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Abstract. A method to quantify the energy transfer among turbulent structures

using singular value decomposition (SVD) is presented. We apply the method

to numerical turbulence data obtained from a global plasma simulation using the

Hasegawa-Wakatani fluid model, in which the Kelvin-Helmholtz instability plays a

dominant role. Using the SVD method, the electrostatic potential is decomposed into

a background potential deformation, a zonal flow, a coherent mode and an intermittent

structure. Thus there are four key structures, as distinct from the three found in

conventional theory. The kinetic energy of each structure is evaluated, and the limit

cycle among them is obtained. In the limit cycle, an abrupt change of the background

is found to be synchronised with the period of the zonal flow. The energy transfer

function of each turbulence structure, which is defined on the basis of a vorticity

equation, is evaluated. This then provides physical understanding of how the limit

cycle is sustained by dynamical changes in the energy transfer among structures over

the its period. In addition, it is shown that the abrupt deformation of the background

is caused by the nonlinear self-coupling of the intermittent structure.
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1. Introduction

Magnetically confined plasmas are nonequilibrium open systems, in which nonlinear

structures are observed to arise spontaneously on the largest accessible scales. These

structures typically feed on microturbulence [1], and include zonal flows [2], bulk intrinsic

toroidal rotation [3], and transport barriers that can arise both within the plasma [4] and

at its boundary [5]. This phenomenology is of great practical importance, because the

transport of energy, momentum and particles across the plasma is conditioned by, and

self-consistent with, the excitation and continuing existence of the largescale nonlinear

structures [6]; the latter are often referred to as secondary structures, to distinguish them

from the primary microturbulence. Understanding and predicting this phenomenology,

and its consequences for the local and global behaviour of the plasma, is greatly assisted

if techniques applicable to low-dimensional dynamical systems [7] can be deployed. This

approach requires quantitative spatio-temporal characterisation of the salient nonlinear

structures and of the microturbulence, together with the couplings between them.

A pre-requisite for this approach is to have a reliable means to identify such

structures, by extracting them from experimental data and from the outputs of large-

scale numerical simulations. Indeed it can be a non-trivial task to determine how

many distinguishable nonlinear structures are present. This is important both for

quantitative characterisation of the data, and to motivate or validate the adoption of low-

dimensional analytical models in the predator-prey genre for turbulence phenomenology,

see for example Refs.[2], [8]-[9]. Notable current methods include singular value

decomposition (SVD) [10, 11], [12, 13, 14, 15, 16] and dynamical mode decomposition

(DMD) [17, 18, 19]. These methods have been widely applied in plasma physics, for

example to the extraction of fluid turbulent structures [20] and the visualization of

phase space structures [21]. In the DMD method, the time evolution of the field is

assumed to be exponential, hence the computational cost is low. However, while the

exponential assumption can work well to characterise system dynamics over relatively

short timescales, beginning at any instant, it is not well adapted to system dynamics

that incorporate limit cycle oscillations (LCOs) [22], which are a focus of the present

paper. In plasma physics, LCOs are often observed near the threshold for local or global

transitions that may also involve structure formation. Examples span electric field

pulsations [23], phenomenology near the threshold for L-H transitions in global energy

confinement [24, 25, 26], and edge localized modes [27]. These LCOs may significantly

affect overall plasma performance, so that understanding their underlying physics is

important. While the assumption of exponential time dependence in DMD treatments

can be mitigated to some extent [17], DMD is not well adapted to LCOs where, as

in the present paper, there is a cyclic rise and fall in the intensity of turbulence, of

turbulence-driven structures, and of the coupling between them.

On the other hand, the SVD method makes no prior assumption regarding

time evolution, so that the extraction of, for example, frequency chirping and phase

modulation becomes possible. SVD is based on functional decomposition with respect
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to orthogonal basis functions which are, by construction, uncoupled to each other. This

greatly assists the evaluation of the intrinsically nonlinear forces and fluxes, which are

expressed in relation to the decomposed structures, and which drive the fluctuations.

Here we apply the SVD method to a dataset obtained from a specific global

simulation [28] of a magnetised cylindrical plasma based on the nonlinear Hasegawa-

Wakatani coupled two-fluid model [29] for density and electrostatic potential. In this

simulation, it has been found [28] that LCOs arise spontaneously, with phenomenology

dominated by the Kelvin-Helmholtz (KH) instability [30]. Using the SVD method,

the electrostatic potential is decomposed into the background flow, the zonal flow, a

coherent mode, and an intermittent structure. We find that the LCO between these

turbulent structures is synchronised with the periodicity of the zonal flow, and involves

an abrupt change in the background flow. An energy transfer function based on the

vorticity equation is introduced. This enables us to evaluate the cyclic dynamics of how

the energy transfer among the turbulent structures changes during the LCO. The rest

of the paper is organised as follows. Section 2 introduces the simulation dataset used

in this study. In section 3, we describe how SVD is used to extract the spatiotemporal

pattern of the turbulence. The dynamics of the energy transfer among the structures is

evaluated in section 4. A summary is given in section 5.

2. Abrupt change of background and turbulence

We first introduce the dataset to which the SVD method will be applied. It relates

to turbulent phenomena that arise in a global three-dimensional fluid simulation of

a magnetised cylindrical plasma, based on the Hasegawa-Wakatani model [31]. The

magnetic field, which is in the axial direction, is spatially uniform and constant. The

turbulence and background plasma profiles are self-consistently calculated by the flux-

driven simulation with a set of parameters similar to those in basic experiments in

linear devices [28]. A radially inhomogeneous background flow is driven by introducing

a vorticity source, such that the plasma is linearly unstable against the KH instability.

The fully nonlinear evolution of the KH instability is captured by the simulation. In

cases with a weak vorticity source, stationary nonlinear saturation is obtained. Above

a certain threshold for the intensity of the vorticity source, LCO occurs [28], and we

focus on this regime in the present study. Details of simulation condition and the basic

characteristics of the fluctuations are given in [28].

Figure 1(a) shows a snapshot of the fluctuating component of the electrostatic

potential. Noting that the electrostatic potential is intrinsically related to the E x B bulk

plasma flow, hereafter we use the terms potential or flow interchangeably, depending

on the context. Here the fluctuation is translationally invariant along the axis of the

cylinder; with respect to azimuthal angle, the component m = 1 is dominant, where m

is the azimuthal mode number. This is characteristic of the nonlinear KH instability

in the scenario considered [30]. The spatial pattern is dynamically modulated under

the LCO, whose period is much longer than that of azimuthal rotation; further detail
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Figure 1. (a) Snapshot of three dimensional pattern of the electrostatic potential

fluctuation at t = 3000. (b) Time evolution of the background azimuthal flow,

calculated from the electrostatic potential with m = n = 0, Vθ = ∂rϕ0,0, where m

and n are the azimuthal and axial mode numbers, respectively. (c) Radial profile of

background flow at t = 3040, 3060, 3080 and 3100, where these times are shown in the

black dashed lines in Fig. 1(b).

is given in Ref. [28]. Figure 1(b) shows the time evolution of the background flow,

calculated from the electrostatic potential with m = n = 0, Vθ = ∂rϕ0,0, where m and

n are the azimuthal and axial mode numbers, respectively. The radial profiles of Vθ at

different times are shown in Fig. 1(c). The flow curvature, which is the driving force

for the KH instability, becomes strong and weak in a LCO manner. The magnitude of

the velocity variation under LCO is approximately 30%.

Figure 2(a) shows the time evolution of a Fourier power spectrum with respect to

azimuthal modes of the electrostatic potential. The mode spectrum for azimuthal modes

up to m = 15 shows that the LCO has a period Tperiod ∼ 150. To further illustrate the

temporal dynamics of the background potential, we construct an empirical instantaneous

growth rate from the simulations, using the definition γ(t) = ∂t lnE0,0, where E0,0 is

the kinetic energy of the background flow, calculated from the background potential.

That is, E0,0 =
∫
|∇⊥ ⟨ϕ⟩ |2d3x, where ⟨· · ·⟩ denotes the zonal average (average in the

azimuthal and axial directions). The time evolution of γ(t) is plotted in Fig. 2(b),

showing a sequence of rapidly rising spikes which are characteristic of this type of abrupt

phenomenon [32].
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Figure 2. Time evolution of: (a) the azimuthal mode number spectrum of the

electrostatic potential in a logarithmic scale; (b) the empirical instantaneous growth

rate of the kinetic energy of the background flow, γm=0,n=0 = ∂t lnE0,0.

3. Evaluation of energy transfer by SVD

Let us now apply the SVD method to the dataset described in the previous section, so

as to extract the dominant spatiotemporal structures and evaluate the energy transfer

among them. We shall also examine the physical origin of the abrupt increases of the

background flow noted in Fig.2, and identify the role of each structure in the LCO.

Because the KH turbulence is purely two-dimensional, we analyse the electrostatic

potential ϕ(r, θ, t); here ϕ(r, θ, t) includes both the fluctuations and the background

deformation. We note that the time averaged component is extracted before the analysis.

Using the SVD method, ϕ(r, θ, t) is decomposed as

ϕ(r, θ, t) =
∑
j

sjΨj(r, θ)hj(t), (1)

Here, in relation to the jth mode: Ψj(r, θ) describes the mode’s spatial structure; hj(t)

captures its temporal evolution; and sj is its singular value, that is, the weight that

defines the relative importance [10] of the mode’s contribution to ϕ(r, θ, t). We emphasise

that the functional form of each Ψj is entirely dictated a posteriori by the simulation

outputs, without any prior assumptions. In Appendix A, we outline how to perform the

SVD method to the dataset observed in two-dimensional system. Figure 3 shows the

dominant structure functions Ψj, and their time evolution hj. These are the top nine

modes, in descending order of their singular values sj. We note that the two-dimensional

pattern of ϕ(r, θ, t) dynamically changes in time, as shown in Fig. 2 for Fourier space,

or Fig. 1 of [17] for real space. The nine spatial structure functions shown in the left

panel of Fig.3 capture background profile deformation (modes 1 and 4) and turbulent
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structures and fluctuations (the remaining modes). Here the mode ID numbers 1, 2, · · · 9
are in descending order of the singular values sj. These are the dominant modes in this

SVD, as can be seen from the right panel of Fig. 3, where values of sj are plotted on

a logarithmic scale for modes up to the hundredth. In the present study, we truncate

the SVD modes at the fortieth, for which the energy transfer can be calculated within

acceptable accuracy. Convergence checks in relation to mode truncation are discussed

in Appendix B.

One can see from Fig. 3 that there are several paired modes whose spatial structures

are similar and whose singular values are nearly the same, which differ only in their

phase. Examples of paired modes are: ID=2, 3, ID=5, 6, and ID=7, 8, 9. These are

complex conjugate pairs, which in combination represent the azimuthal propagation,

akin to the combination of sine and cosine components in Fourier mode decomposition.

Thus, the summation of the pair should be treated as a single structure. There are

also unpaired modes, for example modes ID=1 and ID=4, which are almost azimuthally

homogeneous and do not propagate in the azimuthal direction. The pairing of modes can

be demonstrated from their envelopes calculated from hj as shown in the middle panel

of Fig. 3. The envelopes, delineated in black, change slowly in time; here the envelopes

represent
√
h2
2 + h2

3 (for ID=2, 3),
√
h2
5 + h2

6 (for ID=5, 6) and
√
h2
7 + h2

8 + h2
9 (ID=7, 8,

9). One can see that the temporal behaviours of modes with ID=5-9 are intermittent

(time scales of their growth and decay are comparable to their frequency), while the

modes with ID=2-3 are coherent. We wish to capture low-dimensional phenomenology

wherever possible, and therefore choose to reduce the number of degrees of freedom by

taking a summation from mode ID=5 to ID=40; we then treat the resulting summed

entity as a single structure.

The spatiotemporal behaviour of the electrostatic potential is thus decomposed into

four structures, ϕA, ϕB, ϕC , ϕD, which are defined as follows:

ϕ(r, θ, t) ≈
∑

ζ=A∼D

ϕζ(r, θ, t), (2a)

ϕA(r, θ, t) = φ1(r, θ, t), (2b)

ϕB(r, θ, t) = φ4(r, θ, t) (2c)

ϕC(r, θ, t) = φ2(r, θ, t) + φ3(r, θ, t), (2d)

ϕD(r, θ, t) =
40∑
j=5

φj(r, θ, t), (2e)

where φj(r, θ, t) = sjΨj(r, θ)hj(t). Snapshots of each of these four structures at t = 3200

are shown in Fig. 4. Mode A corresponds to the background potential deformation;

mode B to the zonal flow; mode C to the coherent KH mode; and mode D to the

intermittent structure. Here, we note mode A and mode B are distinguished from their

radial wavenumber; kr ≤ π/a (mode A) and kr > π/a (mode B), where kr is the

radial wavenumber of the electrostatic potential with m = n = 0. We refer to these as

extracted structures of the electrostatic potential. The kinetic energy of each structure,
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Figure 3. (Left panel) The spatial character of the nine SVD modes that have

the largest singular values. (Middle panel) The time evolution of the SVD modes,

characterised by hj(t) in Eq. (1). (Right panel) Singular values of the first twenty

SVD modes, plotted on a logarithmic scale.

Eζ an be evaluated from the definition

Eζ =
1

2

∫
|∇⊥ϕζ |2d3x, (ζ = A ∼ D). (3)

The time evolution of the kinetic energy of each structure is illustrated in Fig. 5(a).

Information about the relative phase of the time-evolving kinetic energy in pairs of

modes can also be inferred from the phase plots in the right panel of Fig.5. The process

for constructing these plots is identical to that for Lissajous figures. While, strictly, the

latter term applies to superimposed simple harmonic motions, we use it more colloquially

here and in Figs. 8 and 9. Lissajous figures (in this sense) are widely used to characterise

strongly nonlinear structures in plasmas, see for example the treatment of heat pulse

propagation in the LHD heliotron-stellarator in Figs.1,3,5,6 and 7 of Ref.[33] and Fig.7

of Ref.[34].

The behaviour of the energy that is evident in Fig. 5 is similar to that extracted by

using the DMD method, see in particular Figs. 4 of Ref.[17]. The background potential
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Figure 4. Dominant turbulent structures extracted by summation and truncation of

the modes in Fig. 3. Mode A is invariant against azimuthal rotation, and the dominant

component of Mode B is an azimuthally symmetric zonal pattern. Modes C and D are

the turbulent structures.

(mode A) and the coherent KH mode C compete with each other. When the magnitude

of mode C increases to a certain threshold, the zonal flow mode B is excited together

with the intermittent structure mode D. After the appearance of modes B and D, mode

C decreases and mode A increases. This cycle then repeats - it is an LCO. The period

of the LCO is synchronised with the zonal flow oscillation. The time evolution of the

local value of the zonal potential (mode B) at different radial locations is plotted in

Fig. 5(b). The phase of mode B at r/a = 0.23 is the reverse of the phase at r/a = 0.6.

The plot of the time-evolution of the potential at these two radial locations exhibits

standing-wave-like structure. Successive zero-crossings - that is, phase reversal events -

are synchronous with successive cycles of the LCO, where the frequencies of the LCO

and the zonal flow are similar and the phase relation between the zonal flow and the

LCO does not vary over time. The zonal flow mode B always peaks sharply just before

each abrupt increase of the background flow mode A, and the phase of mode B reverses

after the burst of mode A.

4. Energy transfer dynamics among SVD modes

The energy transfer among the structures extracted in the preceding section can be

characterised in terms of an energy transfer function that is based on the vorticity

equation. The kinetic energy evolution equation can be derived by multiplying both

sides of the vorticity equation by ϕ and performing a spatial integration. The details

of the derivation is described in Appendix C. Here, ϕ is decomposed into the SVD

structures from mode A to mode D as in Eq. (2a). The kinetic energy of Mode ζ can
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Figure 5. Characterising limit cycle oscillations. Left panel. Time evolution of: (a)

the kinetic energy of each of the four structures A to D identified in Fig. 4; (b) the

local values of the zonal flow potential (Mode B) at widely separated radial locations

r/a = 0.23 and 0.6, at angular position θ = 0. Right panel. Three Lissajous figures

plotting the time evolution of the kinetic energy of the three Modes A, B and D

against that of Mode C, during the time interval 3080 < t < 3250. The arrows show

the direction of time evolution.

be written as (ζ = A ∼ D)

∂tEζ =
∑

α,β=A∼D

J(ζ|α, β)− 2νEζ −
∫
ϕζSd

3x+ Fζ , (4a)

J(ζ|α, β) =
∫

ϕζ

[
ϕα,∇2

⊥ϕβ

]
d3x, (4b)

where the square brackets in Eq. (4b) denote the convective derivative defined as

[ϕ,∇2
⊥ϕ] = r−1 (∂rϕ∂θ∇2

⊥ϕ− ∂r∇2
⊥ϕ∂θϕ), and ν and S are the ion-neutral collision

frequency and the vorticity source, respectively. The term Fζ is the other nonlinearities

introduced in Appendix C. In this study, we focus on the term related to the convective

nonlinearity. The energy transfer function, J(ζ|α, β), quantifies the energy flow to the

mode labelled ζ that arises from nonlinear coupling between the modes labelled α and

β. Positive (or negative) J(ζ|α, β) contributes to driving (or damping). The terms in

the RHS of Eq. (4a) are linear, except for the energy transfer term. In the present

SVD context, Eq. (4a) can be viewed as a natural extension of the energy transfer

equation in Fourier space [35, 36]. It is well adapted to understanding the energy

interaction among the turbulent structures identified using SVD, which contain multiple

Fourier components. In the absence of such structures, a Fourier-based approach to

energy transfer would suffice for zonal flows, which can be described by a single Fourier

component. It follows that the evidently nonlinear features of the system dynamics, for

example those shown in Fig. 5, must stem from the energy transfer among the turbulent

structures. In order to understand the underlying physics of the system, it is therefore

necessary to examine the behaviour of the energy transfer function in greater detail.
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As a preliminary, we note that J(ζ|α, β) is not symmetric with respect to α and β.

Given the four structures A to D, there are thus sixteen relevant mode pairings. Table 1

specifies how we label (”Coupling ID”) these pairings using the first sixteen integers. We

note that the SVD method does not involve well-defined matching criteria with respect

to frequency or wavenumber because, in general, SVD modes contain multiple Fourier

modes. In the present paper, mode D is a good example of this.

Figure 6 seeks to capture the temporal variation of J(ζ|α, β) for each structure

A to D, resulting from each of the sixteen coupling combinations, from two different

perspectives. The four left panels, Fig. 6 (a)-(d), plot the instantaneous values that

are taken by each J(ζ|α, β) at each unit time-step during the interval 3000 < t < 4000

which was also considered in Figs. 2, and 5. For example, Fig. 6(c) shows that for

mode C, the four sources/sinks of nonlinear drive that contribute most strongly to

energy transfer (both positive and negative) are the mode pairings with coupling ID =

4, 8, 13 and 14. From Table 1, in (α, β) terms, these pairings are (A,D), (B,D), (D,A)

and (D,B). Conversely, from Fig. 6(b) it is evident that energy transfer to and from

mode B is dominated by the mode pairing with coupling ID =11, 12, 15, 16 that are

(α, β) =(C,C), (C,D), (D,C), (D,D). From Fig. 6(a), one can see that the background

flow, mode A, is affected primarily by the self-couplings (C,C) and (D,D) and by the

pair couplings (C,D) and (D,C). There is no coupling between the zonal flow and the

background flow, which is because the background flow does not generate the doppler

shift for the zonal flow. The background and the zonal flows couple indirectly through

the deformation of the fluctuations. We note from Fig. 4 that the azimuthally symmetric

background flow is contained in mode A and partly in mode B. This flow is driven by the

vorticity source. It follows that net negative nonlinear energy transfer to mode A acts

to relax the background flow. In contrast, for mode C and mode D, nonlinear damping

due to self-coupling is found to be weak, in that the contributions from the coupling

ID=11 for mode C and 16 for mode D are small. The four right panels, Fig. 6(e)-

(h), plot the explicit time evolution of J(ζ|α, β) on a colour scale, for the four modes

(one panel per mode) in relation to the sixteen mode pairings. The energy transfers

among the structures are strongly non-time-stationary: the discrete bursts of activity

correlate necessarily with those in Fig. 5, which align with the LCO period, as discussed

previously. In the following, in order to reduce the number of coupling combinations,

we treat the couplings of mode-α with mode-β and of mode-β with mode-α together as

J(ζ|α, β) + J(ζ|β, α) → J(ζ|α, β).
The energy transfer functions for each structure during a single LCO period,

3120 < t < 3220, are illustrated in Fig. 7, where only the most important couplings are

shown. There are three phases, because the energy flow pattern changes significantly

between the first half (3120 < t < 3180), the middle regime (t ∼ 3190), and the

second half (3200 < t < 3220). This pattern corresponds to the growth, saturation

and damping of the zonal flow, mode B. The energy transfer to the zonal flow changes

its sign at t ∼ 3190, at which time the zonal flow peaks in energy. This saturation is

caused by the reversal in energy transfer J(B|C,D). This implies the coupling C +D
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is important for the nonlinear saturation of the zonal flow. Simultaneously, there is

an abrupt onset to the nonlinear drive of the background flow (mode A), due to the

nonlinearity of mode D, as shown in Fig. 7(b), see Fig. 7(a); the energy of mode A,

previously decaying, starts to increase.

The x-axis of all three panels of Fig. 8 is J(C|A,C). This is chosen because,

in general, J(ζ|A, ζ) represents the generalised linear drive of the mode labelled ζ by

the KH instability, which arises from deformation of the background potential mode

A. This drive would be linear, notwithstanding its apparently nonlinear mathematical

character, in an ordering scheme where mode A is zeroth order while the other modes

are order-epsilon. In Fig. 8 the focus is thus on the different nonlinear drives of the

coherent KH mode C, in relation to the linear drive. The linear drive for the coherent

KH mode C, which corresponds to J(C|A,C), changes its role in accordance with the

phase of the LCO. It is apparent from Fig. 7(a) that, during the first half of the LCO,

mode C obtains energy from its coupling with the background potential deformation

mode A; that is, mode C is linearly destabilized by the flow inhomogeneity. This phase

of the LCO ends at t ∼ 3185 in Fig. 7, and this determines the parameter t2 which is

used throughout Figs. 8 and 9 to denote the end of the first half (blue trace) of the LCO

cycle. Thereafter, Fig. 8(a) shows that coupling J(C|B,C) of the KH mode C with the

zonal flow mode B acts to suppress mode C; this is a back reaction which drives the

zonal flow. In the Lissajous figures (Figs. 8 and 9 ), the system trajectory during the

three time intervals 3080 < t < 3185, 3185 < t < 3195 and 3195 < t < 3250 is plotted

using blue, red and black lines, respectively. The nonlinear effect of the intermittent

structure mode D, characterised by J(C|B,D) in Fig. 8(b), has a negligible role during

the first half of the LCO. It begins to acquire a small negative value when the linear

drive of mode C, J(C|A,C), approaches its maximum value of 0.015, and then rises

abruptly after the onset of the zonal flow (red trace). The plot of J(C|D,D) in Fig.

8(c) shows that the nonlinear self-interaction of mode D has a negative effect on mode

C in the first and middle phase of the LCO. At the conclusion of the zonal flow drive,

as J(C|A,C) declines towards zero, J(C|D,D) starts (black trace) to contribute to the

drive of mode C. In this way, the nonlinear modifications to mode C, J(C|B,D) and

J(C|D,D), change their character after the onset of the zonal flow.

The linear drive for the intermittent structure mode D corresponds to J(D|A,D).

The Lissajous figures for J(D|α, β) during the LCO are shown in Fig. 9, and

demonstrate that J(D|A,D) changes its role in accordance with the phase of the LCO,

like J(C|A,C) in Fig. 8 [17]. Figure 9(a) shows that for mode D, unlike for mode C,

the deformation of the KH mode C due to its nonlinear coupling with the background

flow mode A contributes to the drive. Deformation of mode C by the zonal flow B also

affects the energy transfer to Mode D, as can be inferred from Fig. 9(b). This shows

a rather abrupt reversal between the first half (blue trace) and second half (red, then

black, traces) of the LCO, giving rise to a well-defined figure-8. The nonlinear coupling

of Mode D with the zonal flow mode B is shown in Fig. 9(c). The sign of J(D|B,D) is

always negative, implying that it contributes to the suppression of mode D throughout
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the LCO. As seen in the Lissajous figure for J(D|C,D) in Fig. 9(d), nonlinear coupling

with mode C drives mode D during the first half (blue trace) of the LCO; damps it

during the middle phase (red trace) and much of the final phase (black trace).

The energy flow patterns inferred from Figs. 8 and 9 during a single LCO period

are summarized in Fig. 10. We have found that important roles in the sustainment of

the LCO are played by the secondary structures, namely the zonal flow mode B and the

intermittent structure mode D, notably through their nonlinear coupling with the KH

mode C.

We now perform a quantitative check on our inference that the abrupt energy input

to the background flow mode A at 3185 < t < 3195 causes the abrupt increase in the

background flow that is shown in Fig. 2. Dividing both sides of Eq. (4a) by Eζ , an

equation for the time constant of mode A, γA, can be formally derived as

γA = E−1
A

∑
α,β

J(A|α, β)− ν. (5)

From Fig. 2, the time constant at the abrupt increase can be estimated as γA ∼
2×10−2 ≫ ν = 5×10−3. This value can be explained as E−1

A

∑
α,β J(A|α, β) ∼ 2×10−2,

where we use EA = 0.5 and
∑

α,β J(A|α, β) ≈ J(A|D,D) ∼ 0.01. This tends to confirm

that the abrupt increase of the background flow mode A is realised by the nonlinear

self-coupling of the nonlinearly driven intermittent structure D. We note that a strong

role for the zonal flow mode B in the abrupt change of the background flow is also

implicit. This is because, as we have already shown, deformation of modes C and D by

mode B abruptly alters the characteristics of nonlinear energy transfer involving modes

C and D.

5. Discussion and Conclusions

Using the SVDmethod, the global phenomenology of the simulated turbulent plasma has

been converted into a low-dimensional dynamical system. The electrostatic potential is

decomposed into four elements, which are apparently the minimal set: the deformation

of the background; the zonal flow; the coherent KHmode; and the intermittent structure.

The kinetic energy content of these four modes is found to exhibit an LCO, in which an

abrupt change of the background potential is synchronized with the zonal flow period.

Wider application of the SVD method, as presented here, to experimental data from

plasmas should be relatively straightforward. While there is no constraint on the number

of measurement points in space and time, we note that simultaneous measurements

are necessary to construct the spatiotemporal information matrix, Φ(xi, tj), which

is introduced in Appendix A. Many typical plasma diagnostics, such as fast camera

imaging, Langmuir probes, reflectometers, heavy ion beam probes, beam emission

spectroscopy, and tomography, yield datasets which appear suitable for the SVD

method. Turning specifically to cylindrical plasmas of the kind considered here, we

anticipate that the four key structures identified in the present paper will again be

found in future experiments.
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Figure 6. (a)-(d): Time variation of the energy transfer functions for each structure.

(e)-(h): Temporal evolution of the energy transfer functions for each structure, where

(e) J(A|α, β), (h) J(B|α, β), (g) J(C|α, β), and (h) J(D|α, β), where α + β denotes

the coupling between mode α and mode β, in the order corresponding to Eq.(4b).

The SVD approach has enabled us to quantify the mutiple nonlinear energy flows

that underly this LCO. We first construct and evaluate the energy transfer function for

each turbulence structure, based on a vorticity equation. This then provides physical

understanding of how the LCO is sustained by dynamical changes in the energy transfer

among structures over the LCO period. In summary, coupling between the coherent

mode and the intermittent structure drives the zonal flow, which provides resilience for

the background potential, which causes the abrupt deformation of the background.

In some previous theoretical approaches, the LCO considered here is often described

in terms of a predator-prey model [37] that involves only three elements, namely the

background, the zonal flow and microturbulence. Thus, the results in the present paper

imply that this conventional model is incomplete. Furthermore, we have found that

the hitherto neglected intermittent structure plays crucial roles in the dynamics of

the system. The important role of the intermittent structure in the abrupt change

in transport has also been identified experimentally [38].

In addition, we have found that the zonal flow oscillation is synchronised with the

LCO. The physical mechanism that determines the frequency of the zonal flow remains

an unresolved theoretical issue. In the context of the present work, we note that in

basic experiments, the excitation of an intermittent structure, referred to as ”splash”,

has been observed to be synchronized with the zonal flow oscillation [39, 40]. This
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Coupling ID Combination of structures

1 A+ A

2 A+B

3 A+ C

4 A+D

5 B + A

6 B +B

7 B + C

8 B +D

9 C + A

10 C +B

11 C + C

12 C +D

13 D + A

14 D +B

15 D + C

16 D +D

Table 1. List of coupling IDs. Each number denotes the combination of structures

which contribute to the coupling.

tendency is similar to the behaviour of the intermittent mode D in the present study.

This motivates our conjecture that the generation and annihilation of the intermittent

structure, together with the deformation of the background flow, may determine the

frequency of the zonal flow.

In conclusion, the SVD approach has provided significant new physical insights into

the phenomenology of this classical nonlinear KH plasma system.
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Figure 7. Time evolution of (a) kinetic energy and (b)-(e) energy transfer function for

each structure. Only the energy transfer functions for the most important nonlinear

couplings are shown.

Figure 8. Lissajous figures for the three dominant energy transfer functions for the

KH mode C, J(C|α, β), where the arrows show the direction of the time-evolution.

Here, t1 = 3080, t2 = 3185, t3 = 3195 and t4 = 3250.

Appendix A. SVD analysis in two-dimensional system

Here we briefly explain how to perform SVD analysis to a set of spatio-temporal data

in two-dimensional system. The spatio-temporal data in 2D system can be obtained in
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Figure 9. Lissajous figures for the four dominant energy transfer function for the

intermittent mode D, J(D|α, β), where the arrows show the direction of the evolution.

Here, t1 = 3080, t2 = 3185, t3 = 3195 and t4 = 3250.
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Figure 10. Schematic view of the energy flow among turbulent structures during the

limit cycle oscillation, where A-D in the circles denote the Mode A-D, respectively,

and the arrows show the directions of the energy flow. The patten of the energy flow

changes during one period of the LCO.

a three-dimensional array, ϕ(x1, x2, t), where xj is the spatial coordinate. The size of

this array is M1 × M2 × N , where Mj and N are the number of measurement points

regarding xj and time, respectively. In order to perform the SVD, the three-dimensional

array is converted to two-dimensional array, ϕ(x1, x2, t) → Φ(X, t), where the size of the

matrix is M × N , where M = M1M2. Then, the spatio-temporal information matrix,

whose component is Φ(Xi, tj) = Φij, can be generally decomposed into Φij = UΣV T ,

where U and V are M -th and N -th order orhogonal matrix, and Σ is M ×N diagonal
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matrix. This expression can be rewritten by

Φ =
p∑

i=1

siuiv
T
i , (A.1)

where ui and vi are the column vector of U and V , respectively, and si is the component

of Σ. The vectors u and v correspond to spatial and temporal structures, respectively.

Then, one can obtain the 2D pattern by re-converting X → (x1, x2).

Care is needed when spatiotemporal data, expressed with respect to cylindrical

coordinates, is decomposed into SVD modes. At first sight, it appears that the

orthogonality condition for SVD modes should be given by∫
ϕζ(r, θ)ϕζ′(r, θ)drdθ = δζ,ζ′ , (A.2)

where ϕζ denotes the SVD mode that has mode ID ζ. We note that there is no apparent

requirement for a Jacobian r in the integration with respect to the independent variables

r and θ in Eq.(A2). However, when analysing the energy transfer, the spatial integral∫
· · · rdrdθ is performed. This is necessary for computational accuracy in the context

of an intrinsically cylindrical plasma system. It then appears that, for consistency, the

SVD orthogonality condition also needs to incorporate a Jacobian r, whereas Eq.(A.2)

does not.

This conundrum is resolved by defining SVD orthogonality with respect to a

Cartesian coordinate system (x, y). On transforming to cylindrical coordinates, this

SVD orthogonality condition becomes∫
ϕζ(r, θ)ϕζ′(r, θ)rdrdθ = δζ,ζ′ . (A.3)

instead of Eq.(A.2). In the present study, we compute the SVD in Cartesian coordinates,

after transforming ϕ(r, θ, t) to ϕ(x, y, t). This implicitly guarantees the orthogonality

condition Eq.(A.3), and is consistent with energy transfer calculations that are carried

out exclusively in the more natural (r, θ, t) coordinates.

Appendix B. Convergence check for mode truncation

Here, we check the convergence for the truncation of the SVD modes. The number of

SVD modes generated by the SVD process is equal to the number of time steps. In the

present study, we address the data from t = 3000 to t = 4000 with ∆t = 1, where ∆t is

the time step, so that one thousand SVD modes are produced. This is clearly excessive

in relation to the objective of capturing low-dimensional dynamics, which provides

the rationale for our use of SVD: truncation is therefore necessary. Importantly, the

calculation of spatial derivatives of the SVD-decomposed data is central to our analysis

of the nonlinear physics. It follows that mode truncation must be robustly convergent

in two senses: in reconstructing the original data; and in relation to spatial derivative

variables. We note that in order to capture physical effects that involve higher order

spatial derivatives, the retention of finer structure is necessary. Conversely, for spatially
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integrated quantities, convergence under truncation is faster than for spatial structures

and their derivatives.

Let us denote the reconstructed data under truncation at the Mth SVD mode as

ϕ(M) =
M∑
j=1

sjΨjhj. (B.1)

We calculate the turbulence stress Π
(M)
r,θ (which requires a first order spatial derivative)

and the vorticity Ω(M) (involving the second derivative), using the reconstructed data

ϕ(M),

Π
(M)
r,θ = −∂rϕ

(M)1

r
∂θϕ

(M), (B.2)

Ω(M) = ∇2
⊥ϕ

(M). (B.3)

We then compare these with the corresponding quantities calculated from the original

data ϕ. Their deviations are evaluated from

ϵX(M) =

√√√√⟨
∫
|X(M) −X|2dx3⟩t
⟨
∫
|X|2dx3⟩t

. (B.4)

Here X corresponds to ϕ,Πr,θ,Ω calculated from the original data, whereas X(M) is

obtained under SVD mode truncation at mode M , as in Eqs. (B.1) to (B.3), and

< · · · >t denotes the time average. As shown in Fig. B1(a), the variables with the

higher order derivatives converge more slowly.

Next, we check the convergence of the variables which involve spatial integration:

the kinetic energy of the intermittent structure (mode D) and the energy transfer

function between the background flow (mode A) and mode D. The spatio-temporal

data of mode D under the mode truncation is introduced as

ϕ
(M)
D =

M∑
j=5

sjΨjhj. (B.5)

The kinetic energy of mode D under truncation is denoted by K
(M)
D , and we denote the

energy transfer to the background flow due to the self-nonlinearity of mode D, under

truncation, by J (M)(A|D,D). These are given by

K
(M)
D =

1

2

∫
|∇⊥ϕ

(M)
D |2d3x, (B.6)

J (M)(A|D,D) =
∫

ϕA[ϕ
(M)
D ,∇2

⊥ϕ
(M)
D ]d3x. (B.7)

The deviation of these quantities from those calculated from the original data is defined

as

δ
(D)
Y (M) =

√√√√⟨|Y (M) − Y |2⟩t
⟨|Y |2⟩t

, (B.8)

where Y corresponds to KD and J(A|D,D). The deviation δ
(D)
Y is plotted in Fig.

B1(b). This shows that, empirically, their convergence is faster than for the spatial

variables with similar trends, even though the energy transfer function has a higher
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Figure B1. Difference between the input data and the reconstructed data, plotted

against the SVD mode number M at which the SVD decomposition is truncated: (a)

for spatila structures; (b) for spatially integrated variables.

order derivative (third order). In the present study, we therefore truncate the SVD mode

decomposition at M = 40 in order to retain 1% accuracy for the spatially integrated

variables.

Appendix C. Derivation of full set of energy equations

The energy equations for the SVD modes are systematically derived in this appendix.

The basic equations used in this simulation are given as [28]

∂tN = −[ϕ,N ]−D∇2
∥ (ϕ−N) + µN∇2

⊥N + SN , (C.1)

∂t∇2
⊥ϕ = −[ϕ,∇2

⊥ϕ]−D∇2
∥ (ϕ−N)− νin∇2

⊥ϕ− νin∇N · ∇⊥ϕ

−∇N · dt∇⊥ϕ+ µU∇4
⊥ϕ+ SU , (C.2)

where D is the electron parallel diffusion, µN and µU are the diffusion coefficients for

particle and vorticity, and νin is the ion-neutral collision frequency. The particle and

vorticity sources are given by SN and SU . Here, we decompose the fields, N and ϕ, with

the SVD modes as

N =
∑
ζ

Nζ , (C.3)

ϕ =
∑
ζ

ϕζ , (C.4)

where Nζ and ϕzeta are the SVD modes for density and potential. It is noted that each

SVD mode satisfies the orthogonality condition as∫
ϕζϕζ′dx

3 =
∫

NζNζ′dx
3 = δζ,ζ′ , (C.5)

where ζ ′ is the Kronecker delta. MultiplyingNζ and ϕζ to density and vorticity equation,

respectively, and performing the spatial integrals, the following energy equations are
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obtained. In the derivation, the orthogonality condition is used.

∂t

∫ 1

2
N2

ζ d
3x = −

∑
α,β

∫
Nζ [ϕα, Nβ]d

3x+
∫

NζSNd
3x

−D
∑
ζ′

∫
Nζ∇2

∥ (ϕζ′ −Nζ′)− µN

∫
|∇⊥Nζ |2d3x−

∑
ζ ̸=ζ′

∫
Nζ∂tNζ′ ,(C.6)

∂t

∫ 1

2
|∇⊥ϕζ |2d3x =

∑
α,β

∫
ϕζ [ϕα,∇⊥ϕβ]− νin

∫
|∇⊥ϕζ |2d3x

−
∫

ϕζSUd
3x+ Fζ , (C.7)

where Fζ is given as

Fζ =
∑
α,β

∫
ϕζ

[
νin∇Nα · ∇⊥ϕβ +∇Nα · dt∇⊥ϕβ

]
d3x

+
∑
ζ′

∫
ϕζ

[
D∇2

∥ (ϕζ′ −Nζ′)− µU∇4
⊥ϕζ′

]
d3x

+
∑
ζ ̸=ζ′

∫
∇⊥ϕζ · ∂t∇⊥ϕζ′d

3x. (C.8)

These are the full set of energy equation. In this study, only the potential is decomposed

with the SVD, and we focus on the convective nonlinearity. The full analysis using the

multi-field SVD analysis for the density and potential could be future work.
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[21] DR Hatch, F Jenko, A Bañón Navarro, V Bratanov, PW Terry, and MJ Pueschel. Linear signatures

in nonlinear gyrokinetics: interpreting turbulence with pseudospectra. New Journal of Physics,



Evaluation of energy transfer by SVD 22

18(7):075018, 2016.

[22] Yoshiki Kuramoto. Chemical oscillations, waves, and turbulence. Courier Corporation, 2003.

[23] A Fujisawa, H Iguchi, H Idei, S Kubo, K Matsuoka, S Okamura, K Tanaka, T Minami, S Ohdachi,

S Morita, et al. Discovery of electric pulsation in a toroidal helical plasma. Physical Review

Letters, 81(11):2256, 1998.

[24] T Kobayashi, K Itoh, T Ido, K Kamiya, S-I Itoh, Y Miura, Yoshihiko Nagashima, A Fujisawa,

S Inagaki, K Ida, et al. Spatiotemporal structures of edge limit-cycle oscillation before l-to-h

transition in the jft-2m tokamak. Physical Review Letters, 111(3):035002, 2013.

[25] L Schmitz, L Zeng, TL Rhodes, JC Hillesheim, EJ Doyle, RJ Groebner, WA Peebles, KH Burrell,

and G Wang. Role of zonal flow predator-prey oscillations in triggering the transition to h-mode

confinement. Physical Review Letters, 108(15):155002, 2012.

[26] G Birkenmeier, M Cavedon, GD Conway, P Manz, U Stroth, R Fischer, G Fuchert, T Happel,

FM Laggner, M Maraschek, et al. Magnetic structure and frequency scaling of limit-cycle

oscillations close to l-to h-mode transitions. Nuclear Fusion, 56(8):086009, 2016.

[27] Sanae-I Itoh, Kimitaka Itoh, Atsushi Fukuyama, and Yukitoshi Miura. Edge localized mode

activity as a limit cycle in tokamak plasmas. Physical Review Letters, 67(18):2485, 1991.

[28] Makoto Sasaki, Yann Camenen, A Escarguel, S Inagaki, Naohiro Kasuya, K Itoh, and T Kobayashi.

Formation of spiral structures of turbulence driven by a strong rotation in magnetically

cylindrical plasmas. Physics of Plasmas, 26(4):042305, 2019.

[29] Akira Hasegawa and Masahiro Wakatani. Self-organization of electrostatic turbulence in a

cylindrical plasma. Physical Review Letters, 59(14):1581, 1987.

[30] W Horton, T Tajima, and T Kamimura. Kelvin–helmholtz instability and vortices in magnetized

plasma. The Physics of Fluids, 30(11):3485–3495, 1987.

[31] Makoto Sasaki, Naohiro Kasuya, K Itoh, S Toda, Takuma Yamada, Yusuke Kosuga, Yoshihiko

Nagashima, T Kobayashi, H Arakawa, K Yamasaki, et al. Topological bifurcation of helical

flows in magnetized plasmas with density gradient and parallel flow shear. Physics of Plasmas,

24(11):112103, 2017.

[32] K Itoh, S-I Itoh, Yusuke Kosuga, M Lesur, and T Ido. Onset condition of the subcritical geodesic

acoustic mode instability in the presence of energetic-particle-driven geodesic acoustic mode.

Plasma Physics Reports, 42(5):418–423, 2016.

[33] RO Dendy, SC Chapman, and S Inagaki. Modelling the measured local time evolution of strongly

nonlinear heat pulses in the large helical device. Plasma Physics and Controlled Fusion,

55(11):115009, 2013.

[34] H Zhu, RO Dendy, SC Chapman, and S Inagaki. A quantitative model for heat pulse propagation

across large helical device plasmas. Physics of Plasmas, 22(6):062308, 2015.

[35] P Manz, M Ramisch, and U Stroth. Physical mechanism behind zonal-flow generation in drift-wave

turbulence. Physical Review Letters, 103(16):165004, 2009.

[36] Yoshihiko Nagashima, Sanae-I Itoh, Shunjiro Shinohara, Masayuki Fukao, Akihide Fujisawa,

Kenichiro Terasaka, Yoshinobu Kawai, George R Tynan, Patrick H Diamond, Masatoshi Yagi,

et al. Observation of the parametric-modulational instability between the drift-wave fluctuation

and azimuthally symmetric sheared radial electric field oscillation in a cylindrical laboratory

plasma. Physics of Plasmas, 16(2):020706, 2009.

[37] Eun-jin Kim and PH Diamond. Zonal flows and transient dynamics of the l- h transition. Physical

Review Letters, 90(18):185006, 2003.

[38] T Kobayashi, S Inagaki, M Sasaki, Y Kosuga, H Arakawa, T Yamada, Y Nagashima, Y Miwa,

N Kasuya, A Fujisawa, et al. Azimuthal inhomogeneity of turbulence structure and its impact on

intermittent particle transport in linear magnetized plasmas. Physics of Plasmas, 22(11):112301,

2015.

[39] H Arakawa, S Inagaki, M Sasaki, Y Kosuga, T Kobayashi, N Kasuya, Y Nagashima, T Yamada,

M Lesur, A Fujisawa, et al. Eddy, drift wave and zonal flow dynamics in a linear magnetized

plasma. Scientific Reports, 6(1):33371, 2016.



Evaluation of energy transfer by SVD 23

[40] H Arakawa, M Sasaki, S Inagaki, Y Kosuga, T Kobayashi, N Kasuya, T Yamada, Y Nagashima,

F Kin, A Fujisawa, et al. Roles of solitary eddy and splash in drift wave–zonal flow system in

a linear magnetized plasma. Physics of Plasmas, 26(5):052305, 2019.

[41] JRK Kumar Dabbakuti, Venkata Ratnam Devanaboyina, and S Ramesh Kanchumarthi. Analysis

of local ionospheric variability based on svd and mds at low-latitude gnss stations. Earth,

Planets and Space, 68(1):1–11, 2016.

[42] SI Itoh and K Itoh. A mini–max principle for drift waves and mesoscale fluctuations. Plasma

Physics and Controlled Fusion, 53(1):015008, 2010.

[43] K Itoh, K Hallatschek, S-I Itoh, PH Diamond, and S Toda. Coherent structure of zonal flow and

onset of turbulent transport. Physics of Plasmas, 12(6):062303, 2005.

[44] JS Kim, DH Edgell, JM Greene, EJ Strait, and MS Chance. MHD mode identification of tokamak

plasmas from Mirnov signals. Plasma Physics and Controlled Fusion, 41(11):1399, 1999.

[45] GS Xu, BN Wan, W Zhang, QW Yang, L Wang, and YZ Wen. Multiscale coherent structures in

tokamak plasma turbulence. Physics of Plasmas, 13(10):102509, 2006.
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