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M. A. Ochando11, T. Estrada11, C. Hidalgo11, C. Moon12, H. Igami1,

Y. Yoshimura1, T. Ii. Tsujimura1, S.-I. Itoh3,4, and K. Itoh1,3

1 National Institute for Fusion Science, National Institutes of Natural Sciences, Japan

2 SOKENDAI (The Graduate University for Advanced Studies), Japan

3 Research Center for Plasma Turbulence, Kyushu University, Japan

4 Research Institute for Applied Mechanics, Kyushu University, Japan

5 Pohang University of Science and Technology, Korea

6 National Fusion Research Institute, Korea

7 Ulsan National Institute of Science and Technology, Korea

8 General Atomics, San Diego, USA

9 University of Texas, USA

10 Oak Ridge National Laboratory, USA

11 Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain

12 Max-Planck-Institut für Plasmaphysik, Germany

E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp

Abstract. In this contribution we analyze modulation electron cyclotron resonance heating

(MECH) experiment and discuss higher harmonic frequency dependence of transport coefficients.
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We use the bidirectional heat pulse propagation method, in which both inward propagating

heat pulse and outward propagating heat pulse are analyzed at a radial range, in order to

distinguish frequency dependence of transport coefficients due to hysteresis from that due to other

reasons, such as radially dependent transport coefficients, a finite damping term, or boundary

effects. The method is applied to MECH experiments performed in various helical and tokamak

devices, i.e., Large Helical Device (LHD), TJ-II, Korea Superconducting Tokamak Advanced

Research (KSTAR), and Doublet III-D (DIII-D) with different plasma conditions. The frequency

dependence of transport coefficients are clearly observed, showing a possibility of existence of

transport hysteresis in flux-gradient relation.

1. Introduction

Predictive modeling of thermal transport in magnetically confined plasmas is mandatory

to realize the fusion reactor. Recent studies have reported that electron thermal

transport in the axially heated plasma cannot be modeled by classical diffusion transport

model with a single scalar diffusive coefficient. There can exist critical gradient-type

nonlinearity [1, 2], inward pinch [3, 4, 5, 6], and ballistic transport events [7, 8, 9]. More

recently, emergence of a hysteresis in flux-gradient relation was discovered [10, 11, 12],

involving rapid responses of turbulence intensity and turbulent transport against heating

[11]. This mechanism can also explain a long standing mystery, that is, rapid increase

of the electron thermal diffusivity in response to electron cyclotron resonance heating

(ECH), found in Wendelstein 7-AS stellarator [13].

Modulation ECH (MECH) is widely used to provide perturbation in electron
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temperature, since its modulation frequency, input power, and deposition can be

precisely controlled [1, 2, 4, 5, 6, 10, 11, 12, 14, 15, 16]. See also a review [17].

Hysteresis in flux-gradient relation can be assessed by MECH experiment. By analyzing

not only fundamental MECH frequency but also its higher harmonics, i.e., the so-

called higher harmonic method [18], possible violation from the classical diffusive

transport picture can be discussed [15, 16]. Amplitude radial decay rate of temperature

perturbation is predicted to obey the square root of their frequencies in the case that

linear local diffusion model is valid. The experimental observations [15, 16] showed a

clear deviation from the linear local picture, where almost constant radial decay rates

among the fundamental frequency and higher harmonics were observed. The constant

slope provides transport coefficient that depends on frequency, showing a contradiction

with linear local theory. Possible relation between the constant slope and transport

hysteresis was also discussed [18].

In this contribution, we extend the higher harmonic method in order to discuss

existence of hysteresis in flux-gradient relation. We also use both outward and inward

propagating heat pulses to obtain the transport coefficients at a radial region, which

we call the bidirectional heat pulse propagation method, in order to distinguish the

frequency dependence of transport coefficients due to hysteresis from that due to other

reasons, such as radially dependent transport coefficients, a finite damping term, or

boundary effects. This method is applied to MECH experiments performed in various

helical and tokamak devices, i.e., LHD, TJ-II, KSTAR, and DIII-D with different
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operation conditions. A clear dependence of transport coefficients on both propagation

direction and higher harmonic frequency is obtained, showing a possibility of existence

of transport hysteresis [19].

2. Method

On the one hand, if the classical local transport model works, obtained transport

coefficients should be neither dependent on frequency nor on heat pulse propagating

direction. On the other hand, according to a theory [19], difference between transport

coefficients obtained from outward pulse and inward pulse becomes larger at higher

frequency in the presence of hysteresis. By analyzing frequency dependence of diffusivity

and convective velocity evaluated both from outward propagating pulse and from

inward propagating pulse, we discuss possibility of existence of hysteresis in flux-

gradient relation. We begin with one-dimensional heat transport equation for electron

temperature perturbation δTe in the cylindrical coordinate defined as

∂nδTe

∂t
+

nδTe

τ
= −1

r

∂ (rδqr)

∂r
+ δS, (1)

where δqr is the perturbed radial heat flux and τ is the damping coefficient [17]. We

analyze the region where the modulation heat source δS is not deposited. The perturbed

local heat flux is given by the classical local model as

δqr = −nχHP
∂δTe

∂r
+ nVHPδTe, (2)
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where χHP and VHP are thermal diffusion coefficient and convective velocity, respectively,

with respect to heat pulse. With the given heat flux, the transport equation becomes

∂Te

∂t
= χHP

∂2Te

∂r2
+

(
χHP

r
− VHP

)
∂Te

∂r
− VHP

r
Te, (3)

where τ is taken as infinity and χHP and VHP are treated as radially constant for

simplicity. Density profile is also taken to be constant in radius. Influence of these

simplification appears as a dummy frequency dependence in the transport coefficients.

This point is discussed below. Considering electron temperature perturbation

δTe ∝ exp[−iωt + i(kr + iki)r], (4)

where kr, ki and ω indicate the real part and the imaginary part of the radial wavenumber

and the angular frequency, the transport coefficients can be obtained as

χHP =
1

k2
r + k2

i γ
2

kiγ

kr

ω (5)

and

VHP =
k2

r − k2
i γ

k2
r + k2

i γ
2

1

kr

ω. (6)

The factor γ ≡ 1 − 1/kir shows the cylindrical geometry effect that comes from the

divergence operator. We have considered higher order corrections from cylindrical

geometry, as well, by treating a slight radial variation of the wavenumber components

with WKB approximation. See a dedicated article [20]. The wavenumbers kr and ki

can be obtained from the Fourier analysis of δTe combined with conditional averaging

technique at odd number harmonic frequencies f = fMECH, 3fMECH, ..., mfMECH, where

fMECH is the MECH frequency (f = ω/2π) and m is odd integers. The local model
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predicts the wavenumbers being nearly proportional to
√

f , and thus χHP and VHP that

do not depend on f [15, 16, 20].

In general, when values of n, χHP and VHP have radial dependences, or when a finite

value of damping term τ exists, obtained χHP and VHP naturally depend on frequency.

In those cases, Eqs. (5) and (6) become

χHP =
1

k2
r + k2

i γ
2

[
kiγ

kr

ω − 1

τ
+ ki(γ − 1)χ′

HP − V ′
HP

]
(7)

and

VHP =
1

k2
r + k2

i γ
2

[
k2

r − k2
i γ

kr

ω + ki(γ + 1)
1

τ
+ (k2

i + k2
r )χ

′
HP + ki(γ + 1)V ′

HP

]
, (8)

respectively. Note that influence of the density profile is similar to that of radially

dependent χHP and VHP, thus we omit discussion here. An important fact is that

the denominator k2
r + k2

i γ
2 increases as frequency increases, keeping the first terms

constant, if the local model is valid. As a result, impacts of the other terms become

smaller at higher frequencies. This asymptotic behavior is not identical for outward

propagating pulse and inward propagating pulse. Therefore, the difference of the

transport coefficients obtained from both pulses would decrease as frequency increases.

Moreover, edge and core boundary effects show similar frequency dependence, i.e.,

asymptotic convergence to a true value at higher frequency. See Ref. [20]. When

the frequency dependence is caused by the transport hysteresis, the difference of the

transport coefficients obtained from inward pulse and outward pulse should increase at

a higher frequency range [19]. The asymptotic behavior of higher harmonic terms is

essential to discuss cause of the frequency dependence of the transport coefficients.
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3. Experimental parameters

Experiments are performed in steady state L-mode plasmas. The experimental

conditions (major radius R, minor radius a, toroidal magnetic field strength B,

plasma current Ip, line averaged electron density n̄e, and total heating power Ptot)

are summarized in Table 1. MECH having a block-type waveform with fundamental

frequency fMECH and zero-to-peak amplitude δPMECH is applied to investigate heat

pulse propagation. Values of fMECH and δPMECH are given in Table 1, as well.

In order to show wide coverage of the method, various experimental conditions are

used. By changing the MECH deposition location, outward and inward propagating

electron temperature perturbations are generated in LHD and KSTAR, during which

electron temperature profiles are maintained almost unchanged. In KSTAR, electron

temperature perturbation is measured with an Electron Cyclotron Emission Imaging

(ECEI) system, while conventional ECE systems are used in the other three devices.

4. Results

Figure 1 shows the radial profile of the Te perturbation power and the phase difference for

the case of outward propagating pulses. The Perturbation power profile and the phase

difference profile are given not only for the fundamental frequency (black symbols) but

also for the third harmonic frequency (red symbols) and the fifth harmonic frequency

(blue symbols). Error bars show the statistical error obtained from variance of complex

Fourier amplitude in each period. When the classical local transport model is valid,
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slopes in the perturbation power profile and the phase profile approximately change with

√
f [20]. Black dashed lines in the figures show least-squares fit for the perturbation

power profile and the phase profile at the fundamental frequency. Red and blue dashed

lines are predicted profiles having slopes
√

3 and
√

5 times larger than that of the

fundamental frequency component. The results clearly show that the local model cannot

explain power and phase profiles. Helical plasmas seem to have much faster phase

propagation speed, i.e., relatively smaller slope, compared to tokamak plasmas.

Similar plots are given for inward propagating pulses, as shown in Fig. 2. Note

that we do not have dedicated discharges for observing inward propagating heat pulse

for DIII-D and TJ-II. For the case of DIII-D, inner side of the MECH deposition is

analyzed. Dashed lines look to better fit the experiments with the inward propagating

heat pulse, in particular for the case of KSTAR.

In order to discuss possible deviation from the classical local theory more

quantitatively, we analyze diffusion coefficient and convective velocity for different

harmonic frequencies and for both outward pulse and inward pulse. Slopes of Figs. 1

and 2 directly correspond to ki and kr, i.e., ki = A′/A and kr = φ′, where A and φ show

the amplitude profile and the phase profile. Figure 3 shows frequency dependences

of ki and kr for the different devices. The top side of the horizontal axis in Fig. 3

is labeled by normalized frequency by inverse of scaling confinement time, τ−1
E , where

ISS95 scaling [21] and ITER89-P scaling [22] are used for helical devices and tokamak

devices. Wavenumbers are analyzed at f = fMECH, 3fMECH, and 5fMECH. Black solid
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lines and red dashed lines show the predicted wavenumbers from the classical local

theory using the transport coefficients obtained at the fundamental MECH frequency

component [20]. In most cases, absolute value of ki is larger than that of kr, regardless

of the pulse propagation direction. In particular, helical devices have a much larger

difference between |ki| and |kr|, almost one order of magnitude difference. In addition,

in the cases of LHD, TJ-II, and DIII-D, the real part of the wavenumber only weakly

depends on the harmonic frequency and absolute values of kr are significantly below the

predicted values for higher harmonic components. This means that the phase of the

heat pulse propagates much faster than the prediction from the classical local theory,

which can provide a frequency dependence of the transport coefficients.

Using ki and kr in Fig. 3, χHP and VHP are calculated for both outward and inward

propagating heat pulses, as shown in Fig. 4, as a function of the harmonic frequency

f (only for outward pulse in the case of TJ-II). In the cases of LHD, TJ-II, and DIII-

D, obtained coefficients strongly depend on the frequency f , in which the local theory

predicts constant coefficients against f . The KSTAR plasma shows a strong frequency

dependence only in convective velocity. The difference between the transport coefficients

obtained from outward pulses and inward pulses becomes larger as frequency increases.

Therefore, this frequency dependence is not due to the radial dependence of n, χHP,

and VHP, finite value of the damping term, nor boundary effects, as discussed in Sec. 2.

The polarity of convective velocities depends on the direction of heat pulse propagation.

This is because the condition k2
r − k2

i γ < 0 is always satisfied. Faster phase propagation
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may correspond to an immediate response of radial heat flux against turn on of heating

[13, 11, 18]. The strong frequency dependence of transport coefficients in the present

analysis indicates that the transient response during MECH cannot be explained in

the classical local view of transport. These results showing a clear dependence of the

transport coefficients on both propagation direction and higher harmonic frequency can

be linked to existence of transport hysteresis [19]. It should be noted that authors in

Refs [2, 6, 14] claimed that frequency dependence of heat pulse transport coefficients is

small enough to validate the classical local transport theory. Conditions that provide

strong frequency dependence on the transport coefficients should be investigated to

unveil the nonlocal characteristics of high temperature magnetically confined plasmas.

5. Summary

In this contribution, we extended higher harmonic method in order to discuss existence

of hysteresis in flux-gradient relation. We used the bidirectional heat pulse propagation

method in order to distinguish frequency dependence of the transport coefficients due

to hysteresis from that due to other reasons, such as radially dependent transport

coefficients, a finite damping term, or boundary effects. The method was applied

to MECH experiments performed in various helical and tokamak devices, i.e., LHD,

TJ-II, KSTAR, and DIII-D with different operation conditions. Results showed clear

dependences of the transport coefficients on both propagation direction and higher

harmonic frequency, showing a possibility of existence of transport hysteresis [19].
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Within presented discharges, which include various sizes of helical and tokamak plasmas,

violation from the classical local view of transport was universally observed.
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Table 1. Experimental conditions

Device R [m] 　 a [m] B [T] Ip [MA] n̄e [1019m−3] Ptot [MW] δPMECH [MW] fMECH [Hz]

LHD 3.6 0.6 2.75 – 1.3 5.2 0.38 18

TJ-II 1.5 0.2 1 – 0.5 0.275 0.025 180

KSTAR 1.8 0.5 2.9 0.5 2 1.78 0.25 180

DIII-D 1.7 0.6 1.97 1.29 3.35 3.25 1.35 50
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Figure 1. Radial profiles of electron temperature perturbation (top) and phase difference

(bottom) for (a) LHD, (b) TJ-II, (c) KSTAR, and (d) DIII-D for analyzing outward propagating

pulses. Dashed lines in the figure show the prediction from pure diffusion theory, in which

thermal diffusivity is obtained from the fundamental mode.
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Figure 2. Radial profiles of electron temperature perturbation (top) and phase difference

(bottom) for (a) LHD, (b) KSTAR, and (c) DIII-D for analyzing inward propagating pulses.

Dashed lines in the figure show the prediction from pure diffusion theory, in which thermal

diffusivity is obtained from the fundamental mode.
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a function of the modulation harmonic frequency. Black solid lines and red dashed lines show

predicted wavenumbers from the classical local theory with the transport coefficients obtained

at the fundamental MECH frequency component.
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