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Abstract. In this paper, we show the direct observation of the parallel flow structure and the

parallel Reynolds stress in a linear magnetized plasma, in which a cross-ferroic turbulence system

is formed [S Inagaki et al 2016 Sci. Rep. 6 22189]. It is shown that the parallel Reynolds stress

induced by the density gradient driven drift wave is the source of the parallel flow structure.

Moreover, the generated parallel flow shear by the parallel Reynolds stress is found to drive the

parallel flow shear driven instability D’Angelo mode, which coexists with the original drift wave.

The excited D’Angelo mode induces the inward particle flux, which seems to help in maintaining

the peaked density profile.
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1. Introduction

Self-organization of flow structures observed in fusion and fundamental plasmas is one

of the central issues in physics of complex systems [1, 2]. A typical example is the

spontaneous toroidal flow formation in torus plasmas, the so-called intrinsic rotation

[3, 4, 5]. The toroidal plasma rotation is one of the key elements for realizing a sufficiently

high β plasma for fusion reactors, since that suppresses some MHD modes that can

induce disruptions [6]. Even in low temperature linear plasmas, complicated parallel

flow structures including the parallel flow reversal are routinely observed [7, 8, 9].

Despite continuous and intensive studies, the generation mechanism of the intrinsic

plasma rotation is still not fully understood. One of the candidates is regarded to be

the turbulent momentum transport, i.e., the parallel Reynolds stress [10, 11]. Direct

measurement of the parallel Reynolds stress has been performed in various fusion and

fundamental plasma devices [12, 13, 14, 15, 16]. However, quantitative demonstration

that shows the critical role of the parallel Reynolds stress on the parallel flow structure

formation has not yet been achieved.

The flow shear structure can also be a source of turbulence and turbulent transport.

In particular, the parallel flow shear driven instability is called the D’Angelo mode [17],

whose basic characteristics are investigated in a linear plasma [18]. Coupling between

flow shear driven instabilities and the particle flux is reported, showing a possible off-

diagonal transport channel [12, 19, 20]. Comprehensive illustration of the multi-channel

transport system, which we call the cross-ferroic turbulence system [21], is mandatory.
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In this paper, we show the results of the direct measurement of the parallel flow

structure and the parallel Reynolds stress in a linear magnetized plasma, in which a

complicated parallel flow structure is formed. It is shown that the parallel Reynolds

stress induced by the density gradient driven drift wave is the source of the parallel

flow structure. Moreover, the parallel flow shear generated by the parallel Reynolds

stress is found to drive the parallel flow shear driven instability D’Angelo mode [17, 18],

which coexists with the original drift wave [22]. The excited D’Angelo mode induces

the inward particle flux, which seems to help in maintaining the peaked density profile.

Structure formation in the parallel flow profile and the density profile is discussed in

the case where the drift wave and the D’Angelo mode coexist forming the cross-ferroic

turbulent state.

The paper is organized as follows. The experimental setup is explained in section

2, after which the fundamental observations, such as the parallel flow structure, the

density profile and the turbulence spectra are introduced in section 3. Section 4 is

dedicated for the analysis of the parallel flow structure driven by the parallel Reynolds

stress using the parallel momentum conservation equation. In section 5, coexistence

of the drift wave and the D’Angelo mode is demonstrated, in addition to the stability

analysis of the D’Angelo mode. Discussion and summary are presented in sections 6

and 7, respectively.
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2. Experimental setup and data analysis method

The experimental observations are performed in the linear magnetized plasma, the

Plasma Assembly for Nonlinear Turbulence Analysis (PANTA). The cylindrical plasma

typically has a length of l = 4 m and a radius of a = 5 cm. A helicon plasma source is

located at one side of the vessel, where a double loop antenna on the quartz tube with a

length of 40 cm and a diameter of 10 cm is equipped [23]. Argon gas is fed in the quartz

tube, where the neutral pressure is monitored with an ionization gauge. The neutral gas

is ionized by the rf discharge with 3 kW and 7 MHz in the quartz tube. On the other side

of the vessel, the plasma is terminated by the end-plate made of stainless steel. Near

the end-plate, two main turbo molecular pumps exhaust the neutral gas. Two baffle

plates having an annular shape with an inner diameter of 15 cm are installed at the

source region and the end-plate region in order to keep the neutral pressure constant

in the region between them. Homogeneous axial (z) magnetic field of B = 0.09 T,

which is directed from the source region to the end-plate region, confines plasma in the

radial direction (r). The azimuthal direction (θ) is defined as the right-handed screw

direction of z, which corresponds to the electron diamagnetic direction. Despite the

toroidal devices, there is no symmetry along the magnetic field, and a mean gradient of

plasma parameters exists. The density gradient lengths of the radial direction and the

axial direction correspond to the scale of the plasma column, i.e., Lr ∼ a ∼ O(1 cm)

and Lz ∼ l ∼ O(100 cm), respectively. Typical plasma parameters are as follows: the

electron density of ne ∼ 1 × 1019 m−3, the electron temperature of Te ∼ 3 eV, and the



5

ion temperature of Ti ∼ 0.1× Te. The typical discharge duration is 500 ms, from which

the later saturated time period of 290 ms is used for the analysis. The mean quantity

and the fluctuation quantity for an arbitrary variable ψ are defined as ψ̄ ≡ 〈ψ〉 and

ψ̃ ≡ ψ − ψ̄, respectively, where 〈∗〉 denotes the time average for the period of 290 ms.

This time period is about 1,000 times longer than the typical turbulence period.

A schematic view of the Mach probe array used here is shown in Fig. 1. An

insulation tube made of Alumina with a diameter of 0.5 cm houses two types of Tungsten

probe tips noted as A and B, which are arranged alternately. The diameter of the probe

tips is 0.5 mm. The A tips measure the plasma velocity as a Mach probe system,

while the B tips measure the floating potential φf . The probe head is rotatable with

the rotation axis in the radial direction in order to perform the calibration experiment.

Here, the rotation angle α = 0 corresponds to the angle in which the A tips align in the

magnetic field direction. The axial flow velocity can be measured with α = 0◦ or 180◦,

while the azimuthal flow velocity can be measured with α = 90◦ or 270◦. The probe

head can be radially moved in the range r > 2 cm, without disturbing the plasma. In

this set of experiments, the radial profile of the plasma parameters are measured at six

different axial positions using a sole probe [see horizontal dashed lines in Fig. 2]. The

probe is replaced when the vacuum vessel is opened. The reproducibility of the discharge

before and after the vacuum vessel opening is sufficiently high, which is checked with a

monitor reference probe.

The plasma flow velocity is analyzed with the ion currents at the up stream side
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(Iu) and the down stream side (Id) as Vz = cs
√
Te/2Ti [Iu − Id]/Iis [24, 25, 26], where

cs ≡
√
Te/mi is the ion sound velocity (Te � Ti in the PANTA plasma) and Iis is the

ion saturation current evaluated as Iis = Iu + Id. The ion sound velocity in PANTA is

cs ∼ 2 − 3 km/s. Another model to evaluate the flow velocity, Vz = c2s/4vth,i ln[Iu/Id]

[27], where vth,i is the ion thermal velocity given as vth,i ≡
√
Ti/mi, is also examined, and

quantitatively similar results are obtained. The radial profile of V̄z measured with the

Mach probe results in a reasonable agreement with that evaluated with the time delay

estimation [8]. The relative density fluctuation is evaluated as the relative ion saturation

current fluctuation as ñe/n̄e = Ĩis/Īis. The azimuthal electric field is obtained from the

measured floating potential difference ∆φf as Eθ = −∆φf/dB, where dB ∼ 5.5 mm is

the center-distance between the B tips. The electron temperature profile is measured

with the B tips using the double probe method.

In order to obtain reasonable results with the Mach probe measurement, differences

in characteristics of the A tips, e.g., the surface area and the shunt resistance, have to be

compensated for. Probe angle rotation with 180◦ can exchange the probe tips at the up

stream side and the down stream side. The calibration coefficients are obtained taking

the ratio of the mean up stream ion currents (or the mean down stream ion current)

measured with α = 0◦ and 180◦. Furthermore, in order to confirm the reliability of the

results, in particular for the higher order values such as the parallel momentum flux, all

of the experiments performed with α = 0◦ are repeated with α = 180◦. The error bar in

the article is evaluated based on the difference between the measurements with α = 0◦
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and 180◦.

The parallel momentum transport in the radial direction, here we call the parallel

Reynolds stress, is calculated as [10, 11]

Πrz = 〈ṼzṼr〉 + V̄z〈Ṽrñe/n̄e〉 + 〈ṼzṼrñe/n̄e〉, (1)

where the radial velocity fluctuation is defined as the E × B velocity Ṽr = Ẽθ/B.

The first, second, and third terms in Fig. (1) are called the velocity correlation term,

the convective term, and the triple correlation term, respectively. Here, the velocity

correlation term is denoted as

ΠV V
rz = 〈ṼzṼr〉. (2)

The convective term is the pinch term caused by the turbulent particle transport

Γr = 〈Ṽrñe〉. (3)

Even with the azimuthal symmetry providing Ēθ = 0, fluctuations can induce an

effective mean radial velocity as

V̄r = Γr/n̄e. (4)

3. Fundamental observations

Figure 2 shows the radial-axial (r − z) profiles of the electron density, the parallel flow

velocity, and the flow vector projected in the r − z plane. The electron density profile

has a peak at r < 2 cm and z = 1.1125 m, and gradually decays in the radial and

axial directions with specific scales a and l, respectively. The parallel flow structure is
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much more complicated. In the radially central region r ∼ 2 cm a strong parallel flow

is observed. The radial profile is not a simply decaying shape with radius, but has a

dent at the mid-radius r ∼ 3 cm. A flow reversal is even observed at r = 3 cm and

z = 0.625 m. As a result, a large flow shear is formed there. The plasma flow is mainly

directed in the axial direction with the typical order difference of O(V̄z)/O(V̄r) ∼ 10.

As the axial length of the plasma is 100 times longer than the plasma radius, the main

plasma loss channel is in the radial direction. Figure 3 shows the inverse effective

particle confinement time in both the axial direction V̄z/l and the radial direction V̄r/a.

Therefore, the density profile seems to be predominantly determined by the cross field

turbulent flux.

A perspective view of the turbulent fluctuations at z = 0.625 m, where the flow

reversal is observed at r = 3 cm, can be seen in Fig. 4. The top three panels

show the radial profiles of the normalized power spectrum density of the azimuthal

electric field fluctuation Ẽθ/Bcs, the density fluctuation ñe/n̄e, and the parallel velocity

fluctuation Ṽz/cs, respectively. Although the peak frequencies are similar among them,

i.e., f =1.4 kHz, 2.8 kHz, 4.2 kHz, and 6.4 kHz, the radial profiles of the power

spectra differ significantly. For instance, the azimuthal electric field spectrum has a

weak fluctuation power at r = 3 cm, but the density fluctuation does not. The observed

fluctuations therefore are not a simple drift wave that satisfies the Boltzmann relation.

Figure 4 (d) shows the squared cross coherence between the azimuthal electric field

fluctuation and the density fluctuation γ2
ne,Eθ

. Although the eigen functions are different,
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the coherence is high in particular at the frequency peaks.

As the fluctuations have a coherence, a turbulence driven cross field flux on either

the particle or the parallel momentum is expected. The frequency resolved spectra of

the particle flux and the parallel momentum flux (the velocity correlation term) are

defined as

Γr(f) =
1

B

√
γ2

ne,Eθ
SneSEθ

cos ηne,Eθ
(5)

and

ΠV V
rz (f) =

1

B

√
γ2

Vz ,Eθ
SVzSEθ

cos ηVz ,Eθ
, (6)

respectively. The power spectrum densities of the azimuthal electric field fluctuation

Ẽθ, the electron density fluctuation ñe, and the parallel flow fluctuation Ṽz are given

as SEθ
, Sne , and SVz , respectively. Spectral correlation analysis provides the squared

cross coherence and the phase difference between ñe and Ẽθ (noted as γ2
ne,Eθ

and ηne,Eθ
)

and those between Ṽz and Ẽθ (noted as γ2
Vz ,Eθ

and ηVz,Eθ
). Figure 4 (e) indicates the

particle flux spectrum normalized by the electron density, Γr(f)/ne. At the radius where

the electric field fluctuation spectrum has a gap, i.e., r = 2.5 cm, the polarity of the

particle flux turns over from negative (inward) to positive (outward). Linearly unstable

drift wave intrinsically provides a weak outward convective particle flux. Therefore,

the fluctuation at r < 2.5 cm is caused by the other instabilities. Previous dedicated

study for identification of the instability revealed that the fluctuation at r > 2.5 cm

and f ∼ 3 kHz and 6 kHz can be classified as the resistive drift wave [28, 29, 30]. In

addition, shown in Fig. 4 (b) is the coherent low frequency mode (f = 1.4 kHz), and its
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harmonics (f = 2.8, 4.2, ... kHz) correspond to the nonlinearly excited mode from the

drift waves, the so-called mediators. The mediators are regarded to play an essential role

to form the nonlinear convective transport cell streamers [31]. The parallel momentum

transport shown in Fig. 4 (f) has also a gap at r = 2.5 cm, but the direction of the

transport is outward in nearly all radial and frequency regions shown here.

4. Flow structure formation by the parallel Reynolds stress

In order to analyze the turbulent momentum flux that excites the global flow structure,

the parallel Reynolds stress defined in Eq. (1) is calculated. The radial profiles of the

parallel Reynolds stress as well as each term in Eq. (1) for different axial positions,

z = 0.625 m, 1.125 m, 1.625 m, and 2.625 m, are shown in Figs. 5 (a)-(d), respectively.

The velocity correlation term 〈ṼzṼr〉 dominates over the other two terms except for the

case of z = 0.625 m, where all three terms have the same order of magnitude.

Negative divergence of the Reynolds stress gives the net influx of the momentum

at a certain location, which corresponds to the driving force of the flow. The important

role of the parallel Reynolds stress on maintaining the parallel flow structure can be

demonstrated by examining the steady state equation of motion, i.e., the force balance

equation. This is given as

0 = −Vz
∂Vz

∂z
− Vr

∂Vz

∂r
− ∂p

∂z
−mini

∂rΠ

r∂r
−miniνinVz, (7)

where p is the total pressure pe + pi, i.e., the sum of the electron pressure and the

ion pressure, mi is the ion mass, and νin is the ion-neutral collision frequency. The ion
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density ni is considered to be equal to the electron density ne due to the quasi-neutrality.

Terms in the r.h.s. are called the inertia terms from the axial and radial derivatives,

the pressure term, the parallel Reynolds stress term, and the neutral drag term. The

first four terms correspond to the flow excitation force, and the last term is the drag

force that balances the excitation force. Radial profiles of the first four terms are given

in Figs. 5 (e)-(h) for different axial positions, where two inertia terms are combined.

Except for the case z = 2.625 m, the parallel Reynolds stress term dominates over

the other terms. In addition, the spatial structure of the parallel Reynolds stress term

resembles the parallel flow profile that has a dent at r ∼ 3 cm.

Uncertainty regarding the neutral drag term is somewhat larger, since the data

available to evaluate the ion-neutral collision frequency νin is limited. An order

estimation of νin is given as [32],

νin = ne
1 − αi

αi

σinvi ∼ 40 kHz, (8)

where αi ∼ 0.1 is the ionization ratio evaluated from the electron density and the neutral

density estimated from the neutral pressure, σin ∼ 10−18 m2 is the ion-neutral collision

cross section [33], and vi is the ion thermal velocity. The sum of the four flow excitation

forces shown in Figs. 5 (e)-(h) and the evaluated neutral drag force are compared in

Figs. 5 (i)-(l), respectively. Both the flow excitation force and the drag force take similar

shapes in the cases of z = 0.625 m, 1.125 m, and 1.625 m, although a constant offset of

∼ 2 × 107 m/s2 remains in the latter two cases. The sheared parallel flow structure is

well explained by the parallel Reynolds stress induced by the drift wave. As shown in
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Fig. 5 (l), the shape of the excitation force and the drag force do not agree in particular

at r ∼ 2 cm when the measurement location approaches the end-plate region. In order

to discuss the force balance in this region, proper modeling of the end-plate that bounds

plasma kinetically and electrically may be necessary. Furthermore, near the end-plate

region, the plasma is partially dominated by the recombination process, which can also

alter the fluctuation characteristics. These issues are left for future studies.

5. Coexistence of density gradient driven mode and parallel flow shear

drive mode

The inward directed particle transport at the inner radii shown in Fig. 4 (e) indicates

that the drift wave is linearly stable at that region. An alternative candidate of the

instability excited there is the D’Angelo mode [17], whose free energy source is the

parallel flow shear. Linear stability analysis including the drift wave coupling with the

D’Angelo mode has been undertaken [22]. The key parameter here is kθkzV̄
′, where kz

and kθ are the axial wavenumber and the azimuthal wavenumber, respectively, and V̄ ′
z

denotes the parallel flow shear ∂V̄z/∂r. Depending on the sign of kθkzV̄
′, the parallel flow

shear either decreases (kθkzV̄
′ > 0) or increases (kθkzV̄

′ < 0) the parallel compressibility,

which acts to destabilize either the D’Angelo mode or the drift wave. The stability

parameter of the D’Angelo mode is given as the marginal stability condition of the

linearized fluid equation including the parallel flow shear, as

TD =
kzcsρskθV̄

′
z

ω2
∗/4(1 + k2

θρ
2
s ) + k2

zc
2
s

, (9)
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where ρs is the ion sound Larmor radius and ω∗ is the drift wave frequency. When

TD < 1, the drift wave dominates the D’Angelo mode, and vice versa. In addition, the

inward particle flux is predicted to be possible for the D’Angelo mode, which is brought

by the off-diagonal contribution with the parallel flow shear. Figure 6 (a) shows the

parallel flow shear V̄ ′
z plotted in the r − z plane. In this discharge, fluctuations in the

drift wave frequency range have kz < 0 and kθ > 0 in most parts of the plasma column.

Thus, V̄ ′
z < 0 is required for the D’Angelo mode to be unstable. This condition is

satisfied at r < 2.5 cm. Figure 6 (b) is the stability parameter of the D’Angelo mode

TD at the drift wave frequency region ∼ 6.5 kHz. The stability parameter indicates

that the D’Angelo mode is unstable at r < 2.5 cm and z < 1.6 m. At these locations,

the particle flux is directed inward [shown in Fig. 6 (c)], as predicted by the theory.

As shown in the previous section, the parallel flow shear that drives the D’Angelo

mode is originally formed by the momentum transport of the drift wave. Here, the

fluctuations and turbulent transport channels are strongly connected, forming a cross-

ferroic turbulence system.

At the location close to the source region, two different instabilities coexist at

different radii. It is worthwhile to analyze the interrelation between the D’Angelo mode

at r < 2.5 cm and the drift wave at r > 2.5 cm at z = 0.625 m. First, the correlation

between them is examined by means of the frequency resolved squared cross coherence

analysis. Figure 7 shows the squared cross coherence of the azimuthal electric field

fluctuation measured with the Mach probe array against a reference probe at (r, z) =
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(4 cm, 2.125 m) that measures the density fluctuation. Again, the analysis is performed

for the drift wave frequency region ∼ 6.5 kHz. The squared cross coherence profile

has at least three distinguishable regions of high coherence: these correspond to the

D’Angelo mode at r ∼ 2 cm, the drift wave at r ∼ 3.5 cm, and the higher harmonics

of the mediator at r ∼ 6 cm. Surprisingly, these modes fluctuate maintaining a phase

correlation.

The causal relation between the D’Angelo mode and the drift wave can be studied

by means of the Amplitude Correlation Technique (ATC) [34]. Here the frequency of

interest, 5.5 kHz ≤ f ≤ 7.2 kHz, is extracted by use of a digital filter, and then the time

evolution of the envelope signal is obtained by use of the Hilbert transform. Figure 8

shows an example of the filtered signal and its envelope. Two-time and two-point cross

correlation function of the envelope signals is defined as

C1,2(τ, r) =
[{e1(t, r0) − ē1(r0)}{e2(t+ τ, r) − ē2(r)}]E√
[{e1(t, r0) − ē1(r0)}2]E

√
[{e2(t, r) − ē2(r)}2]E

, (10)

where, brackets [∗]E denote the ensemble averages, e1,2 indicate the envelope of the

reference signal and the target signal, and r0 = 4 cm is the radius of the reference probe.

Figure 9 shows the cross correlation function C(τ, r) obtained against the reference probe

at (r, z) = (4 cm, 2.125 m), and its time and space slices. Two peaks appear in the cross

correlation function at r = 2 cm and 3.5 cm where the D’Angelo mode and the drift

wave emerge, respectively. The time difference between two peaks is less than several

tens microseconds, which is much shorter than the fluctuation frequency. It is found

that the wave amplitude of these two modes synchronously fluctuate. Note that this
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result is robust against change of the parameters for the cross correlation function, e.g.,

the window length.

6. Discussion

The experimental observations presented so far are summarized in a conceptual diagram

shown in Fig. 10. Note that a similar system between the density gradient and the

zonal flow shear is found in CSDX [20]. The diagram manifests the experimentally

demonstrated relations among the gradients, modes, and fluxes. First, inhomogeneity

is provided to the density profile by the plasma source. The density gradient excites the

drift wave releasing the free energy. Then, on the one hand, the drift wave forms the

outward particle transport as the on-diagonal transport channel, which corresponds to

the diffusive damping process. On the other hand, the drift wave induces the parallel

momentum transport that enhances the parallel flow shear as an off-diagonal transport

channel. The excited parallel flow shear then generates the D’Angelo mode, again

releasing its free energy. The D’Angelo mode secondary excited also forms the transport

channels in two ways, i.e., the on-diagonal channel and the off-diagonal channel. The

former channel and the latter channel correspond to the viscous damping momentum

transport (not discussed here) and the inward particle pinch that steepens the peaked

density profile.

The input energy into the fluctuations is somehow dissipated. Examining the

dissipation channels provides quantitative information of the energy partition of the
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chained structural formation. The energy relaxation densities associated with the

particle flux and the parallel momentum flux are defined as

wr = FrV̄r = −∂pe

∂r

Γr

ne

(11)

and

wz = FzV̄z = −nimi
∂rΠrz

r∂r
V̄z, (12)

respectively. In addition, excitation and quenching processes of fluctuations also

contribute to the energy dissipation. The order of the energy relaxation density for

turbulence dissipation process can be evaluated as

wturb = nimi〈Ṽ 2
r + Ṽ 2

θ + Ṽ 2
z 〉/2τcorr, (13)

where τcorr ∼ 1 ms denotes the turbulence correlation time. Figure 11 shows the energy

relaxation densities in the r − z plane. The energy relaxation density for the parallel

Reynolds stress is localized at the inner radii, where both the parallel flow and the

parallel Reynolds stress force are large. The energy relaxation density for the particle

flux is distributed throughout the r− z plane. The turbulent energy relaxation density

is large at the inner radii and near the source region, but its magnitude is one order

smaller than the other two. Volume integrated energy dissipation rate is defined as

Wj =
∫∫∫

wjrdrdθdz, (14)

where j indicates r, z, or turb. Note that the integration is performed in 0.625 m

< z < 3.375 m, 2 cm < r < 6 cm, 0 < θ < 2π, where the symmetry is assumed in

the azimuthal direction. The integrated energy relaxation rates Wr,Wz, and Wturb are
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obtained as 75 W, 12 W, and 4 W respectively. These values are also written in Fig. 10.

Therefore, the major energy relaxation channel is the radial particle transport. This

result is consistent with our understanding so far, i.e., the original free energy is the

density gradient, and the primary instability is the drift wave. Note that for wz a large

contribution of the energy relaxation density may exist at r < 2 cm, where the probe

cannot access without disturbing the plasma. Assuming that wz at r < 2 cm takes the

same value as wz at r = 2 cm, Wz becomes a factor of three larger. This does not alter

the conclusion made here.

7. Summary

In this paper, we have shown the results of the direct measurement of the parallel flow

structure and the parallel Reynolds stress in a linear magnetized plasma, in which a

complicated parallel flow structures was formed. It was shown that the parallel Reynolds

stress induced by the density gradient driven drift wave is the source of the parallel flow

structure quantitatively. Moreover, the parallel flow shear generated by the parallel

Reynolds stress was found to drive the parallel flow shear driven instability D’Angelo

mode, which coexists with the original drift wave. The excited D’Angelo mode induced

the inward particle flux, which seems to help in maintaining the peaked density profile.

Structure formation in the parallel flow profile and the density profile was discussed in

the case where the drift wave and the D’Angelo mode coexists forming the cross-ferroic

turbulent state.
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Figure 1. Schematic view of the Mach probe array.
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Figure 2. Mean profiles of (a) the electron density, (b) the axial ion velocity, and (c) the

velocity vector, and (d) schematic view of the PANTA device. Dashed holizontal lines show the

measurement axial locations.
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 1/τp=1000 [1/s] 

Figure 3. Vector field of 1/τp.
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Fig. 3�
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Figure 4. Radial profiles of frequency spectra for (a) the relative azimuthal electric field

fluctuation, (b) the relative electron density fluctuation, (c) the relative axial velocity fluctuation,

(d) the squared cross coherence between the azimuthal electric field fluctuation and the electron

density fluctuation, (e) the particle flux, and (f) the radial-azimuthal momentum flux at

z = 0.625 m.
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Fig. 4�
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Figure 5. Radial profiles of (left column) the radial-axial Reynolds stress, (center column)

the flow excitation force terms in the force balance equation, and (right column) the total flow

excitation force and the neutral drag term for z = 0.625 m (top row), 1.125 m (second row),

1.625 m (third row), and 2.625 m (bottom row).
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Figure 6. Spatial distributions of (a) radial derivative of the mean axial velocity, (b) stability

parameter of D’Angelo mode, and (c) the mean radial particle flux. Panels (b) and (c) are for

the maximum coherent frequency f ∼ 6.4 kHz.
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Fig. 6�

Figure 7. Radial profile of squared cross coherence between the azimuthal electric field

fluctuation at (z, r)=(0.625 m, r) and the density fluctuation at (z, r)=(2.125 m, 4 cm).
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(a)�

(b)�

Figure 8. Time evolution of the filtered signal (5.5 kHz ≤ f ≤ 7.2 kHz) and its envelope for

(a) the azimuthal electric field fluctuation at z = 0.625 m and r = 2 cm and (b) the normalized

density fluctuation at z = 1.625 m and r = 4 cm.
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Figure 9. (a) Two-time and two-point cross correlation function C(τ, r) between the azimuthal

electric field fluctuation at (z, r)=(0.625 m, r) and the density fluctuation at (z, r)=(2.125 m,

4 cm), (b) time evolution of the cross correlation function at fixed radii (r =2.0 cm and 3.5 cm),

and (c) radial profile of the cross correlation function at a fixed time (τ = 0 s).
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Figure 10. Conceptual diagram of the cross-ferroic turbulence.
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Figure 11. Energy relaxation densities for (a) the parallel Reynolds stress, (b) the radial particle

flux, and (c) turbulence dissipation.


