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Abstract. Fluctuation component in the turbulence regime is found to be azimuthally localized

at a phase of the global coherent modes in a linear magnetized plasma PANTA. Spatial

distribution of squared bicoherence is given in the azimuthal cross section as an indicator of

nonlinear energy transfer function from the global coherent mode to the turbulence. Squared

bicoherence is strong at a phase where the turbulence amplitude is large. As a result of the

turbulence localization, time evolution of radial particle flux becomes bursty. Statistical features

such as skewness and kurtosis are strongly modified by the localized turbulence component,

although contribution to mean particle flux profile is small.
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1. Introduction

Anomalous transport caused by plasma turbulence has been regarded as a principal

obstacle for the realization of a thermonuclear fusion reactor for many years.

Nondiffusive and nonlocal properties of plasma transport have been intensely studied

since the 1980s [1], and recently the importance of global structures driven by turbulence,

e.g., zonal flows [2, 3, 4, 5], streamers [6, 7], and a long-distance radial correlation

modes [8], has been noted in both experimental and numerical works. These global

structures can break the symmetry of turbulence [9], which is a key factor for explaining

nondiffusivity or nonlocality and intermittency of transport. Symmetry breaking in the

wavenumber vector domain is also important for generating net momentum transport

in the parallel [10] and poloidal [11, 12] directions.

In general, recent experiments in basic devices have turned out to be useful

for investigating essential physics because these devices have simple geometry, high

reproducibility that guarantees good statistics, and multi-point measurement with

electrostatic probes. Investigation of zonal flows [13] and streamers [14] has been

promoted, along with the direct measurement of symmetry breaking in momentum

flux [15, 16, 17, 18]. In addition, global structures such as m = 1 mode are also

intensely studied as a source of intermittent transport of coherent structures, the so-

called blobs [19, 20, 21, 22, 23, 24]. In particular, the study of initialization of the

blob structure, i.e., the shearing-off mechanism of the filament structure, is intensely

promoted. For example, the birth of the blob filament is found to be subjected to
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an elliptical instability of two rotating vortexes in a linear device [23]. Although

understanding of nonlinear process in turbulence-structure systems has progressed,

direct observation of spatiotemporal dynamics of turbulence which might be affected

by the global structure remains challenging. In most cases, turbulence is assumed to

be quasi-stationary and spatially homogeneous. Symmetry breaking of otherwise quasi-

stationary and homogenous turbulence can lead to a localization of turbulent activity.

In this article, we present the turbulence dynamics where that constraint is broken. In

a linear magnetized plasma, a turbulence packet that is azimuthally localized at a phase

of the global coherent mode is observed. The spatial inhomogeneity is found to be a

cause of intermittent particle transport.

This article is organized as follows. In section 2, experimental apparatus are briefly

described. Experimental results are presented in section 3. Section 4 presents discussion

and summary.

2. Experimental apparatus

The experiments were conducted in a linear magnetized plasma, Plasma Assembly for

Nonlinear Turbulence Analysis (PANTA), which has a cylindrical vacuum chamber

with a length of l = 400 cm and a diameter of D = 45 cm. Background vacuum

pressure is 1 × 10−4 Pa before injection of source gas. At one side of the device, Ar

plasma is produced with a 3 kW and 7 MHz radio frequency discharge on a double loop

antenna [25]. At the other side of the device, the plasma column is terminated with



4

a stainless end-plate. At both sides of the chamber, two baffle plates each of which

has an inner diameter of 15 cm are installed in order to maintain the neutral pressure

in the confinement region constant [26]. A homogeneous axial magnetic field in the

range of B = 0.03− 0.15 T directed from the source region to the end-plate is produced

by a set of 18 Helmholtz coils, where z and θ directions of cylindrical coordinates are

defined as the magnetic field direction and the right-hand thread direction, respectively.

The origin of the z axis is defined as the edge in the source region side of the vacuum

chamber. The asymmetry in the axial direction produces a stationary plasma flow

structure, depending on the experimental condition. Typical plasma parameters are

plasma radius of a ∼ 5 cm, plasma density of ne ∼ 1 × 1019 m−3, electron temperature

of Te ∼ 2 eV, and ion temperature of Ti ∼ 0.1 × Te.

In this article, the experimental condition is set to the magnetic field of B = 0.09 T

and the neutral pressure of pn ∼ 0.4 Pa (3.0 mTorr), where the so-called solitary wave

type oscillation is routinely observed. The solitary wave is characterized by a sawtooth-

like waveform [27]. A dynamic oscillation of nonlinearity was observed by means of the

local measurement [28], which is considered to be a clue for explaining excitation of

higher harmonics. By decreasing the neutral pressure, the turbulence regime changes

to streamer-type structures [29, 30].

A radially movable Mach probe is installed at θ = π/4, z = 1.625 m, whose probe

head can be scanned from r = 2 cm (r/a = 0.4) to r = 6 cm (r/a = 1.2) on a shot-

to-shot basis. The diameter of the probe head is ∼ 5 mm, and the probe head houses
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four probe tips each of which are 0.5 mm in diameter. The schematic view of the

Mach probe is given in Fig. 1. Two tips that are aligned in the azimuthal direction

measure floating potential φf , and the azimuthal electric field Eθ can be evaluated as

their difference, i.e., Eθ = −∆φf/d, where d = 5.5 mm denotes the distance between

the two tips. The other two tips construct the Mach probe system that measures

axial velocity Vz and ion saturation current Iis simultaneously. At z = 2.125 m, a 64-

channel azimuthal probe array [31] is installed for determining the azimuthal correlation

length and the wavenumber. In the present experiments, Iis and φf are measured

with alternative channels at 32 points each. The electron temperature fluctuation is

considered to be small, and the floating potential fluctuation and the normalized ion

saturation current fluctuation are regarded as space potential fluctuation and normalized

density fluctuation, respectively, as δφf ∼ δφ and δIis/Īis ∼ δne/n̄e. The symbol δ and

bar indicate fluctuation and mean variables as Īis ≡ 〈Iis〉, δIis ≡ Iis−Īis, where 〈〉 denotes

the long duration average.

3. Experimental results

Figure 2 (a) shows long duration averaged wavelet spectra of the density and potential

fluctuations δne/ne and eδφ/Te, respectively, at r = 3 cm (r/a = 0.6). For comparison,

the Fourier spectrum of density fluctuation is also plotted. The Fourier spectrum

has more discrete spectral peaks because of its finer frequency resolution in the high

frequency regime. Azimuthal wave number kθ and corresponding mode number m of the
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density fluctuation are given in Fig. 2 (b), which is calculated with phase difference of the

azimuthal probe array signals at r = 4 cm. The density and potential power spectra are

dominated mainly by the fundamental mode at f = 1.1 kHz that has m = 1 structure.

There also are the second and third harmonics, at f = 2.2 kHz (m = 2) and f = 3.3 kHz

(m = 3), respectively. The fundamental mode and two harmonics are coherent, and most

of the fluctuation power is occupied by these three modes. The power fractions between

the density and potential fluctuations are different at each spectral peak. Above the

third harmonic, the shape of the spectral curves changes to a rather turbulent-like shape.

The wavenumber spectrum becomes almost a straight line, though it is shaped like a

staircase for the first three coherent modes. In the laboratory frame, fluctuations at

each frequency propagate in the electron diamagnetic direction at almost the identical

speed of ∼ 300 m/s, which means that the phase locking occurs. The mechanism of the

phase locking can be explained though nonlinear energy transfer from a linearly unstable

mode to either larger-scale [32] or smaller-scale [33] fluctuations. Once the phase locking

occurs, depending upon the relative phase of the higher harmonics with respect to the

fundamental mode, long-lived steepening of the azimuthal gradient, sometimes called

a “shock front,” can be seen. There are two types of the shock front: the wave with

a shock front at the front and the wave with a shock front at the back in the wave

propagation direction. For the case of the drift wave turbulence, the selection rule of

the shock front is given [33], where the authors remarked that the sign of the parameter

∂r ln [|eδφ/Te|/|δne/ne|] showing the violation of the Boltzmann relation determines the
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shock front. Figure 2 (c) illustrates the azimuthal distribution of squared cross coherence

of the density fluctuation where the reference channel is taken at θ = 0. From Fig. 2 (c),

azimuthal correlation length is computed as the full width at half maximum, as shown

in Fig. 2 (d). Azimuthal correlation length also shows clear transition at the frequency

of f = 4 kHz, which is the boundary frequency of the third harmonic. Below f = 4 kHz,

the correlation length far exceeds the length of the circumference at the peaks of the

power spectrum. In Fig. 2 (d), the value of squared cross coherence γ2 at the farthest

point from the reference is also plotted. At the fundamental mode frequency γ2 is still

very close to unity corresponding its long correlation length. For higher harmonics γ2

decreases. Above f > 4 kHz, the correlation length drops less than the half-length

of the circumference, and decreases together with the frequency. The typical ratio of

correlation length and azimuthal wavelength, Lθ/λθ ≡ mLθ/2πr, is of the order of unity

for that regime. We define the fluctuation component below (above) f = 4 kHz coherent

(turbulence) regime.

From numerical analysis in the cylindrical low temperature plasma similar to

PANTA, linear excitation energy is known to focus on a small number of low m coherent

modes, which are responsible for further nonlinear evolution [33, 29]. As will be shown

below in Fig. 5, the fluctuations in the coherent regime have the intermittent inward

particle pinch at the location where the axial velocity shear is largest, in contrast to the

feature of linearly unstable drift wave. Parallel Reynolds stress 〈δvrδvz〉, where δvr and

δvz are the radial and axial velocity fluctuations, respectively, is directly measured and
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the mode is found to extract free energy from the radial shear of axial velocity, and not

from the density gradient. The instability, therefore, can be a Kelvin-Helmholtz type

instability driven by an axial velocity gradient, the so-called D’Angelo mode, as has

been discussed in Refs [18, 34]. Indeed, the necessary condition of the D’Angelo mode,

kzkθv
′
z > 0, where kz, kθ, and v′z are the axial wavenumber, the azimuthal wavenumber,

and the radial shear of the axial flow velocity, respectively, is found to be satisfied (i.e.,

kz 6= 0). Note that the link between the inward particle pinch and (azimuthal) velocity

shear driven instability are investigated elsewhere [21, 24]. This kind of global mode can

also be generated by the nonlinear energy transfer from smaller scale modes to m = 1

mode, as shown in [32].

Because the propagation velocity of the fluctuations is almost identical, lock-

in averaged time evolution with respect to the phase of the fundamental mode (see

Appendix for the definition) can be transferred to the azimuthal distribution by replacing

the variables (t → −θ). Using data from the radially movable probe, the radial profile

of the lock-in averaged time evolution x̄(r, θ) can be obtained, where the phase of the

waveform at each radius is fixed at a certain point. At the same time, the radial profile

of the mean relative phase of the fundamental mode ψ(r) can be calculated with a

reference probe. Here, the tip of the azimuthal probe array at θ = π/4 measuring the

density fluctuation is used for the reference. Note that the value of the squared cross

coherence between the reference probe and the radially movable probe is always close

to unity for the fundamental mode. In addition, since cross coherence among signals
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from the azimuthal probe array tips are almost unity for the fundamental mode, the

relative phase of the fundamental mode in the different radii does not rely on the choice

of the reference tip. The two-dimensional wave pattern of the measured variables can

be reconstructed by compensating the initial phase as x̄(r, θ + ψ(r)). Figures 3 (a)

and (b) exhibit the reconstructed wave pattern for the normalized density fluctuation

and the potential fluctuation, respectively. The normalized density fluctuation has a

quasi-positive-to-negative symmetry. Modes propagate radially outward as they rotate

in the electron diamagnetic direction. In contrast, the potential perturbation has a

standing wave-like structure. By taking a spatial high pass filter having a cut-off between

m = 3 and 4, turbulence components of the fluctuations are extracted, as displayed in

Figs. 3 (c) and (d) for the normalized density fluctuation and the potential fluctuations,

respectively. The density and potential turbulence components are azimuthally localized

at the fourth quadrant. The wave pattern shows a spiral shape, where the phase at the

outer radius is delayed, along with the waveform of the normalized density fluctuation

[see Fig. 3 (a)]. Both turbulent density and potential structures propagate preferentially

outward. The turbulent density field exhibits a finer structure than the potential field.

In contrast to the case of azimuthal direction, turbulent density and potential maintain

their correlation in the radial direction. As has been discussed above, the large scale

coherent fluctuations are considered to be linearly unstable. Therefore, we assume

that the turbulence components are nonlinearly excited by the modes in the coherent

regime. Conditional averaged summed squared bicoherence is computed using Eq. (6)
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(see Appendix). The phase of the reference signal is divided into M = 8 sections

where squared bicoherence is calculated in each section respectively, and then the two-

dimensional pattern is reconstructed with the mean relative phase of the fundamental

mode ψ(r). Figures 3 (e) and (f) show summed squared bicoherence of the potential

fluctuation with respect to the fundamental mode f3 = 1.1 ± 0.4 kHz and the second

harmonic f3 = 2.2±0.4 kHz, respectively. Here f1 for the summed squared bicoherence is

taken from the turbulence regime, i.e., f1 > 4 kHz, where f2 is automatically determined

from the matching condition f2 = f3 − f1. Because the turbulence components are

linearly stable, the value of the summed squared bicoherence can be an indicator of

the strength of nonlinear energy transfer from the coherent modes to the turbulence.

Summed squared bicoherence is high at the fourth quadrant, where the high frequency

turbulence components have large amplitude. The nonlinear interacting region is mainly

restricted to the large amplitude region of the coherent modes.

In the next step, the effect of the inhomogeneous bunching of the turbulence on

the particle transport is studied. Instantaneous fluctuation-driven radial particle flux is

defined as

Γr = δneδEθ/B (1)

and is routinely calculated with the radially movable probe. Figure 4 (a) shows the

typical time evolution of the local particle flux normalized by the electron density, i.e.,

equivalent radial mass flow velocity. Positive Γr corresponds to radially outward particle

flux. In the time evolution, intermittent bursts of inward particle flux often appear, and
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the long duration averaged particle flux seems to be negative. Note that the ratio

between the mean axial velocity and the equivalent radial flow velocity vz/vr is in the

order of 10 (Fig. 5), thus the flow vector is dominated by the axial flow. However, a

typical length of the plasma column L is 100 times longer than the plasma radius a.

Considering effective particle confinement time in the axial direction τz ≡ L/vz and the

radial direction τr ≡ a/vr, τz = 10τr holds. Therefore, the radial particle flux is essential

for the plasma confinement. The lock-in average two-dimensional wave pattern of the

particle flux corresponding to Fig. 3 is shown in Fig. 4 (c), although the intermittent

feature of the particle flux is averaged out. On the cross section, strong inward pinch is

seen at the fourth quadrant, inner radii, where the turbulence amplitude is also large.

In addition, at y = 0 cm, x = 3 cm, another isolated peak is found. Basically, periodic

rise and fall of the inward flux is observed at a fixed local point as the pattern rotates.

In order to examine the effect of the inhomogeneous turbulence bunching on particle

transport, terms in Eq. (1) are expanded as δne = n̂e + ñe and δEθ = Êθ + Ẽθ, where

hat and tilde indicate the fluctuation component in the coherent regime (f < 4 kHz)

and the turbulence regime (f > 4 kHz), respectively. Equation (1) becomes

Γr =
[
n̂eÊθ + ñeẼθ + n̂eẼθ + ñeÊθ

]
/B. (2)

The third and fourth terms in the right-hand-side (RHS) have no contribution to

mean particle flux because they are products of two terms having exclusive frequency

ranges. First, we compare the total flux Γr with the first term of the RHS, which

we call coherent particle flux Γr,coh. In Fig. 4 (a), the red dashed curve plots the
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time evolution of Γr,coh/ne. In contrast to the time evolution of Γr/ne, inward flux

bursts disappear. However, if one takes a long duration average, both particle fluxes

provide almost identical values. The turbulence component provides no substantial

impact on the mean particle flux, because its amplitude is far below that of the

coherent component. Nevertheless, the localized turbulence components are essential

for the intermittent property of the transport, which is well described in Fig. 4 (b), the

probability distribution function (PDF) of Γr/ne and Γr,coh/ne. The PDF of the total

particle flux exhibits a large negative tail, which becomes much smaller if one neglects

the turbulence components. As shown in Fig. 4 (a), inward flux bursts occur when the

coherent particle flux reaches its negative temporal peak. In order to obtain a more

complete picture of the correlation pattern, the radial profiles of the PDF of the peak

location of inward flux bursts have been calculated. Here we only take the inward flux

peaks that have an amplitude larger than Γ̄r + 3σ, where Γ̄r and σ denote mean value

and standard deviation of the time series, respectively. Figure 4 (d) depicts the PDF

of bursty events showing overall good agreement with the conditional averaged particle

flux [Fig. 4 (c)]. The PDF of bursty events also has a correlation with the amplitude of

turbulence modes, as shown in Figs. 3 (c) and (d), which implies that the intermittent

flux burst is driven by the turbulence components.

Figure 5 plots the radial profile of mean and statistical features of the radial

particle flux. Mean electron density and axial velocity profiles are shown in Fig. 5

(a). Both profiles have a maximal gradient at r ∼ 3 cm. The mean particle flux
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normalized by the electron density is given in Fig. 5 (b) for the total particle flux (black

closed square) and the coherent particle flux (red open square). As discussed above,

the coherent particle flux dominates the total flux and the contribution due to the

turbulence components are negligibly small. Figures 5 (c) and (d) show skewness S

and kurtosis K, which are the third and fourth moments of the time series. A large

negative skewness indicates more negative than positive spikes in a time series leading

to negative tails in the PDF. The kurtosis is thought to measure both the “peakedness”

of the distribution and the “heaviness” of its tail. Non-intermittent Gaussian statistics

correspond to K = 3. Neglecting the turbulent component, the skewness of the coherent

particle flux is one-half of the total flux at r ∼ 3 cm, exactly where the mean particle

flux exhibits its maximum. The skewness of the total flux takes the maximum at

r ∼ 4 cm, and decreases with radius at r ≤ 4 cm. The kurtosis exceeds K � 3 at

each radius indicating an extremely spiky total flux. Both S and K exhibit a local

minimum around r ∼ 3.5 cm. Without the turbulent component K approaches to 3

at r ≤ 4 cm, which corresponds to a Gaussian-like coherent particle flux. At r > 4, S

becomes almost zero and K increases with r. The particle flux caused by the coherent

modes also changes the feature from inward-preferential non-intermittent transport to

non-preferential intermittent transport. Although the impact on the mean particle

flux is negligibly small, drastic changes to the statistical features are brought by the

fluctuations in the turbulence regime.

Next, the possible agent leading to the intermittent total flux is investigated in more
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detail. Lock-in average of each term in Eq. (2) is computed using a different trigger,

the peak of the inward total particle flux larger than Γ̄r + 3σ. Figure 6 (a) shows the

lock-in average time evolution of the first term (the coherent particle flux Γr,coh) and the

third term of the RHS in Eq. (2), as well as the total particle flux Γr, where the values

are normalized with the electron density ne. We call the third term transient particle

flux, Γr,trans. The impact of the other two terms in RHS on the total particle flux is

negligibly small. Note that the fraction between the third term and the fourth term

is (Ẽθ/Êθ)/(ñe/n̂e). Figure 2 (a) indicates the ratio between the density and potential

fluctuation as φ̃/φ̂ > ñe/n̂e. Considering the weighting by kθ, i.e., |Eθ| = |kθφ|, where

kθ is roughly proportional to the frequency, the third term is predicted to have a larger

portion than the fourth term. In Fig. 6 (a), error bars represent the standard deviation

of the lock-in average. The coherent particle flux shows the slow time evolution, which

seems to have an impact on the mean particle flux. In contrast, the transient particle

flux involves the short time burst, making a pair of the positive and negative spikes

that cancels contribution to the mean particle flux. Total particle flux hence only shows

the single large negative spike, as the superimposition of Γr,coh and Γr,trans. Figure 6

(b) shows lock-in averaged time evolution of the azimuthal electric field fluctuation in

the coherent regime Êθ and the turbulence regime Ẽθ, which are the difference between

Γr,coh(≡ n̂eÊθ) and Γr,trans(≡ n̂eẼθ). Indeed, the amplitude of Ẽθ exceeds that of Êθ

when the negative spike is seen in the total flux. If one takes the lock-in average with

respect to the phase of the fundamental mode, the amplitude burst in Ẽθ does not
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appear. The large spike of the particle flux is caused by the irregular increase of the

turbulence amplitude in the azimuthal electric field fluctuation. Dynamics that maintain

the Ẽθ burst are clearly different from the period of the fundamental mode. A candidate

could be a zonal flow at very low frequency (∼ 0.3 kHz), as discussed in [27, 35].

4. Discussion and summary

In this article, we have discussed localization of a turbulence packet and its effect on

intermittency of particle transport. According to the azimuthal correlation length of

fluctuations, the fluctuation component was divided into two different regimes, the

coherent regime and the turbulence regime. The fluctuation in the coherent regime was

considered to be the linearly excited D’Angelo mode (Kelvin-Helmholtz type instability

driven by an axial velocity gradient). The fluctuation component in the turbulence

regime was found to be azimuthally localized, at a phase of the global coherent modes.

Distribution of squared bicoherence was computed, as an indicator of the nonlinear

energy transfer function from the global coherent mode to the turbulence. Squared

bicoherence was strong at a phase where the turbulence amplitude was large. As a

result of the turbulence localization, the time evolution of radial particle flux became

bursty. Statistical features such as skewness and kurtosis were strongly modified by the

localized turbulence component, although contribution to the mean particle flux profile

was small.

Global modes can modify turbulence properties by both linear and nonlinear
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processes. Similar phenomena could occur in fusion devices by the interaction of global

modes and turbulence. This leads to quasi-coherent modes as observed in L-mode (LOC-

SOC transitions TEXTOR/Tore Supra), H-mode (in EAST with DTEM perhaps the

“KBMs” in DIII-D) and in I-mode (WCM - GAM is the global mode CMOD/ASDEX).

Also, the interaction of global MHD modes and turbulence would be an example.
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Appendix: Data process methods

In order to capture periodic behavior of the plasma fluctuation measured at a single

point, two kinds of average methods are used. Here we consider that plasma dynamics

is regulated with a periodic oscillation in plasma fluctuation, from which the basic

period for conditional average is extracted. We propose two averaging techniques for

the present analysis.
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4.1. A.1 Lock-in average

When one observes a periodic signal with an oscilloscope, a trigger mode may be used

to fix the position of the waveform at a point in the display. Lock-in average method

provides an averaged time sequence by taking ensembles when a trigger condition is

satisfied in the same way as the oscilloscope. The moment of trigger-on is defined as the

origin of a new time series. In general, the trigger can be a combination of a reference

signal and a threshold value. Here we define the trigger-on as the time when a phase

of a coherent oscillation passes over zero from negative to positive. For a signal x(t),

lock-in average is defined as

x̄(τ) =
1

N

N∑
i=1

x(ti + τ), (3)

where −T < τ ≤ T and T is a specific time width. The value ti indicates the i-th

instance of trigger-on and N is the total number of the events. It should be noted that

the lock-in average here is generally called conditional average, but here we use the

present terminology in order to distinguish from the conditional average shown in the

next subsection.

4.2. A.2 Conditional average for squared bicoherence

Squared bicoherence [36] is defined as

b2(f1, f2) =
| 〈X(t, f1)X(t, f2)X

∗(t, f3)〉 |2

〈| X(t, f1)X(t, f2) |2〉〈| X(t, f3) |2〉
, (4)

where X(t, f) is time evolution of either the Fourier spectrum or the Wavelet spectrum

of a signal x(t), and frequency matching condition f3 = f1 ± f2 should hold.
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Asterisk represents the complex conjugate. Squared bicoherence expresses the degree

of conservation of a phase relation among three waves as a value from 0 to 1. As is

done frequently, by assuming stationarity of the time sequence, ensemble average has

been substituted for the long duration average. In the situation in which there is a

periodic variation of nonlinearity, that assumption is violated. Ensemble average should

be performed within time windows where the nonlinearity can be regarded as identical.

Because the nonlinearity varies periodically, the phase of a reference oscillation θ can be

used to choose the windows for ensemble average. The phase is divided with a regular

interval ∆θ, giving the range (i − 1)∆θ < θ ≤ i∆θ for the i-th segment. For each

segment, the squared bicoherence is computed using only the ensembles at which the

phase is in the given range as

b2i (f1, f2) =
| 〈X(t, f1)X(t, f2)X

∗(t, f3)〉 |2

〈| X(t, f1)X(t, f2) |2〉〈| X(t, f3) |2〉

∣∣∣∣∣
(i−1)∆θ<θ≤i∆θ

. (5)

The total number of the segment is given as M = 2π/∆θ, where M should be an integer.

Summed squared bicoherence is computed as

B2
i (f3) =

1

s

∑
f1

b2i (f1, f3 − f1), (6)

where s is the number of summands for each segment. This illustrates the intensity of

nonlinear coupling between the fluctuation having f3 and all the fluctuations satisfying

the frequency matching conditions.
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Figure 1. Schematic view of Mach probe in (a) (r, θ) plane and (b) (θ, z) plane.
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Figure 2. (a) Long duration averaged Wavelet power spectrum of normalized density (black

solid) and floating potential (black dash-dotted) fluctuation at r = 3 cm. Red dashed curve shows

Fourier power spectrum of normalized density fluctuation. (b) Azimuthal wave number and

corresponding azimuthal mode number, shown with the left and right vertical axes, respectively.

(c) Azimuthal distribution of squared cross coherence of density fluctuation computed with the

reference channel at θ = 0. (d) Correlation length (black solid) and squared cross coherence at

θ = π, the farthest point from the reference (red dashed).
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Figure 3. Conditional averaged wave pattern of (a) density and (b) potential fluctuation in the

azimuthal cross section, and their turbulence component [(c) and (d), respectively]. Summed

bicoherence with respect to (e) the fundamental mode, f3 = 1.1 ± 0.4 kHz and (f) the second

harmonic, f3 = 2.2±0.4 kHz. Shaded rectangule in (b) shows the position of the radially movable

probe and the reference tip of the azimuthal probe array for this analysis.
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Figure 4. (a) Time evolution of the total particle flux (black solid) and the particle flux

driven by the coherent modes (red dashed), normalized by the electron density. (b) Probability

distribution function of normalized local particle flux. (c) Conditional averaged wave pattern of

normalized particle flux. (d) Probability distribution function of occurrence phase of normalized

particle flux burst.
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