≈ 1 T. Thus, for the radial mode structure,

we will have to rely entirely on the results of our “numerical experiment”.5

Assuming that the MHD velocity is dominated by E × B drift, we compute the

electrostatic potential δΦ(r, ϑ, ζ, t) =
∑

n e
−inζδφn(r, ϑ, t) from δu ≈ 1

B
b̂×∇δΦ. Here,

r is the volume-averaged minor radius of the plasma, with 0 ≤ r(ψ)/a ≤ 1. Next, using

a fast Fourier transform (FFT) weighted by a Hanning time window H(τ − t) of size

∆twin, we compute the fluctuation spectrum |δφ|n(ω, r) in the frequency-radius plane as10

|δφ|n(ω, r|ϑ0, t) =

∣∣∣∣∫ dτ δφn(r, ϑ0, τ)H(τ − t)eiω(τ−t)
∣∣∣∣ . (28)

Here, we use the field values at poloidal angle ϑ0 = 0; i.e., on the low-field side of the

magnetic axis. The Hanning window is padded with zeros (∆tpad = 8×∆twin) on both

sides in order to sharpen the image. The frequency will be given as f = ω/(2π) in kHz.

For a snapshot taken at t = 27.5 ms, Fig. 7(c) and (d) shows the fluctuation spectra15
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|δφ|n=1(f, r) for the dominant n = 1 harmonic and two different Hanning window sizes:

∆twin = 0.04 ms and 1.0 ms. One can see that the n = 1 signal originates from a resonant

destabilization of the shear Alfvén wave (SAW) continuum branch with poloidal mode

number m = 2. This suggests that the chirping modes seen in JT-60U are bursts of

n = 1 energetic particle modes (EPM [30]). This result of the self-consistent MEGA5

simulation confirms the predictions of previous conventional initial-value simulations

(beginning with Ref. [31]).

A similar analysis (not shown) was performed for the higher-order harmonics n = 2

and n = 3. It is found that the n = 2 dynamics are primarily the result of distortions of

the fundamental n = 1 mode: they are observed in the same radial domain as the n = 110

mode and mirror the n = 1 chirps at twice the frequency. The n = 3 dynamics consist

of fluctuations driven by MHD nonlinearities as well as a fast-ion-driven n = 3 mode

similar to that described in Ref. [18]. Note that the results reported in Ref. [18] were

obtained for the zero-Larmor-radius limit, whereas the present simulations include the

effect of the large fast ion Larmor radii via gyroaveraging. This reduces the efficiency15

of resonant interactions with increasing toroidal mode number n. For instance, in the

case of n = 3, gyroaveraging was shown to increase the threshold for the transition from

weak to strong mode activity [17]. This is one of the main reasons why the n = 3 mode

amplitude remains relatively low during the initial 35 ms interval analyzed here.

3.3. Frequency chirping on the millisecond scale20

If one sacrifices resolution in time and uses a larger FFT window ∆twin = 1.0

ms as in Fig. 7(d), the fluctuation spectrum |δφ|n=1(f, r) exhibits multiple sharp

peaks at different frequencies. The motion of these peaks along the (m,n) = (2, 1)

SAW continuum branch causes up- and downward frequency chirping observed on the

millisecond scale, which is the topic of this section.25

Large FFT windows with sizes around ∆twin = 1.0 ms have been routinely used in

previous analyses of experimental data [1, 2, 3, 4], producing spectrograms like those

in Figs. 1 and 2. The complete data analysis procedure goes as follows. Starting from

the raw Mirnov coil signals, which are sampled at 0.5–1 MHz and are proportional to

δḂϑ, the magnetic fluctuation signal is recovered via cumulative trapezoidal integration:30

δBϑ(t) =
∫ t

0
dt′ δḂϑ(t′). Then, a 30–80 kHz band-pass filter is applied, using zero-phase

forward and reverse digital filtering with a 2nd-order Butterworth filter.

Figure 8(a) shows the magnetic fluctuation signal δBϑ(t) for the time window

3930 ms ≤ t ≤ 3965 ms of JT-60U shot E036378, immediately after the revival of the

N-NB system. Figure 8(c) shows δBϑ(t) for the time window 4340 ms ≤ t ≤ 4375 ms of35

shot E048424, immediately after an ALE, whose large amplitude (±40 × 10−5) is not

fully shown. FFTs over a Hanning time window of size ∆twin = 1.0 ms advancing at

time steps of size ∆tstep = 0.2 ms yield the spectrograms shown in Figs. 8(b) and (d).

The self-consistent MEGA simulation directly yields the magnetic fluctuation signal

δBϑ(t) anywhere inside the plasma boundary. Figure 8(e) shows the evolution of the40
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Figure 8. Comparison between magnetic fluctuation signals and the resulting

spectrograms in experiments (E) and simulation (S). The spectrograms are plotted

using a linear color scale and were computed using FFTs over a running time window

with large size ∆twin = 1 ms.

cosine component of its (m,n) = (2, 1) harmonic evaluated at radius r/a = 0.46 and

sampled at 288 kHz. One can see in Fig. 8(e) that the n = 1 EPMs occur in bursts that

last a few ms each and are separated by intervals of about 5–10 ms. The corresponding

spectrogram in Fig. 8(f) shows alternating down- and upward chirps that last about 1–5

ms and extend about ±(5–10) kHz around 50 kHz. Note that the detailed form of the5

chirps seen in the spectrogram may vary somewhat depending on the radial location

and the poloidal harmonic for which it is evaluated. In order to illustrate this, Fig. 8(g)

shows another spectrogram obtained from the radially averaged n = 1 signal, summed

over all poloidal harmonics.+

+ MEGA solves the MHD equations directly in cylinder coordinates (R,Z, ϕ). The results are then
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Figure 9. Comparison between chirping behavior of the n = 1 EPM in self-consistent

MEGA simulations run with different values of the specific heat ratio: Γ = 1 (left) and

Γ = 3 (right). Here, only fluctuations with toroidal mode number n = 1 were simulated

and the size of the Hanning window used for the FFTs is ∆twin = 1.0 ms. The two

panels in the center show snapshots of the fluctuation spectra of the ES potential taken

at t = 20 ms in the respective simulation. Arrows indicate the direction into which

the spectral peak moves along the (m,n) = (2, 1) SAW continuum at that time.

These simulation results (burst duration, burst intervals, frequency range) are

qualitatively and quantitatively similar to the experimental results in many shots,

including E036378 and E048424 shown in Fig. 8(a)–(d). In these particular cases, one

can even see a comparable delay of about 5–10 ms before the first low-amplitude bursts

of chirping modes become visible after the (re)start of N-NB injection (E036378 and5

simulation) or after the ALE (E048424).

However, one can also see some differences in the details; not only between

simulation and experiment, but also among the experimental results. One quantitative

difference worth noting is that the chirping range may be shifted up or down by about

5–10 kHz. As was discussed in Section 1, this can be attributed to different densities10

and beta values in different cases. On the qualitative side, one can see variations in

the dominant direction of chirping, which may also depend on the plasma parameters.

Indeed, in Section 2 of Ref. [32], we have argued that the structure of the SAW continuum

may play an important role in determining the chirping direction of an EPM. This means

that the various plasma parameters do not necessarily change the chirping behavior15

directly, but they may do so by altering the location of the continuous spectra relative

to the fast ion resonances.

In order to demonstrate this, we employ a convenient method used in our recent

sensitivity study [17], where we varied the ratio of specific heats Γ between the extreme

limits Γ = 1 and Γ = 3. The results of self-consistent MEGA simulations of an n = 120

EPM for Γ = 1 and 3 are summarized in Fig. 9. In both cases, the chirps start near

the same frequency of 50 kHz. This is because the geometry of the MHD equilibrium

and the fast ion orbits are identical, so the resonances remain fixed as well. The specific

mapped to toroidal flux coordinates (ψ, ϑf , ζ), decomposed into poloidal and toroidal Fourier harmonics

(m,n) and stored for further processing. In the present simulations, harmonics with 0 ≤ m ≤ 12 and

1 ≤ n ≤ 4 are recorded, each with 101 radial grid points uniformly spaced in 0 ≤ ψ ≤ 1.
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heat ratio controls plasma compressibility in the equation of state (8), so it influences

the size of the compressibility-induced (or “β-induced”) low-frequency gap.

When Γ is reduced to 1 (Fig. 9, left), the SAW continua are shifted downward, so

that the n = 1 EPM is excited closer to the accumulation point of the toroidicity-induced

gap. Here, it appears that the amplitudes of the up-chirping signals are somewhat5

enhanced. When Γ is increased to 3 (Fig. 9, right), the SAW continua are shifted

upward, so that the n = 1 EPM is excited closer to the accumulation point of the

β-induced gap. Here, it appears that the down-chirping signals are enhanced. In both

cases, chirps in the respective other direction prevail, so the effect is not large. This

demonstrates that the present results are only weakly sensitive with respect to the “free”10

parameter Γ.

Since the mode dynamics are very complex (multiple interfering short-lived chirping

modes) and since the fast ion dynamics are still under investigation, we are not yet able

to offer a definitive explanation for why the Γ-induced changes in the SAW continua alter

the chirping behavior in the particular way seen in Fig. 9. The reduced phase mixing15

(“continuum damping”) that the wave packets experience closer to an accumulation

point is likely to play a role. However, other factors (such as resonance conditions, the

associated power transfer rates, and nonlinear phase-space structures) would also have

to be considered.

3.4. Sub-millisecond pulsations and phase jumps due to EPM beating20

Spectrograms computed with low temporal resolution on the millisecond time scale, such

as those in Figs. 8 and 9, give the impression that there are modes that smoothly chirp

upward or downward with slowly varying amplitudes. However, it has been previously

demonstrated in other experiments [14, 15] that the mode amplitudes are subject to

rapid pulsations on the sub-millisecond time scale and that there are often abrupt25

phase jumps between these pulses. In this section, we revisit these phenomena, using

measurements made in JT-60U and in our self-consistent MEGA simulations. On the

basis of these results, a simple explanation will be proposed afterwards.

Figures 10 and 11 show in detail what happens from the point of view of the

magnetic fluctuation signals during a typical downward chirp. In both figures, the30

boxes on the left show a 5 ms time window covering one complete burst of n = 1 EPM

activity. The boxes on the right show a further magnified view of a 1 ms time window,

where one can see what happens on the sub-millisecond scale.

The first panel in each box in Figs. 10 and 11 shows the time trace of the local

magnetic fluctuation signal δBϑ(t). As before, the experimental δBϑ(t) signal is acquired35

at the wall.∗ For the simulation, we show the evolution of the (m,n) = (2, 1) harmonic

∗ Since the magnetic fluctuations in the experiments are measured at the wall, one may expect them

to be polluted by other signals, such as modes with n 6= 1 and fluctuations near the plasma boundary.

However, the good agreement that we find between experiment and simulations suggest that the internal

chirping modes with n = 1 dominate the experimental signal in the 30–70 kHz band by far.
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Figure 10. Pulsations, phase jumps and frequency chirping in the magnetic

fluctuation signals from JT-60U shots E036378 (top) and E048424 (bottom). The

boxes on the left show a 5 ms interval covering one burst of mode activity. The

sub-millisecond details can be seen in the boxes on the right, where a 1 ms interval is

enlarged. Each box shows the time traces of the magnetic fluctuation amplitude δBϑ(t),

the instantaneous complex phase ξ(t) defined in Eq. (30), and the wave frequency f(t)

measured with low temporal resolution (1 ms FT spectrograms, color contours) and

high resolution (inverse of the oscillation period T (t) ∼ 0.2–0.25 ms, circles).

of δBϑ evaluated at r/a = 0.46. One can clearly see the wave oscillations with periods

in the range T = 1/f ≈ 0.020–0.025 ms (40–50 kHz). Moreover, the waves occur in

pulses that last about 0.2–0.3 ms each. If one looks closely, one can see phase jumps

between many of the pulses.

In order to visualize the phase jumps more clearly, we measure the instantaneous5

complex wave phase ξ(t) of the signal relative to oscillations with a given reference

frequency fref = ωref/(2π):

ξ(t) = arg

{∫
dτ δBϑ(τ)H(t− τ)e−iωref(t−τ)

}
. (29)

The time traces of ξ(t) are plotted in the second panel of each box in Figs. 10 and 11.
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Figure 11. Pulsations, phase jumps and frequency chirping in the magnetic

fluctuation signals during the first (top) and second burst (bottom) of n = 1 EPM

activity in the self-consistent MEGA simulation. Arranged as Fig. 10. In panel (d),

the labels (A) and (B) indicate the times at which the snapshots shown in Fig. 12 were

taken.

For the experimental data in Fig. 10 we have chosen fref = 45.911 kHz for E036378

and 39.216 kHz for E048424, respectively. For the simulation data in Figs. 11 we have

chosen fref = 47.734 kHz for the first burst and 49.274 kHz for the second burst. In

order to maximize the temporal resolution, the Hanning window H(t) in Eq. (29) was

chosen to have a small width of only ∆twin = 0.04 ms. Basically, Eq. (29) means that we5

are convolving the magnetic signal δBϑ(t) with a wavelet-like basis function H(τ)e−iωrefτ

whose width barely encompasses two typical wave oscillation periods.

One can see in Figs. 10 and 11 that, both in experiment and simulation, the phase

ξ(t) changes most rapidly between successive instability pulses; i.e., when the wave

amplitude is small. In particular, when the wave amplitude drops to nearly zero, the10

phase performs jumps of size ∆ξ = ±π. Similar pulsations and phase jumps were

previously reported in JET and HL-2A tokamak experiments [14, 15], and they are

reproduced here in self-consistent numerical simulations for the first time.



Self-consistent long-time simulation of chirping and beating EPMs in JT-60U 24

Z
 [
m

]

3 4

−1

0

1

 

 

3 4

−1

0

1

−1

−0.5

0

0.5

10.6 10.7 10.8 10.9

−0.5

0

0.5
Time [ms]

R [m]R [m]

(A) t = 10.69 ms (B) t = 10.79 ms

Local MF
[δB

θ
]
n=1

(t)

Global ES
potential
δΦ

n=1
(R,Z)

Figure 12. Snapshots of the global structure of the electrostatic (ES) potential in the

simulation shown in Fig. 11. One can clearly see the global character of the constructive

and destructive interference at the peak of a pulse (A) and between two pulses (B),

respectively.

Although the time traces of δBϑ(t) shown in the top panels of Figs. 10 and 11 were

measured at only one point in space, the pulsations they show are not localized. As can

be seen in Fig. 12, the entire global mode disappears between successive pulses.

The bottom panel of each box in Figs. 10 and 11 contains a contour plot of the

spectrogram computed from the local δBϑ(t) signal using a large Hanning window size5

∆twin = 1 ms. The chirps seen here amount to only 10–20% of the mode frequency, so

they are difficult to detect by eye in the time traces of the magnetic fluctuation δBϑ(t).

One way of obtaining detailed information about the evolution of the wave frequency

while also retaining high temporal resolution is to plot the time trace of the inverse wave

period 1/T . There are several ways to measure T , and they all give very similar results.10

Overlaid on the spectrograms in the bottom panel in each box of Figs. 10 and 11, we

show the evolution of 1/T measured between successive zero-crossings from δBϑ(t) > 0

to δBϑ(t+ ∆t) < 0.

As they must by definition, the overall trends of the 1/T (t) curves agree with the

gradual down- or upward chirping of the oscillation frequency seen on the 1 ms time15

scale. However, one can also observe in Figs. 10 and 11 that, on the sub-millisecond time

scale, the instantaneous frequency 1/T (t) deviates substantially from the spectrograms

computed with low temporal resolution. Such discrepancies are to be expected since high

resolution in time and high resolution in frequency cannot be achieved simultaneously.

Each quantity plotted in Figs. 10 and 11 captures only a certain aspect of the signal20

while distorting others, and the “truth” may be thought to lie somewhere inbetween.

4. Discussion of chirping and beating

The observations described in the previous section 3.4 give rise to the following questions:

What is the reason for the pulsations and phase jumps? And how much of the chirping

that was seen on the millisecond time scale is “true chirping” in the sense that the25
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oscillation period and the mean frequency, 1/T (t) = f(t).

oscillation frequency of a given mode or wave packet gradually increases or decreases?

The following discussion of these questions is intended to serve as a starting point and

motivation for more detailed studies of the underlying wave-particle interactions.

Many features seen in the time traces of δBϑ(t), ξ(t) and 1/T (t) in Figs. 10 and 11

are reminiscent of beat waves. For illustration and comparison, Fig. 13 shows results5

of the same analysis applied to synthetic signals that are composed of multiple cosine

functions
∑

k Ak cos(2πfkt). For simplicity, we let Ak = 1 for all k = 1, 2, ...

Panels (a)–(c) on the left-hand side of Fig. 13 show an example with two

superimposed oscillations with different downward-chirping frequencies: f1 = 46 → 42

kHz and f2 = 51 → 47 kHz. This case has been set up to be similar to the situation10

in Fig. 11(d)–(f) during the time window 10.6 ms . t . 11.1 ms. The pulse length

τpulse = 1/(f2 − f1) = 0.2 ms, the phase jumps ∆ξ = ±π and the inverse period

1/T = (f1 + f2)/2 = 48.5→ 44.5 kHz are clearly reproduced.

Panels (d)–(f) on the right-hand side of Fig. 13 show an example with three

superimposed oscillations with equidistant constant frequencies f1 = 42 kHz, f2 = 45.515

kHz and f3 = 49 kHz. Except for ignoring the evolution of the frequencies fk, this

case is similar to the situation in Fig. 10(d)–(f) during the time window 3950.4 ms .
t . 3950.8 ms. The alternating small- and large-amplitude pulses with pulse lengths

τ
(1)
pulse = 1/(f3−f1) = 0.2 ms and τ

(2)
pulse = τ

(1)
pulse/3 = 0.067 ms, the phase jumps ∆ξ = +π

and the inverse period 1/T = (f1 + f2 + f3)/3 = 45.5 kHz are clearly reproduced.20

These results suggest that the pulsations and phase jumps are indeed a consequence

of the beating between multiple coexisting n = 1 EPMs.

From the observation of perfect destructive interference that makes the mode

amplitude vanish between the beats, one can infer that the interfering waves have

similar amplitudes around those times. Thus, the beating phenomenon can be used25
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to obtain additional information about the evolution of the individual amplitudes of

the superimposed waves on the sub-millisecond time scale, where the low-resolution

spectrograms are only of little use because the amplitudes are smeared over ±0.5 ms.

Besides all the agreement between the synthetic beats and those seen in simulations

and experiments, one can also find one potentially important difference. In the two-5

wave beating example shown in Fig. 13(a)–(c), we have assumed that the frequencies

of the two waves perform linear downward chirps, just as one may expect from the

low-resolution spectrograms. Noting that, for equal amplitudes Ak, the evolution of the

complex phase ξ(t) is related to the evolution of the oscillation frequency f(t) as

ξ(t) ≈ const.+
N∑
k=1

∫ t

0

dτ 2π(fk(τ)− fref), (30)10

it is clear that a linear time-dependence of the frequencies fk(t) ∝ t implies ξ(t) ∝ t2.

Indeed, such a parabolic time-dependence can be clearly seen in Fig. 13(b) if one

subtracts out the phase jumps. However, one is hard pressed when trying to recognize

a similar parabolic evolution of the phase ξ(t) in Figs. 10(e) and 11(e). Instead,

our impression is that the phases in Figs. 10(e) and 11(e) remain nearly constant15

(ξ(t) = const.) or vary linearly with time (ξ(t) ∝ t) for the duration of each pulse. By

virtue of Eq. (30), this would imply that the mean oscillation frequency f = N−1
∑N

k=1 fk
either matches the reference frequency fref , or that there is a constant frequency

mismatch, f − fref = const.

Since the mode amplitudes in the experiments and simulations also vary in time, it20

is difficult to draw strong conclusions. But if our observation described in the preceding

paragraph is correct, it means that the low-resolution spectrograms such as those in

Figs. 11(l) and 11(f) may be misleading in the sense that the frequency chirping they

show reflects only the trends on the millisecond time scale. On the sub-millisecond

time scale, the oscillation frequency may actually be constant for the duration of each25

pulse and vary in discrete steps from one pulse to the next. The frequency may even

temporarily chirp in the opposite direction. Such details may be important for the

development of theories for chirping modes driven by fast ions.

As a counter-example, Fig. 14 shows the results of an analysis of shot E039672,

where a burst of beating modes is followed by a long-lived mode that performs smooth30

upward frequency chirping without phase jumps or rapid pulsations. Unfortunately, we

are not able to classify this mode, since it was not reproduced in our simulations, so we

do not know its radial structure. Our guess is that it is a core-localized shear Alfvén

mode chirping along continuous spectra in a region of negative magnetic shear, which

is not present in the q(ρ) profile used in our simulations.35

It is possible that the particles trapped around the resonance are able to perform

many nonlinear bounces during the relatively long time scale τpulse ∼ 5 ms of the mode

pulse seen in Fig. 14 for t & 4396. If so, the dynamics of such a long-lived mode may be

captured by theories that assume a large separation between the time scales for wave

pulsation and particle bouncing: τpulse � τbounce. In contrast, the short pulses (beats)40
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Figure 14. Analysis of shot E039672 showing how the evolution of the phase ξ(t) and

frequency 1/T (t) differs between a burst of beating modes (4394 ms . t . 4395.5 ms)

and the subsequent long-lived mode that performs true upward chirping. Note that,

at other times, these two kinds of modes appear simultaneously or in reversed order,

which suggests that they are independent and have different spatial structures.

that dominate in our simulations and in many JT-60U experiments and whose periods

are around τpulse ∼ 0.2 ms ∼ 10×τwave, suggest that the two time scales are comparable:

τpulse ∼ τbounce. In fact, there may be a close physical link between the beating and

wave-particle trapping.

These results and interpretations motivate a detailed analysis of the nonlinear5

interactions between fast ions and rapidly pulsating MHD waves in future work. In

order to further emphasize the importance of sub-millisecond dynamics, let us note that

the typical life time of an ALE is also about 0.3 ms; i.e., similar to the beating period

of the n = 1 EPMs studied above. The main differences are that ALEs have 4–10 times

larger fluctuation amplitudes δBϑ and a larger harmonic content (n = 1, 2 ,3) [33].10

5. Conclusion

In this paper, we have demonstrated that the extended hybrid code MEGA is capable

of reproducing multiple bursts of chirping Alfvén modes that were routinely observed

in N-NB-driven JT-60U tokamak experiments and originally dubbed “fast frequency

sweeping (fast FS) modes”.15

The extended simulation model was described in detail. It consists of full MHD

equations, fast ion guiding center equations of motion with FLR effects, and was now

extended with realistic fast ion sources and collisions, so that it self-consistently captures

dynamics across a wide range of time scales (0.01–100 ms). The model for fast ion sources

and collisions is similar to that used in the well-established orbit-following Monte-Carlo20

code OFMC [22], and MEGA was successfully benchmarked against OFMC.

It is demonstrated that the experimentally observed chirping phenomena can be
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attributed to bursts of energetic particle modes (EPM [34]) with dominant toroidal

mode number n = 1. This result of the self-consistent MEGA simulation confirms the

predictions of previous conventional initial-value simulations that were initialized with

an analytical slowing-down model distribution [10, 13, 31, 35, 36] or with a classical fast

ion distribution computed by the OFMC code [18, 37].5

On the long time scale of 1–10 ms, the self-consistent MEGA simulation of chirping

modes reproduces the chirping range (40–60 kHz), duration (few ms) and intervals (5-10

ms) of the bursts. By varying the plasma compressibility via the specific heat ratio Γ

in the equation of state (8), we demonstrated that the structure of the shear Alfvén

wave continuum influences the chirping phenomenology. Given the uncertainties in10

experimentally measured plasma profiles used for the equilibrium reconstruction, this

may explain some of the differences seen between chirping mode dynamics in different

experiments and our simulation (e.g., dominant up- or downward chirping).

On the short time scale of 0.01–0.1 ms, the simulation reproduces pulsations and

phase jumps, which were previously reported from other experiments [14, 15] and are15

also found in the JT-60U database. Based on an analysis of these results, we have then

shown that these pulses and phase jumps can be explained as the result of the beating

between EPMs that coexist in the same radial domain but at different frequencies.

In the simulated scenario, which was dominated by beating EPMs, it was difficult to

find convincing evidence for “true chirping” in the sense that there is a smooth variation20

of the oscillation frequency of a well-defined mode (or wave packet). Thus, we cannot

rule out the possibility that, during each pulse (or beat), the oscillation frequency may

evolve differently from the long-term trend: it may remain constant or even chirp in the

opposite direction temporarily.

The qualitative and quantitative reproduction of chirping and beating phenomena25

demonstrates that MEGA is capable of simulating with reasonable accuracy the subtle

details of the phase space dynamics of fast ions that interact nonlinearly with the field

of shear Alfvén waves. The results reported here are regarded as a successful validation

of the code with respect to low-amplitude long-wavelength shear Alfvén mode dynamics

on time scales in the range 0.01–10 ms.30

Meanwhile, the validation with respect to large-amplitude MHD fluctuations —

namely, ALEs and their periodic recurrence on the 10–100 ms time scale — has also

made good progress [33], as will be reported elsewhere in detail. Since ALEs cause

avalanche-like fast ion transport (∆βh0/βh0 ∼ 20%) within a short time interval (< 1

ms), a thorough understanding is desirable.35

Numerical experiments in the form of first-principle simulations such as those

reported here produce results whose analysis may help to clarify various open physics

questions, improve our physical picture of fast ion dynamics and, thereby, bridge the

gap between theory and experiments. Results of an orbit-based resonance analysis

[20, 32, 38] applied to the chirping and beating EPM dynamics in the present self-40

consistent long-time simulations will be reported elsewhere. The trigger mechanism

responsible for the onset of ALEs is also under investigation. We anticipate that the
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cumulative changes in the fast ion distribution caused by the chirping n = 1 EPMs

studied here play a key role in setting up the system so that it becomes susceptible to

ALEs.
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Appendix A. Parameter sensitivity issues and the role of self-organization

JT-60U shot E039672 was one of the few discharges, where the N-NB system successfully

reached a birth energy of E0 ≈ 400 keV at 5 MW power. Since we adopted this high-15

performance fast ion source in our simulation, one may question the comparability of

the simulation results with observations made in most other shots, where N-NBs could

be operated reliably only at reduced energy and power, around E0 ≈ 300–360 keV and

2–4 MW.

On the one hand, the different beam parameters can be expected to produce20

different pressure and current profiles. Moreover, the stability of shear Alfvén modes

and conditions for resonance overlaps may vary significantly. For instance, based on a

recent resonance analysis [20], we estimate that a reduction of a particle’s energy from

400 keV to 300 keV implies that the radius where it can resonate with an n = 1 mode

at 50 kHz is shifted outward by about 10–15% of the minor radius. Meanwhile, the25

resonant radius for a 50 kHz n = 3 mode shifts out by less than 5%. Consequently, one

may expect that there are substantial differences between cases with 300 keV and 400

keV beams injected with powers ranging from 2.3 MW to 5 MW.

On the other hand, the remarkable robustness of the phenomena seen in shots where

beam parameters varied in this range suggests that the kind of arguments put forward in30

the previous paragraph may lead to overly pessimistic conclusions; presumably, because

such discussions tend to get lost in details that were taken too much out of context.

Concerning the plasma profiles, in particular q(ρ) and β(ρ) used for equilibrium

reconstruction, there are many different ways to reach similar conditions. When the

beam power is changed, it may just take a different amount of time to reach a certain35

state. Moreover, the plasma has the capability to self-organize itself through pressure-

and current-driven macro- and micro-instabilities. Such processes may give the plasma

profiles a significant degree of resilience that allows them to persists under a wide range
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of driving conditions. The existence of such profile resilience in various contexts is

currently a hot topic in fusion plasma research, including fast ion physics [39].

Concerning the beam energy, it is indeed likely that the stability of certain modes

depends strongly on whether fast ions in the 300–400 keV energy range are present or

not. However, if we consider the possibility that the main players on the MHD side are5

not discrete Alfvén eigenmodes but EPMs — which was the case in our simulations —

the wide range of possible resonances offered by the continuous spectra of shear Alfvén

waves may reduce the sensitivity of the phenomena with respect to the beam energy.

Under this premise, we believe that our comparisons between result of JT-60U

experiments and self-consistent MEGA simulations constitute a well-posed validation10

study, in spite of all the difficulties one faces in the setup of the simulation scenarios

realistically. In other words, the likely differences between the simulated and

experimental scenarios do not mean that we should expect MEGA result to differ from

JT-60U observations. Instead, the robustness of the experimental observations means

that MEGA should reproduce many qualitative and quantitative features of the JT-60U15

results. The fact that MEGA does indeed reproduce experimental results in the present

work and related studies [33] allows us to conclude that MEGA accurately captures

essential physical processes at the relevant levels of details.

Appendix B. Estimation of the safety factor using MHD spectroscopy

The shape of the q profile shown in Fig. 3(b) was largely determined on the basis of the20

following observations.

During the initial current ramp-up phase, which lasts for about 4 s, the magnetic

probe signal shows rapidly chirping modes, whose mean frequencies sweep slowly up

and down (e.g., see Fig. 2 in Ref. [3] for shot E032359). It is thought that the slow

sweeps reflect primarily the evolution of the q profile as follows. The upward sweep25

is assumed to follow the accumulation point of the (m,n) = (2, 1) harmonic of the

shear Alfvén continuum at the off-axis minimum of q, so its presence suggests that

qmin has dropped below 2. The interferometer signal (e.g., see Fig. 6 in Ref. [2] for

shot E032359) revealed another upward sweep, presumably with (m,n) = (3, 1). The

frequency difference between the two up-sweeping signals gives us an idea of how far30

apart the q = 2 and q = 3 surfaces are.

Around t ≈ 4 s, the downward sweeping signal (presumably core-localized) and the

upward sweeping signal (assumed to follow qmin off-axis) end up at a similar frequency

around 50–60 kHz. The associated rapid upward chirps disappear soon after that in

most shots. Hence, it can be assumed that qmin has propagated to the plasma center, so35

that we have q0 ≈ qmin < 2 with little or no shear reversal. After that, the period 4–5 s

is typically governed by rapidly chirping modes with relatively constant mean frequency

that occur in bursts at 5–10 ms intervals, and abrupt large events (ALE) that occur at

40–60 ms intervals (see Figs. 1 and 2).

Later, around t ≈ 5 s, internal kink (“sawtooth”) activity becomes visible, which40
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indicates that the safety factor in the core has decreased to q . 1.

On the basis of these observations and some additional constraints (e.g., the total

plasma current Ip), the q profile shown in Fig. 3(b) was constructed. It is assumed to

be typical for many discharges during the phase where chirping modes and ALEs are

observed. One exception is shot E039672, for which Figs. 1(e) and 14 show continued5

strong up-chirping signals, which indicate the survival of a central region with negative

magnetic shear.

Appendix C. Estimation of the beta profile

The overall magnitude of the beta value is estimated from the diamagnetic

measurement of the volume-averaged perpendicular pressure component and assuming10

a thermodynamic equilibrium. The shape of the pressure profile shown in Fig. 3(b) in

the form of the toroidal beta β(ρ) = 2µ0P (ρ)/B2
0 with P = Pb +Ph, was determined as

follows.

The thermal bulk plasma pressure Pb could be estimated from profiles of the

electron and ion densities and temperatures in Fig. 3(c) and 3(d). The profiles of ne, Te15

and Ti could be determined relatively accurately using direct measurements combined

with semi-empirical transport models. The ion density profile ni is less accurate since

it has to be estimated on the basis of the impurity content (mostly carbon), which is

known only vaguely. Overall, it is thought that Pb is accurate to within 20%.

A similar level of uncertainty is thought to be connected with the fast ion pressure20

Ph. By combining the velocity distribution computed with the orbit-following Monte

Carlo code OFMC [22, 23] with the experimentally measured neutron emissions along

several lines of sight, an estimate for the fast ion density profile was obtained by Ishikawa

et al. in Ref. [5]. The results indicate that, due to the neglect of MHD activity, OFMC

overestimates the fast ion beta and its radial gradients by about a factor 2 in scenarios25

where chirping modes and ALEs occur. Based on these insights, the fast ion pressure is

thought to be comparable to that of the bulk plasma. The resulting profile of the total

β(ρ) shown in Fig. 3(b) has an on-axis value of about 3.4%. Stability with respect to

resistive MHD modes was subsequently checked using MEGA [18].

Note that the true fast ion pressure is anisotropic; i.e., Ph,⊥ =
∫

d3v Fhmhv
2
⊥/230

perpendicular to B is different from Ph‖ =
∫

d3v Fhmhv
2
‖ along the field, where Fh(x,v)

is the fast ion phase space density. In the scenario simulated here, we are dealing with

a ratio Ph‖/Ph⊥ & 2. Moreover, due to the large magnetic drifts performed by fast

ions with kinetic energies E > 100 keV, the contours of Ph(R,Z) do not coincide with

flux surfaces [20]. However, for simplicity, the equilibrium component of the fast ion35

pressure is assumed to be an isotropic flux function, Ph,eq(ρ). The error made with this

simplification is expected to fall within the 20% tolerance associated with the uncertain

shape of the Ph profile.
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