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Abstract

Spatio-temporal dynamics of turbulence with the interaction of geodesic acous-
tic modes (GAMs) are investigated, focusing on the phase-space structure of turbu-
lence, where the phase-space consists of real-space and wavenumber-space. Based
on the wave-kinetic framework, the coupling equation between the GAM and the
turbulence is numerically solved. The turbulence trapped by the GAM velocity field
is obtained. Due to the trapping effect, the turbulence intensity increases where the
second derivative of the GAM velocity (curvature of the GAM) is negative. While,
in the positive-curvature region, the turbulence is suppressed. Since the trapped
turbulence propagates with the GAMs, this relationship is sustained spatially and
temporally. The dynamics of the turbulence in the wavenumber spectrum is con-
verted in the evolution of the frequency spectrum, and the simulation result is
compared with the experimental observation in JFT-2M tokamak, where the sim-
ilar patterns are obtained. The turbulence trapping effect is a key to understand
the spatial structure of the turbulence in the presence of sheared flows.

Keywords: zonal flows, GAMs, turbulence, turbulence trapping

1 Introduction

Interaction between turbulence and sheared flows has been an important subject in stud-
ies of magnetically confined plasmas. Theoretical models for turbulence suppression have
been proposed such as the suppression due to the flow shear [1] and due to the flow cuva-
ture [2]. Experimental validation for the interaction between sheared flows and turbulence
has been reported [3]-[7]. The spatial structure of the energy transfer functions between
the turbulence and the zonal flows (ZFs) has been observed in a basic plasma experiment
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[8]. In researches on the interaction between ZFs and turbulence, predator-prey model
has been widely studied [9]-[13] and applied to experiments [14]-[16]. However, the spa-
tial structure of turbulence within the wavelength of the ZFs can not be predicted by the
predator-prey model, since the spatial integral over the wavelength of the ZFs is implicitly
performed in the derivation of the model. It should be noted that the wavelength of ZFs
is comparable to the scale length of the radial electric field which induces the transport
barriers [14]. A model that can predict the spatial structure of turbulence in the presence
of shear flows is required.

Turbulence trapping effect can be treated when the phase-space dynamics is consid-
ered, where the phase-space consists of real-space and wavenumber-space [17, 18]. Turbu-
lence trapping could have a significant impact on the spatial profile of the turbulence [19].
Therefore, the phase-space dynamics should be considered for the interaction between
turbulence and sheared flows. In addition, validation of theoretical models is essential for
understanding experimental observations. Geodesic acoustic modes (GAMs) are relatively
easy to be observed experimentally, and details of their properties have been reported [20]-
[23]. Thus, there is a chance to test models of the interaction between turbulence and
sheared flows in the study of GAMs.

In this study, we investigate the phase-space dynamics of turbulence with the inter-
action of the GAMs, based on the wave-kinetic framework. Spatial structures of the
turbulence and the GAMs are obtained, and they are compared with experimental obser-
vation. Due to the turbulence trapping by the GAM, the turbulence is accumulated at
regions where the curvature of the GAM (spatial-second-derivative of the GAM flow) is
negative, and the turbulence is suppressed at the positive curvature region. This phase
relation is sustained with the propagation of the GAM. If one observes this relation by a
local measurement, the turbulence is observed to increase and decrease when the poloidal
flow is in the electron and ion diamagnetic drift directions, respectively. A guideline
for identify the turbulence trapping effect is obtained by rewriting this relation for the
evolution of the frequency spectrum. This is because simultaneous measurement of the
turbulence wavenumber spectrum at different radial locations is still challenging. The
simulation results are compared with the experiment, where the similar relation is ob-
tained. The rest of the paper is organized as follows. Model is introduced in section2,
and the simulation results are shown in section3. Comparison with the experiment is
described in section4. Summary is given in section5.

2 Model

We consider a high aspect ratio, circular cross-section toroidal plasma. The toroidal
coordinate (r, θ, ζ) is used, where ∇r,∇θ and ∇ζ are the radial, poloidal and toroidal
directions, respectively. The governing equation for the coupling of the turbulence with
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the GAM is as follows [9], [28, 29].

∂tNk +
∂ωk

∂kr
∇rNk − kθ∇rṼθ

∂Nk

∂kr
= γLNk −∆ωN2

k , (1)

∂tṼθ + 2ϵ2R
⟨
ñ sin θ

⟩
= −∇rΠrθ + µG∇2

rṼθ, (2)

∂tñ− 2

R
Ṽθ sin θ +∇∥Ṽ∥ = −∇rΓr, (3)

Here, time and space are normalized by ρ−1
s Vd and ρs, where ρs is the ion sound gyro-

radius and Vd is the diamagnetic drift velocity, respectively. The normalized action of the
turbulence is denoted by Nk, and ωk is the frequency of the turbulence, where Nk is a
function of r and the wavenumbers, kr and kθ. The linear growth rate and the nonlinear
decorrelation rate of turbulence are denoted by γL and ∆ω, respectively. The GAM
fluctuations of the poloidal and parallel flows and the density are denoted by Ṽθ, Ṽ∥ and
ñ, respectively. The geometry factor ϵ is defined as ϵ = Ln/R, where Ln is the density
scale length and R is the major radius. The GAM is coupled with the turbulence via
the turbulence driven Reynolds stress Πrθ and the particle flux Γr. The viscosity for the
GAM, µG, is introduced. We consider the drift wave type turbulence. Thus, ωk and Nk

are given as

ωk =
kθ

1 + k2
r + k2

θ

+ kθṼθ, (4)

Nk =
(
1 + k2

r + k2
θ

)2 |ϕk|2, (5)

where ϕk is the normalized turbulent electrostatic potential. The turbulence frequency
ωk includes the doppler shift due to the GAM velocity. The Reynolds stress can be given
as

Πrθ = −
∫

krkθ

(1 + k2
r + k2

θ)
2Nkd

2k. (6)

We focus on plasmas with high safety factor q ≫ 1 and weak magnetic shear. In this
case, the return flow effect, which comes from the parallel compression, the third term
in the left hand side of Eq. (3), can be neglected. Note that this term is important for
the low frequency zonal flow, where the effective inertia is enhanced by a factor 1 + 2q2

[30, 31]. In addition, the contribution from the particle transport modulation (dynamics
shearing, the right hand side of Eq. (3)) can be ignored in the low magnetic shear case
[28]. In order to simplify the situation, we use the slab coordinate x instead of r, hereafter.
In this situation, the GAM evolution can be obtained as

∂2
t Ṽθ + ω2

GṼθ = −∂x∂tΠxθ + µG∂
2
x∂tṼθ, (7)

where the GAM frequency is defined as ωG =
√
2ϵ, which corresponds to

√
2cs/R in the

dimensional form.
In the conventional theories for the interaction of ZFs with turbulence [9], the predator-

prey model is deduced from the linear response of Nk. In the derivation of the predator-
prey model, the spatial integration within the ZFs wavelength is used. Thus, the predator-
prey model, including its extension for the one-dimensional model [11], can not predict
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the spatial structures of the turbulence within the scale of the ZFs wavelength. In this
study, we investigate the spatial structure of the turbulence, by considering the phase-
space dynamics of the turbulence, where the evolution of the GAM is calculated without
any assumptions for the evaluation of the Reynolds stress within the framework of the
wave-kinetic theory.

The coupling equations, Eqs. (1) and (7), are calculated numerically. The dynamics
of the turbulence in (x, kr)-space is simulated. The simulation conditions are as follows.
A spatially homogeneous turbulence is assumed, where γL and ∆ω are given constant in
space. The wavenumber-dependence of γL is given as γL = γ0 exp (−(kr − k0)

2/∆k2). The
poloidal wavenumber kθ is conserved in the interaction with the GAMs, so that the kθ is
given as a parameter. The parameters are chosen to be γ0 = 0.5,∆ω = 1.5, k0 = 0.3,∆k =
1, kθ = 1, ωG = 0.1, µG = 0.1. The periodic boundary condition for the x-direction is used.
The perturbation is introduced to the turbulence as the initial condition, and the time
evolution of the turbulence and the GAM are investigated.

3 Spatial-temporal relation between GAMs and tur-

bulence

In this section, we describe the simulation results on the spatio-temporal structures of the
GAM and the turbulence.

The nonlinear saturated state is obtained by solving Eqs. (1) and (7). The time evo-
lution of the energy is shown in Fig. 1, where the energies of the GAM and turbulence
are defined as EGAM =

∫
|Vθ|2dx and Eturb =

∫
(1 + k2

r + k2
θ)

−1
Nkdxdkr, respectively. The

turbulence energy is reduced when the energy of the GAM becomes large. The spatio-
temporal patterns of the GAM velocity and the turbulence at the saturated state are
shown in Fig. 2. The GAM propagates in the x-direction monotonically. The turbulence
intensity also has the similar pattern with the GAM; the region where the turbulence is
suppressed propagates with the GAM. The phase relation between the modulated turbu-
lence intensity and the GAM is sustained with the propagation of the GAM.

The snapshots of the turbulence Nk in the phase-space are shown in Fig. 3, in which
the initial condition and the saturated state are shown. At t = 0, a small perturbation is
applied to the spatially homogeneous turbulence, and the perturbation evolves to form the
GAM structure. Note that the nonlinear saturated state is independent on the pattern
of initial conditions. At the nonlinear saturated state, the turbulence is trapped in the
GAM velocity, and their phase relation is sustained spatially and temporally. Thus, the
trapped turbulence propagates with the phase velocity of the GAM. Due to the trapping,
the turbulence is accumulated where the second derivative of the GAM velocity field is
negative, ∂2

xVθ < 0, [19]. While, in the region of ∂2
xVθ > 0, the turbulence is suppressed.

If one observes this system by a local measurement, like a Langmuir probe or heavy ion
beam probe (HIBP) [20, 21], one can see that the turbulence decreases when the GAM
velocity is in the ion-diamagnetic drift direction, and increases when the GAM velocity is
in the electron-diamagnetic drift direction. This property could be a guideline to identify
the island structure in the phase space.
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Fig. 1: Time evolution of the energies of the GAM and turbulence.

The mechanism of the turbulence trapping can be explained as follows [17]-[19]. The
wave-kinetic equation, Eq. (1), can be written by using the Poisson bracket as

∂tNk + {ωk, Nk} = γLNk −∆ωN2
k . (8)

One can see that ωk is the constant of motion in the case when γL = 0,∆ω = 0. The tur-
bulence frequency, ωk, corresponds to the characteristics of Eq. (1), in the same way that,
for example, the Hamiltonian for the plasma particles corresponds to the characteristics
of the Vlasov equation. Thus, the turbulence moves along the contour of ωk. When the
sheared flow exists, the contour of ωk is deformed by the doppler-shift to form the island
structure in the phase space, as shown by the white lines in Figs. 3(a) and (b). Here, the
island width ∆k can be estimated by using Eq. (4) as

∆k =

√
(1 + k2

θ)
2VG

1− (1 + k2
θ)

2VG

, (9)

where VG is the amplitude of Vθ. As the turbulence moves along the contour of ωk,
the turbulence in the region |kr| < ∆k is trapped in the GAM, which propagates with
the phase velocity of the GAM. Here, the separatrix of the island in the phase space
corresponds to the region where the curvature of the GAM is positive. Therefore, the
turbulence is suppressed/accumulated in the positive/negative curvature region.

In order to clarify the spatial structure of the energy transfer between the GAM and
the turbulence, the energy equations are discussed here. The energy equations of the
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Fig. 2: Spatio-temporal patterns of (a) GAM velocity and (b) turbulence intensity.

GAM and the turbulence are obtained from Eqs. (1), and (2) as

∂tI + ∂x (v̂gI) = Wturb + γ̂LI −∆ω̂I2, (10)

∂tṼθ
2
= WG + 2µGṼθ∂

2
xṼθ, (11)

where I is the energy density of the turbulence defined as I(x, t) =
∫
(1 + k2

r + k2
θ)

−1
Nkdkr,

and the terms, v̂gI, γ̂LI and ∆ω̂, are given as

v̂gI =

∫
vg

(
1 + k2

r + k2
θ

)−1
Nkdkr, (12)

γ̂LI =

∫
γL

(
1 + k2

r + k2
θ

)−1
Nkdkr, (13)

∆ω̂I2 =

∫
∆ω

(
1 + k2

r + k2
θ

)−1
N2

kdkr. (14)

Here, the effective linear growth rate and nonlinear decorrelation rate are denoted by γ̂L
and ∆ω̂, respectively. The energy exchange rates between the GAM and the turbulence,
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Fig. 3: Snapshots of action of turbulence, Nk(x, kr), in the phase-space. (a) The initial
condition and (b) the nonlinear saturated state are shown. The white contour corresponds
to that of ωk.

WG and Wturb, are obtained as

Wturb =

[∫
2krkθ

(1 + k2
r + k2

θ)
2Nkdkr

]
∂xṼθ = −2Πxθ∂xṼθ, (15)

WG = −2Ṽθ∂xΠxθ. (16)

The spatial profiles of the energy transfer functions, Wturb and WG, are different with
each other. Namely, the region where the GAM obtains energy from the turbulence is
different from the region where the turbulence loses energy. It should be noted that the net
exchange energy between the GAM and the turbulence is conserved,

∫
(WG+Wturb)dx = 0.

We describe the spatial profiles of the energy equation for the turbulence, which are
calculated from the simulation result. The spatial relationship between the phase-space
structure of Nk and the turbulent force is shown in Figs. 4(a) and (b), where the turbulent
force is defined as the radial derivative of the Reynolds stress, −∂xΠxθ. The turbulent
force has a highly nonlinear waveform, where it has steep gradient. The spatial profiles of
the energy transfer functions, WG and Wturb, are plotted in Fig. 4 (c). The positive WG

can be seen in the regions where the GAM velocity has a curvature, which indicates that
the GAM obtains energy from the turbulence. While, the negative Wturb is obtained in
the regions where the GAM has a shear, which implies that the energy of the turbulence
is reduced there. The profile of the propagation effect of the turbulence, the second term
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Fig. 4: Spatial pattern of turbulent driving force. (a) Snapshots of Nk and Ṽθ at t = 600,
(b) turbulent force −∂xΠxθ, (c) Energy transfer functions between GAM and turbulence,
and (d) turbulence propagation term (the second term in LHS of Eq. (10)).

in left hand side (LHS) of Eq. (10), is shown in Fig. 4 (d). This term strongly reflects
the effect of the trapping. The magnitude of this term is the same order with the energy
transfer functions, so that the turbulence propagation is also important for determining
the turbulence profile. It is noted that the predator-prey model can be obtained by
integrating Eqs. (10) and (11) [9]. By the spatial integration, the turbulence propagation
effect, the second term in LHS of Eq. (10), disappears. Although the energy exchange
term, Wturb and WG, are important for determining the spatially integrated energies of the
turbulence, the turbulence propagation effect (turbulence trapping effect) is important for
determining the spatial profile as well as the energy exchange term.

4 Comparison with experimental observation

This relationship of the turbulence with the GAM can be described in the real-space
and frequency-space. This is because the simultaneous measurement of the wavenumber
spectrum of the turbulence at different radial locations is still challenging. The turbulence
we consider here is the drift wave, so that it follows the dispersion relation as shown
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in Eq. (4). Using the dispersion relation, the kr-spectrum can be interpreted in the
frequency-space, as Nk(x, kr) → Nk(x, ω). The transformation of Nk(x, kr) to Nk(x, ω)
is possible by the following reason. In the framework of the wave-kinetic theory, the
turbulence poloidal wavenumber kθ is constant in time and space in the interaction with
the GAM, while kr changes spatially and temporally, in the limit that the growth and
nonlinear damping of turbulence are absent [18, 19]. This is because the deformation of the
turbulence wavenumber in the radial (poloidal) direction is due to the radial (poloidal)
inhomogeneity of the doppler shift by the sheared flow, where we do not consider the
poloidal inhomogeneity of the GAM velocity field. Thus, the change of the turbulence
frequency is only due to the change of kr. Figure 5(a) illustrates the time evolution of
Nk(x, ω) at x = 0. The trapped turbulence also forms island structures in the frequency
spectrum.

This simulation results are compared with an experiment in JFT-2M tokamak. In
this experiment, an HIBP is used to observe the interaction of the GAMs and turbulence
[20, 32], where the turbulence was identified as the drift wave [30]. Wavelet analysis is
performed to obtain the evolution of the turbulence spectrum. Figure 5(b) illustrates the
time evolutions of the poloidal velocity of the GAM component and the frequency spec-
trum of the turbulence, where these time evolutions are obtained at the same location.
Increase of the turbulent intensity is in phase of the GAM velocity. This characteristic
is similar to the simulation. The turbulence modulated by the GAM show the island
structure in the frequency spectrum, and its relation is sustained during the period that
the GAM exists. The detailed spatio-temporal patterns are described in [32]. The turbu-
lence trapping effect is a key to understand the spatial structure of the turbulence in the
presence of sheared flows.

5 Summary

Spatial structures of GAMs and turbulence is investigated, focusing on the phase-space
structure of turbulence. Based on the wave-kinetic equation, the interaction between the
GAM and the turbulence is investigated. The turbulence trapped by the GAM velocity
field is obtained in the real-wavenumber space. Due to the trapping effect, the turbulence
intensity increases where the second derivative of the GAM velocity is negative, ∂2

xVθ < 0.
While, in the region of ∂2

xVθ > 0, the turbulence is suppressed. Since the trapped turbu-
lence propagates with the GAMs, this relationship is sustained spatially and temporally.
Namely, the turbulence intensity increases and decreases when the GAM velocity is in
the electron and ion diamagnetic drift direction, respectively. This relation is interpreted
for the evolution of the frequency spectrum, and the simulation result is compared with
the experimental observation in JFT-2M tokamak. The similar spatio-temporal pattern
is obtained. The turbulence trapping effect is a key to understand the spatial structure
of the turbulence in the presence of sheared flows.
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Fig. 5: Time evolution of frequency spectrum of turbulence and the GAM. (a) Simulation
result and (b) experimental observation are shown.
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