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Abstract 

The heat flux deposition on the divertor targets with neon impurity injection on EAST has been 

investigated by the three-dimensional (3D) edge transport code EMC3-EIRENE. Impact of the 

different poloidal neon injection positions on heat flux deposition has been studied. It is found that 

neon impurity injected at the in- and out-board divertors (i.e. strike points) leads to the toroidally 

asymmetric distributions of heat load on the in- and out-board targets, respectively. However, the 

neon gas puffing at the upstream shows a toroidally symmetric distribution of heat load. The 3D 

effects of the neon radiation on the heat load have been investigated with the help of a field line 

tracing technique, which indicates that neon impurity injected near the strike point can radiate more 

power and result in a lower heat load compared with the upstream neon injection. In order to further 

verify the asymmetric distribution of heat load, two impurity injection locations away from the strike 

points at the divertor are investigated, which shows the symmetric distribution of heat load as the 

upstream neon injection.  
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1. Introduction 

One of the most critical issues in fusion devices is mitigation of the heat flux deposition on the 

plasma-facing components (PFCs) [1,2]. The methods of heat flux mitigation on PFCs have 

emerged such as resonant magnetic perturbations [3] and advanced divertor geometry [4-6]. The 

extrinsic impurity seeding is also utilized to achieve the power dissipation and heat load reduction 

in existing fusion facilities. The effect of gas puffing with neon, nitrogen and argon has been 

investigated on Alcator C-Mod [7], JET [8], LHD [9] and EAST [10]. On Alcator C-Mod, with 

localized nitrogen injection in the private flux region, an asymmetric toroidal distribution of 

radiation power and heat load on PFCs is observed [11,12]. Experiments and simulations on LHD 

also show that a toroidally non-uniform distribution of heat load is obtained for nitrogen impurity 

seeding, while a toroidally uniform distribution of heat load is achieved for neon impurity seeding 

[13]. The symmetric (neon) and asymmetric (nitrogen) heat flux distributions observed on Alcator 

C-Mod and LHD result from different recycling characteristics for neon (high recycling) and 

nitrogen (low recycling) [11-13]. However, influence of the poloidal impurity injection on the 

toroidally symmetric/asymmetric distributions of heat load on the divertor targets is not well 

understood. Hence, predictive modelling of heat flux distributions with different poloidal gas 

injection positions is important for understanding the mechanisms in order to optimize impurity 

puffing position for heat load mitigation in fusion devices. 

In this work, impact of different poloidal neon impurity injections on the toroidal distributions 

of heat flux deposition on EAST is studied with the help of 3D edge transport code EMC3-EIRENE 

[14,15]. The EMC3-EIRENE code has the availability of 3D magnetic configuration reconstruction, 

which allows to study the 3D effects of spatial impurity transport and radiation on the divertor heat 

flux distribution. The analysis of the heat flux deposition on the divertor targets at five different 

poloidal locations with neon seeding is reported. An innovative result is found that neon impurity 

injections around the in- and out-board strike points lead to the toroidally asymmetric distributions 

of heat load on the in- and out-board divertor targets, respectively. However, the impurity injection 

at the upstream results in a toroidally uniform heat flux distribution due to above-mentioned high-

recycling property. The field line tracing (FLT) [16-20] technique is used to make a detailed 

numerical analysis of the relation between 3D neon radiation in scrape-off layer (SOL) and heat 

flux deposition on the divertor targets. Two impurity injection locations away from the strike point 

at the divertor were used to verify the distribution of the heat load. The higher impurity radiation 

power for neon injections near the strike points results in the larger reduction of heat load, in 

comparison to the injection at an upstream location. 

In section 2, the construction of the EMC3-EIRENE simulations is addressed. In section 3, 

impact of different poloidal neon injection positions on the heat flux deposition distribution is 



studied. Furthermore, detailed analysis of 3D neon radiation in SOL and heat load on the divertor 

targets has been conducted. Finally, a summary is given in section 4. 

 

2. Construction of EMC3-EIRENE simulations 

The EMC3-EIRENE code deals with arbitrary magnetic confinement configurations and has been 

successfully applied to many fusion devices, including W7-AS [21], Alcator C-Mod [7], LHD [22-

26], DIII-D [27-30], NSTX [31], ASDEX Upgrade [32-35] and EAST [36-39] etc. The code solves 

a set of time-independent Braginskii’s fluid equations for the mass, momentum and energy for 

electrons and ions using a Monte Carlo (MC) method [13] and is iteratively coupled with EIRENE 

[14], that solves the kinetic Boltzmann equation for neutral atoms or molecules and gives the particle 

momentum and energy source terms due to plasma-neutral interactions. The parallel transport along 

with field line is assumed to be classical and the cross-field transport is treated as anomalous. The 

code also includes a self-consistent treatment of impurity transport for investigating relevant 

impurities [40]. In the impurity transport model, the friction and the ion thermal force are the 

dominant forces acting on the impurity, where the friction force drives impurity particles to the 

divertor targets and the ion thermal force propels impurity towards the upstream direction [41].  

The EMC3-EIRENE code requires a 3D computational grid that divides the whole 

computational domain into finite volumes and stores the entire magnetic geometry [42]. In this work, 

the computational domain of EMC3-EIRENE spans the whole torus (360°) and divides toroidal 

domains with a toroidal resolution of about 2.8°. The magnetic field aligned grid used by EMC3-

EIRENE provides computationally effective access to fast magnetic field reconstruction during the 

MC particle tracing. The code uses a reversible field line mapping technique for the transport of 

individual MC particle across the toroidal block boundary [43]. The upper divertor of EAST has 

been upgraded to tungsten targets since 2014 campaign. Heat flux control on upper tungsten divertor 

is a critical topic for steady-state and long-term operation on EAST. Hence, the computational grid 

used in this work is constructed based on an upper single null magnetic configuration plasma 

discharge denoted by the shot number #74209 during the steady-state period at 4.0s on EAST. A 

two-dimensional (2D) poloidal cross section of the computational grid is shown in figure 1. 

Deuterium is used as the main plasma species with neon as the extrinsic impurity injected into 

the torus. Five neon injections at Upstream (U0), Inboard Divertor (ID0, ID1) and Outboard 

Divertor (OD0, OD1) are indicated in figure 1 and table 1. The toroidal location of the neon impurity 

injection position is initialized as the toroidal angle of φ= 0° in this study. The injected neon rate 

of 6.25 × 1020 s-1 with an initial energy of 0.03 eV is used as an input for all the cases. Due to the 

low chemical activity of neon, the impurity recycling coefficient of 0.99 is assumed [13]. The 

simulation assumes a total input power of 2.66 MW, shared equally between electrons and ions 



[21,44,45]. The toroidal directions of the plasma current Ip (0.37 MA) and the toroidal magnetic 

field Bt (2.5 T) are in the anti-clockwise and clockwise directions from top view, respectively. The 

upstream density of 1.0× 1019 𝑚−3 is set as the boundary condition for the particle transport. The 

cross-field transport of particle and heat modelled by the diffusive transport coefficients are set as, 

D⊥= 0.4 m2𝑠−1 and χ⊥= 3D⊥. The impurity perpendicular diffusivity, Dimp  is assumed to be 

equal to the perpendicular diffusivity of the background plasma, i.e. 0.4 m2𝑠−1. 

 

3. Results and discussion 

3.1 Neon injections near the divertor strike points and at upstream 

3.1.1 Toroidally symmetry/asymmetric distributions of heat load 

Figures 2(a-f) show the 2D distributions of heat flux deposition on the upper in- and out-board 

divertor targets with neon impurity injections at U0, ID0 and OD0. The downstream injections at 

ID0 and OD0 result in a lower heat flux deposition on the upper in- and out-board divertor targets 

compared with the upstream injection at U0. The most effective suppression of heat load on the 

upper inboard divertor targets is achieved with the injection at ID0, resulting in a peak value ~ 

1.2 MW/m2 (figure 2(b)). Additionally, the neon impurity injections at ID0 and OD0 result in the 

toroidally asymmetric distributions of heat load on the upper in- and out-board targets (figures 2(b) 

and (f)), respectively. A reduction in the heat flux magnitude with increase in the toroidal angle, 

starting from the injection location on the inboard targets is observed in figure 2(b). An obvious 

suppression in heat load from the toroidal angle of φ= -45° to -20° is also obtained on the upper 

outboard targets in figure 2(f). 

Figures 3(a-b) show the poloidal distributions of heat flux along the divertor targets (ID0 

injection and no neon case) for the upper in- and out-board divertor targets at toroidal angles of φ= 

60° and -120°. The peak heat loads on the upper inboard targets are ~ 0.6 MW/m2  and 

1.1 MW/m2 at φ= 60° and -120° (figure 3(a)), respectively. However, the heat flux distributions 

on the upper outboard target with injection at ID0 are similar at the toroidal angles of φ= 60° and 

-120° (figure 3(b)), which does not show an asymmetric property of the heat flux distribution as 

shown in figure 2(e). This indicates that the neon impurity injection around the strike point at the 

inboard divertor only leads to a toroidally asymmetric distribution of heat load on the inboard targets. 

For the sake of comparison, the heat flux distribution without the neon injection is also shown in 

figure 3. The lager heat loads of ~ 2.8 and 3.7 MW/m2 on the upper in- and out-board targets are 

obtained for no neon injection case, respectively. Additionally, the poloidal profiles of the heat load 

for the upper in- and out-board divertor targets (OD0 injection and no neon case) along the divertor 

targets at the toroidal angles of φ= -30° and 150° are compared in figures 3(c-d). The peak values 

of heat flux deposition on the upper outboard target at the toroidal angles of φ= -30° and 150° are 



~ 0.8 and 1.75 MW/m2 (figure 3(d)), respectively. However, no toroidal asymmetry of heat flux 

profiles is obtained at the toroidal angles of φ= -30° and 150° on the upper inboard targets (figure 

3(c)). Based on the above simulations, a unique result is found that neon impurity injections near 

the strike points at the in- and out-board divertors result in the toroidally asymmetric distributions 

of heat load on the in- and out-board targets, respectively. The detailed analysis of toroidally 

asymmetric heat load distribution has been performed in the following subsections.  

In addition, a parameter study has been performed to examine the sensitivity of the asymmetric 

distribution of heat load on the upstream electron density in figure 4. The 2D distributions of heat 

load on the in- and out-board divertor targets are displayed in figure 4 for neon injections at ID0 and 

OD0 with upstream electron density of 0.8 and 1.2 × 1019 𝑚−3 . It is seen that the toroidally 

asymmetric distributions of heat load on the upper targets can be obtained as well as the case of 1.0 

× 1019 𝑚−3. Hence, the toroidal asymmetry of heat load on the divertor targets is associated with 

the poloidal neon injection position instead of the edge plasma parameters. 

 

3.1.2 3D analysis of toroidally asymmetric heat load for the strike-point injections 

The studies of the relation between 3D neon radiation in SOL and heat flux deposition on the 

divertor targets have been conducted with the help of the FLT approach to make clear the reason for 

above-mentioned toroidally asymmetric heat load. The start points for FLT are located on the 

inboard targets at the toroidal angles of φ= 60° (P1 in figure 2(b)) and -120° (the opposite toroidal 

location of P1). The corresponding flux tubes are named FT(60°) and FT(-120°) to facilitate the 

discussion below. Figures 5(a-d) show the electron density and temperature, neon ions density and 

radiation power along two flux tubes FT(60°) and FT(-120°). It is seen that the ne and Te at the 

upstream for FT(60°) and FT(-120°) are virtually identical as shown in figures 5(a-b), respectively. 

This indicates that the incoming powers into FT(60°) and FT(-120°) are same at the upstream. On 

the other hand, at the downstream divertor region, the neon ions density for FT(60°) is about two 

orders of magnitude higher than that for FT(-120°) (figure 5(c)), which results in a much larger neon 

radiation power for FT(60°) compared to that for FT(-120°) (figure 5(d)). As a result, the stronger 

energy loss for FT(60°) leads to the lower heat load on the divertor targets at P1 (figure 2(b)). 

The same analysis for the toroidally asymmetric heat load distribution on the upper outboard 

targets has been performed in figures 6(a-d). The start points for FLT on the outboard targets are 

selected at the toroidal angles of φ= -30° (P2 in figure 2(f)) and 150° (the opposite toroidal location 

of P2). The flux tubes are denominated as FT(-30°) and FT(150°), respectively. Figures 6(a-d) 

display the electron density and temperature, neon ions density and radiation power along the flux 

tubes FT(-30°) and FT(150°). The same incoming energy into FT(-30°) and FT(150°) is obtained 

according to the ne and Te at the upstream in figures 6(a-b). At the same time, the much higher neon 



ions density and radiation power at the divertor region are achieved for FT(-30°), which leads to a 

lower heat load at P2 (figure 2(f)). Consequently, the same incoming energy at the upstream but 

different power losses at the divertor region result in the toroidal asymmetry of heat load on the 

upper in- and out-board targets.   

 

3.1.3 Dependence of toroidally asymmetric heat load on poloidal injection position 

The above simulations in figure 2 also demonstrate that the toroidally asymmetric heat load 

distributions on the in- and out-board targets show a dependence on the poloidal neon injection 

position. The detailed analysis of the relation between the upstream energy source, power exhaust 

by neon and resulting heat load for different neon injections at U0, ID0 and OD0 has been conducted 

by the FLT approach. Figures 7(a-d) show the electron density and temperature, neon ions density 

and radiation power along the flux tube FT(60°) from P1 on the upper inboard target with different 

neon injections. The flux tube FT(60°) rotates toroidally (16 turns) from a toroidal angle of 60° to 

about -6000° and terminates at the outboard divertor target. The upstream ne and Te for neon 

injections at U0, ID0 and OD0 are similar (figures 7(a-b)). However, both the neon ions density and 

radiation power are much higher at the high field side with the ID0 injection compared to the U0 

and OD0 injections (figures 7(c-d)). Therefore, a resulting lower heat load at P1 on the upper inboard 

target is obtained for the ID0 injection in figure 2(b) in contrast to the U0 and OD0 injections in 

figures 2(a) and (c).  

Further, the FLT from P2 on the upper outboard target has been carried out to study the heat 

load distribution on the outboard targets with different poloidal neon injection positions. Figures 

8(a-d) show the electron density and temperature, neon ions density and radiation power along the 

flux tube FT(-30°) from P2 on the upper outboard target with different neon injections. Likewise, 

the higher power exhaust at the low field side for the OD0 injection (figure 8(d)) with the similar 

incoming energy into FT(-30°) at the upstream according to figures 8(a-b) results in a smaller heat 

load at P2 on the upper outboard targets in figure 2(f), in comparison with the U0 and ID0 injections 

in figures 2(d) and (e), respectively.  

 

3.2 Neon injections away from the strike points at the divertor 

Based on the above simulations, one can see that the toroidally asymmetric distribution of heat load 

shows a dependence on the neon injection location. However, it is uncertain that the asymmetry of 

heat load is induced by neon injection near the strike point or at the downstream divertor compared 

to the upstream neon injection. Hence, two injection positions named ID1 and OD1 away from the 



strike points as shown in figure 1 are used to resolve this issue. Figures 9(a-d) present the 2D 

distributions of the heat load on the upper in- and out-board targets with neon injections at ID1 and 

OD1. The toroidally uniform heat load distributions are obtained for both ID1 and OD1 injections. 

Therefore, it is confirmed that the asymmetry of heat load distribution on the divertor targets is 

attributed to the neon injection near the strike point instead of that at the downstream divertor. 

FLT method is employed to investigate the toroidally asymmetric/symmetric distributions of 

heat load on the divertor targets with neon injections at ID0/ID1 and OD0/OD1, respectively. 

Figures 10 and 11 show the electron density and temperature, neon ions density and radiation power 

for the divertor and upstream injections along the flux tubes FT(60°) and FT(-30°), respectively. 

The similar ne and Te are obtained for neon injections at U0, ID0 and ID1 along the flux tube FT(60°) 

at the upstream (figures 10(a-b)). However, both the neon ions density and radiation power are much 

lower with the ID1 injection compared to the ID0 injection (figures 10(c-d)). Therefore, the stronger 

spatial power exhaust for ID0 injection results in a smaller heat load at P1 on the inboard divertor 

targets (figure 2(b)), in comparison with the U0 and ID1 injections (figures 2(a) and 9(a)). Likewise, 

the higher power exhaust for the OD0 injection (figure 11(d)) with the similar incoming energy into 

FT(-30°) at the upstream according to figures 11(a-b) results in a lower heat load at P2 on the upper 

outboard targets (figure 2(f)), in contrast to that for the U0 and OD1 injections (figures 2(d) and 

9(d)).  

 

4. Summary 

The impact of different poloidal neon injection positions on the toroidally symmetric/asymmetric 

distributions of heat load on the divertor targets has been investigated by EMC3-EIRENE code. It 

is found that neon injections near the strike points on the in- and out-board divertor targets lead to 

the toroidally asymmetric heat load distributions on the in- and out-board targets, respectively. The 

relation between the upstream energy source, downstream neon radiation and resulting heat load on 

the divertor target has been investigated by means of the field line tracing technique. The neon 

injections near the strike points lead to a higher radiation power at the divertor region, that results 

in a lower heat load in contrast to the upstream neon injection. Two neon injections away from the 

strike points at the divertor are investigated to further confirm the asymmetric distribution of heat 

load, which shows the symmetric distribution of heat load as the upstream neon injection. 
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Figure captions: 

Figure 1. The poloidal cross section of the computational grid used in EMC3-EIRENE for EAST 

modelling. The solid red circles named corners 1 and 2 mark the corners of each divertor target. The 

divertor targets are indicated by the orange lines. Five neon impurity injection positions and 

directions indicated by purple arrows are set at Upstream (U0), near the strike point at the In- and 

Out-board Divertors (ID0, OD0) and away from the strike point at the In- and Out-board Divertors 

(ID1, OD1). The purple dashed line (R= 158.0 cm) is used to define the boundary between the high 

field and low field sides of the torus for the discussion in sections 3.1.3 and 3.2. 

Figure 2. The 2D distributions of heat flux deposition on the upper in- and out-board divertor targets 

with neon injected at U0, ID0 and OD0, respectively. The x-axis and y-axis indicate the toroidal 

angle and the distance between the corner and the position on the target plates, respectively. The 

points P1 and P2 are close to the strike points on the upper in- and out-board targets at φ= 60° and 

-30°, respectively. 

Figure 3. The poloidal distributions of heat load on the upper in- and out-board divertor targets at 

the toroidal angles of φ= 60° and -120° with neon seeded at ID0 (a, b), and at the toroidal angles 

of φ= -30° and 150° with neon injected at OD0 (c, d). The x-axis is the distance from the location 

on target plates to each corner of divertor target. 

Figure 4. The 2D distributions of heat load on the upper in- and out-board targets for neon injections 

at ID0 and OD0 with upstream electron density of 0.8 × 1019 𝑚−3 and neon injection rate of 

9.38 × 1020 s-1 (a, c), and 1.2 × 1019 𝑚−3 and neon injection rate of 3.13 × 1020 s-1 (b, d). 

Figure 5. The distributions of electron density (a) and temperature (b), neon ions density (c) and 

radiation power (d) along the flux tubes FT(60°) and FT(-120°) against the toroidal angle. The start 

points of the flux tubes FT(60°) and FT(-120°) are located at the inboard targets at the toroidal 

angles of φ= 60° (P1 in figure 2(b)) and -120° (the opposite toroidal location of P1), respectively.  

Figure 6. The distributions of electron density (a) and temperature (b), neon ions density (c) and 

radiation power (d) along the flux tubes FT(-30°) and FT(150°) against the toroidal angle. The start 

points of the flux tubes FT(-30°) and FT(150°) are located at the outboard targets at the toroidal 

angles of φ= -30° (P2 in figure 2(f)) and 150° (the opposite toroidal location of P2), respectively. 

Figure 7. The electron density (a) and temperature (b), neon ions density (c) and radiation power 

(d) along the flux tube of point P1 (i.e. FT(60°)) against the toroidal angle with neon injections at 

U0, ID0 and OD0. The start point P1 is located at the toroidal angle of φ= 60° on the inboard targets. 

When the flux tube of point P1 rotates about -3100°, the point P1 crosses the purple dashed line as 

shown in figure 1, i.e. migrates from the high field side to the low field side. Accordingly, the brown 

dashed line is used to indicate the boundary between the high field and low field sides, which is 

corresponding to the purple dashed line in figure 1. 



Figure 8. The electron density (a) and temperature (b), neon ions density (c) and radiation power 

(d) along the flux tube of point P2 (i.e. FT(-30°)) against the toroidal angle with neon injections at 

U0, ID0 and OD0. The start point P2 is located at the toroidal angle of φ= -30° on the outboard 

targets. Likewise, when the flux tube of point P2 rotates about 3100°, the point P2 migrates from 

the low field side to the high field side. 

Figure 9. The 2D distributions of heat load on the upper in- and out-board targets with neon 

injections at ID1 (a, c) and OD1 (b, d). 

Figure 10. The electron density (a) and temperature (b), neon ions density (c) and radiation power 

(d) along the flux tube of point P1 (i.e. FT(60°)) against the toroidal angle with neon injections at 

U0, ID0 and ID1. 

Figure 11. The electron density (a) and temperature (b), neon ions density (c) and radiation power 

(d) along the flux tube of point P2 (i.e. FT(-30°)) against the toroidal angle with neon injections at 

U0, OD0 and OD1. 
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Table 1. Poloidal positions for neon injection used in the modelling. 

 

Injection  Poloidal position (cm) 

U0 R=230.0, Z=41.0 

ID0 R=145.0, Z=85.0 

OD0 R=173.0, Z=105.0 

ID1 R=145.0, Z=80.0 

OD1 R=173.0, Z=102.0 

 


