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Mouse T cells express the ecto-ADP-ribosyltransferase ARTC2.2, which can transfer the

ADP-ribose group of extracellular nicotinamide adenine dinucleotide (NAD+) to arginine

residues of various cell surface proteins thereby influencing their function. Several targets

of ARTC2.2, such as P2X7, CD8a and CD25 have been identified, however a

comprehensive mouse T cell surface ADP-ribosylome analysis is currently missing.

Using the Af1521 macrodomain-based enrichment of ADP-ribosylated peptides and

mass spectrometry, we identified 93 ADP-ribsoylated peptides corresponding to 67

distinct T cell proteins, including known targets such as CD8a and CD25 but also

previously unknown targets such as CD73. We evaluated the impact of ADP-

ribosylation on the capability of CD73 to generate adenosine from adenosine

monophosphate. Our results show that extracellular NAD+ reduces the enzymatic

activity of CD73 HEK cells co-transfected with CD73/ARTC2.2. Importantly, NAD+

significantly reduced CD73 activity on WT CD8 T cells compared to ARTC2ko CD8 T

cells or WT CD8 T cells treated with an ARTC2.2-blocking nanobody. Our study provides

a comprehensive list of T cell membrane proteins that serve as targets for ADP-

ribosylation by ARTC2.2 and whose function may be therefore affected by

ADP-ribosylation.
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INTRODUCTION

Ecto-ADP-ribosyltransferases (ARTCs) are cell surface enzymes that utilize extracellular

nicotinamide adenine dinuleotide (NAD+) to covalently attach the ADP-ribose group of NAD+

to arginine residues of various cell surface proteins under the release of nicotinamide (1, 2). The

mouse ARTC family consist of six members: GPI-anchored ARTC1, ARTC2.1 and ARTC2.2,

ARTC3, ARTC4 and the soluble ARTC5 (3). ARTC2.1 and ARTC2.2 are the ARTCs predominantly
expressed by cells of the murine immune system (4). ARTC2.1 is highly expressed on the cell surface
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of innate immune cells such as macrophages and microglia (5)

and to some extent on T cells (6). In contrast, ARTC2.2 is highly

expressed on most T cell populations. Further, it is worth noting

that the ARTC2.1 encoding gene, Art2a, is inactivated by a

premature stop codon in the C57BL/6 (B6) mouse strain,

whereas other strains such as Balb/c carry an intact Art2a gene
(7). Therefore, in B6 mice, ecto-ARTC activity in the immune

system is limited to the T cell compartment.

Results from ADP-ribosylation assays using 32P-NAD+ or

etheno-NAD+ as substrate, revealed that ARTC2.2 ADP-ribosylates

a broad spectrum of membrane proteins (8–11). So far, a limited

number of ARTC2.2 targets have been characterized. Among them
are cell surface receptors such as the interleukin 2 (IL-2) receptor

alpha subunit (CD25) (12) and the alpha chain of CD8 (CD8a) (13)

molecule, both chains of the integrin LFA1 (11) and the ATP-gated

ion channel P2X7 (14).

The functional impact of ADP-ribosylation on the target

protein has been extensively studied in case of P2X7. ADP-
ribosylation of P2X7 mediates NAD+-induced cell death of T

cells co-expressing ARTC2.2 and high levels of P2X7, such as

regulatory T cells (Tregs), natural killer T cells, T follicular helper

cells and tissue-resident memory T cells (14–19). Consistently,

injection of NAD+ induces temporary depletion of Tregs, thereby

favoring anti-tumor responses (15). Cells expressing both

ARTC2.2 and P2X7 are particularly affected by NAD+ released
during cell preparation procedures, i.e. isolation of T cells from

spleen, resulting in extensive cell death in subsequent in vitro

assays or upon adoptive cell transfer (20). Further, it has been

shown that ADP-ribosylation of CD25 dampens IL-2 signalling

by regulatory T cells, as the presence of NAD+ reduced STAT1

phosphorylation in response to IL-2 stimulation (12). ADP-
ribosylation of CD8a inhibits binding to MHCI and ADP-

ribosylation of LFA-1 inhibits homotypic binding to LFA1 on

other cells (13, 21)

Apart from interference with target protein function, ADP-

ribosylation can also affect the binding of monoclonal antibodies.

For example, binding of clone 53-5.8 to CD8a is inhibited by

ADP-ribosylation whereas clone H35-17.2 is unaffected (13).
Similarly, ADP-ribosylation of P2X7 affects binding of clone

Hano43, whereas clone Hano44 is unaffected (22).

The functional and technical consequences of ADP-ribosylation

of cell surface proteins warrant proteomic investigation of the

tissue- or cell-specific ADP-ribosylome. A comprehensive list of

ADP-ribosylted target proteins opens the perspective to investigate
the potential impact of this post-translational modification on the

target protein function. For this, we recently developed a method

combining Af1521 macrodomain-based enrichment of ADP-

ribosylated peptides with mass spectrometry analyses to identify

ADP-ribosylation sites across the proteome (23). Using this

approach we previously generated ADP-ribosylomes of HeLa

cells and mouse liver (23), mouse skeletal muscle and heart (24),
mouse embryonic fibroblasts (25) and mouse microglia (26). The

goal of this study was to subject mouse spleen T cells to a

comprehensive ADP-ribsylome analyses in order to identify new

targets of ARTC2.2-mediated cell surface protein ADP-

ribosylation. From T cells incubated with NAD+, we identified 67

ADP-ribosylated target proteins, including 48 plasma membrane

and 16 Golgi/ER proteins.

MATERIAL AND METHODS

Mice
C57BL/6 mice were used for all experiments. ARTC2ko mice

(Art2btm1Fkn, MGI#2388827) (27) were backcrossed onto the

C57BL/6J background for at least 12 generations. All mice were

bred at the animal facility of the University Medical Center

(UKE). All experiments involving tissue derived from animals
were performed with approval of the responsible regulatory

committee (Hamburger Behörde für Gesundheit und

Verbraucherschutz, Veterinärwesen/Lebensmittelsicherheit,

ORG722, N18/006). All methods were performed in

accordance with the relevant guidelines and regulations.

Preparation of Immune Cells
Spleen and liver tissue were mashed through a cell strainer (50
mL falcon strainer, 70 µm, GBO) using a syringe piston.

Additionally, liver leukocytes were purified by running a

percoll gradient. Cells were resuspended in 5 mL 33% percoll/

PBS in a 15 mL Falcon tube, and centrifuged at 1600 rpm, 12°C,

for 20 min. The pellet was washed once in PBS (ThermoFisher).

Single cell suspensions were kept in FACS buffer containing
1 mM EDTA (Sigma) and 0.1% bovine serum albumin (Sigma).

Erythrocytes were lyzed using an ACK lysis buffer (155 mM

NH4Cl, 10 mM KHCO3, 0.1 mM EDTA, pH 7.2). Peritoneal

macrophages were harvested from the peritoneal cavity by lavage

with 5 mL cold PBS + 1 mM EDTA. In order to prevent T cell

surface ADP-ribosylation during cell preparation, some mice

were i.v. injected with 30 µg of the ARTC2.2-blocking nanobody
s+16a (28) 30 min prior to sacrificing.

Antibodies and Flow Cytometry
The following monoclonal antibodies were used for flow

cytometric analyses: anti-CD3e-PE (clone 17A2, Biolegend),

anti-ARTC2.2-AF647 [clone A109, Prof. Koch-Nolte (29)],

anti-CD73-PE (clone TY/11.8, Biolegend), anti-CD8a-FITC

(clone 53-6.7, Biolegend), anti-CD11b-FITC (clone M1/70,

Biolegend). For protein harvesting, CD3+ T cells from spleen
and liver were isolated by fluorescence activated cell sorting

(FACS) on a BD FACS Aria III.

T Cell Protein Harvesting
FACS-sorted spleen T cells where subjected to ex vivo treatment
with 50 µM NAD+ (Sigma) whereas a second preparation of

spleen T cells and the liver T cells were left untreated in order to

identify targets that were ADP-ribosylated during cell

preparation (30). NAD+ was washed away after 15 min of

incubation at 4°C and cells were subsequently treated with

ARTC2.2-blocking nanobody s+16a for 15 min to avoid ADP-
ribosylation of cell surface proteins by intracellular ADP-

ribosyltransferases during lysis with denaturing RIPA buffer (Sigma).
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Proteomic Sample Preparation and
ADP-Ribosylated Peptide Enrichment
For buffer exchange, protein reduction, alkylation, poly to mono-

ADP-ribose reduction by PARG (Poly(ADP-Ribose)

Glycohydrolase) and tryptic digestion a modified FASP (filter-

aided sample preparation) protocol (31) was applied. For each

sample 100-200 mg protein extracts were reduced in 1 mM DTT
for 30 min and subsequently transferred to a 0.5 mL molecular

weight cut off centrifugal filter unit (Microcon-30kDa Milipore,

Sigma) and centrifuged until all buffer was passed through the

filter. Samples were alkylated for 15 min using urea buffer

containing 20 mM chloroacetamide and washed once with 100

mL urea buffer (8 M Urea, 0.1 M Tris-HCl pH 8) and once with

100 µL PARG buffer (50 mM Tris-HCL pH 8, 10 mMMgCl2, 250
µM DTT, 50 mM NaCl). 0.5 µg recombinant PARG enzyme (in-

house) in 100 µL PARG buffer was added on to the filter and

incubated for 1 h. Filter was subsequently washed with 100 µL 50

mM ammonium bicarbonate buffer. On filter digestion was

performed in 100 µL 50 mM ammonium bicarbonate using

5 µg sequencing grade modified trypsin (Promega) at room
temperature overnight.

ADP-ribosylated peptide enrichment was performed as

previously described (23). The peptide mixture was diluted in

PARG buffer (50 mM Tris–HCl, pH 8, 10 mM MgCl2, 250 mM
DTT and 50mM NaCl) and binding was carried out for 2 h at

4°C using the Af1521 macrodomain GST-fusion protein coupled

to glutathione-Sepharose beads. Beads were washed three times
with PARG buffer and bound peptides were eluted three times

with 0.15% TFA. The resulting mixture was desalted using stage

tips packed with C18 filters.

Mass Spectrometry Data Acquisition
Samples were analyzed using an Orbitrap Q Exactive HF mass
spectrometer (Thermo Fisher Scientific) coupled to a nano

EasyLC 1000 (Thermo Fisher Scientific). Peptides were loaded

onto a reverse-phase C18 (ReproSil-Pur 120 C18-AQ, 1.9 mm,

Dr. Maisch GmbH) packed self-made column (75 mm × 150

mm) that was connected to an empty Picotip emitter (New

Objective, Woburn, MA). Solvent compositions in buffers A and
B were 0.1% formic acid in H2O and 0.1% formic acid in

acetonitrile, respectively. Peptides were injected into the mass

spectrometer at a flow rate of 300 nL/min and were separated

using a 90 min gradient of 2% to 25% buffer B. The mass

spectrometer was operated in data‐dependent acquisition mode

and was set to acquire full MS scans from 300–1700 m/z at

60,000 resolution with an automated gain control (AGC) target
value of 3 × 106 or a maximum injection time of 110 ms. Charge

state screening was enabled, and unassigned charge states and

single charged precursors were excluded. The 12 most abundant

ions on the full scan were selected for fragmentation using 2 m/z

precursor isolation window and beam‐type collisional‐activation

dissociation (HCD) with 28% normalized collision energy. MS/
MS spectra were collected with AGC target value of 1 × 106 or a

maximum injection time of 240 ms. Fragmented precursors were

dynamically excluded from selection for 20 s.

Mass Spectrometry Data Analysis
MS andMS/MS spectra were converted to Mascot generic format

(MGF) by use of Proteome Discoverer, v2.1 (Thermo Fisher
Scientific). The MGFs were searched against the UniProtKB

mouse database (taxonomy 10090, version 20160902), which

included 24’905 Swiss-Prot, 34’616 TrEMBL entries, 59’783

reverse sequences, and 262 common contaminants. Mascot

2.5.1.3 (Matrix Science) was used for peptide sequence

identification with previously described search settings (32).

Enzyme specificity was set to trypsin, allowing up to four
missed cleavages. The ADP-ribose variable modification was

set to a mass shift of 541.0611, with scoring of the neutral

losses equal to 347.0631 and 249.0862. The marker ions at m/z

428.0372, 348.0709, 250.0940, 136.0623 were ignored for scoring.

S, R, T, K, E, D and Y residues were set as variable ADP-ribose

acceptor sites. Carbamidomethylation was set as a fixed
modification on C and oxidation as a variable modification on

M. Peptides are considered correctly identified when a mascot

score > 20 and an expectation value < 0.05 are obtained. ADP-

ribosylation sites were considered correctly localized with a

localization probability of > 70%.

Bioinformatic Analyses
For protein network visualization and GO enrichment analyses
cytoscape (33), STRING database (v. 11) (34) and the cytoscape

string app (35) were used. For the network visualization only

highest confidence interactions are shown (≥0.9) and proteins

were clustered using the cytoscape string app.

HEK Cell Transfection
Human embryonic kidney (HEK) 293T cells were transfected
with a pCMVSport6.1 plasmid encoding mouse Nt5e (CD73)

using jetPEI transfection reagent (Polysciences Europe).

Transfected cells were FACS-isolated every 3 - 4 days for high

CD73 expression in order to generate stably transfected HEK

cells. The stably transfected CD73+ HEK cells were then co-

transfected with pME plasmid encoding for Art2b (ARTC2.2) in

order to evaluate the impact of ADP-ribosylation on CD73
enzymatic activity.

AMP Degradation Assay
1 × 104HEK 293 T cells were incubated with 50 mMNAD+ on ice

for 30 min. Cells were washed with FACS buffer twice (1410 rpm,

5 min, 4°C). Cells were resuspended in 100 mL FACS buffer,

subsequently 100 mL AMP were added to a final concentration of
10 mM and incubated at room temperature for 40 min. Cells were

spin down (1410 rpm, 5 min, 4°C) and 25 mL supernatant was

transferred to a solid white plate. 25 mL AMP-Glo Reagent I were

added per well, mixed and incubated at room temperature for 30

min. This was followed by addition of 50 mL AMP-Glo Detection

Solution per well and incubation for 60 min at room

temperature. Plate was read with a plate-reading luminometer.

HPLC CD73 Enzymatic Activity Assay
To determine the AMPase activity by high performance liquid

chromatography (HPLC), 0.2 × 106 CD8+ T cells or peritoneal
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macrophages were incubated with 1 µM 1,N6-etheno-AMP

(eAMP, Biolog) for 30 min at 37°C. After the incubation, cells

were removed (450 × g, 5 min, 4°C) and all samples were passed

through 10 kDa size exclusion filters (10,000 × g, 10 min, 4°C,

Pall Corporation) and stored at -20°C until analyses. The

analyses was performed on reversed-phase HPLC system
(Agilent Technologies) with a 250 mm × 4.6 mm C8 Luna

column (5 µm particle size, Phenomenex) as stationary phase.

The mobile phase consisted of different compositions of HPLC

buffer A (20 mM KH2PO4, pH 6.0) and B (50% buffer A, 50%

methanol), and elution of the nucleotides from the column

resulted from an increasing methanol content in the mobile
phase [0.0 min (0.0% buffer B), 5.0 min (0.0% buffer B), 27.5 min

(100.0% buffer B), 30.0 min (100.0% buffer B), 32.0 min (0.0%

buffer B), 43.0 min (0.0% buffer B)]. The signals in both systems

were detected by fluorescence detection (230 nm excitation

wavelength, 410 nm emission wavelength). Different amounts

of etheno-nucleotides (Biolog) were measured to quantify eAMP
and the degradation product etheno-adenosine (eADO).

Statistics and Software
For statistical analyses, GraphPad Prism 8 was used. Two groups

were compared using the student’s t test. Multiple groups were

compared using oneway ANOVA in combination with Dunnett’s

multiple comparison test. Analysis of flow cytometric data was

performed using FlowJo (Treestar). The structure model of mouse
CD73 (Q61503) was analyzed using Pymol software.

RESULTS

Identification of Potential ARTC2.2
ADP-Ribosylation Targets on T Cells
The aim of this study was to reveal potential ARTC2.2 ADP-

ribosylation targets of mouse T cells. These proteins are most likely

ADP-ribosylated on arginine residues facing the extracellular

environment. Based on our previous studies (24, 26) we

hypothesized that it is possible to detect ARTC2.2 mediated

ADP-ribosylation by mass spectrometry even on proteins

extracted from relatively small numbers of FACS-sorted T cells.

We aimed tomap ADP-ribosylated proteins of T cells isolated from

mice under basal conditions [i.e. after encounter with endogenous

extracellular NAD+ in vivo or during cell preparation (30)] and
after ex vivo treatment with exogenous NAD+. For this we applied

our established mass spectrometry-based strategy with

modifications to make it applicable to low sample input (23, 26).

CD3+ T cells were FACS sorted from seven spleens and livers

of C57BL/6 mice. Aliquots of cells were incubated for 15min in

the absence or presence of exogenous NAD+. To prevent ADP-
ribosylation of intracellular proteins after cell lysis, cells were

incubated with the ARTC2.2-blocking nanobody s+16a for 15

min before lysis with RIPA buffer. Proteins were subjected to

filter-aided digestion and ADP-ribosylated peptides were

enriched using the Af5121 macrodomain (Figure 1A). Samples

were subsequently analyzed by mass spectrometry to identify
peptides and to localize ADP-ribosyl modification sites.

Importantly, we used higher-energy collisional dissociation

(HCD) for peptide fragmentation, since this allows efficient

identification of arginine ADP-ribosylated peptides due to the

stability of ADP-ribosyl-arginine but is less effective in localizing

serine and other O-linked ADP-ribosylations due to the lability

of this modification type in HCD (24, 32, 36).
We identified 93 unique ADP-ribosylated peptides

corresponding to 67 proteins (Supplementary Table 1). 49

ADP-ribosylated proteins were exclusively identified in T cells

treated with NAD+ (Figures 1B, C), 12 ADP-ribosylated

proteins were found in both untreated and NAD+ treated cells,

6 ADP-ribosylated proteins were only identified in the untreated
conditions. We obtained confident ADP-ribose site localizations

(localization probability >70%, considering R, S, T, Y, E, D, K as

variable ADP-ribose amino acid acceptor sites) for 35 unique R-

and 1 S-ADP-ribosylation sites (Figure 1C).

Taken together, our approach allowed us to identify a

considerable number of ADP-ribosylated proteins from a low

number of T cells. We observed induction of R-ADP-

A

B C

FIGURE 1 | The ADP-ribosylated proteome identified in T cells. (A) Schematic workflow of proteomic sample processing, digestion and ADPr-peptide enrichment

tailored to the low input protein amount obtained from FACS sorted T cells. (B) ADP-ribosylated proteins identified in the three different sample types depicted in a

Venn diagram. (C) Numbers of uniquely identified ADP-ribosylated proteins, unique ADP-ribosylated peptides and modified amino acids that were confidently

localized (localization probability > 70%). Modified arginine and serine sites were found.

Leutert et al. Mouse T Cell ADP-Ribosylome

Frontiers in Immunology | www.frontiersin.org August 2021 | Volume 12 | Article 7037194



ribosylation upon treatment with exogenous NAD+ indicating

active ARTC2.2 on these cells.

Exogenous NAD+ Induces Extracellular
ADP-Ribosylation of Proteins Relevant for
the Immune Response
To functionally cathegorize the identified ADP-ribosylation T

cell target proteins, we performed gene-ontology (GO) term

enrichment analysis, protein-protein interaction network
visualization and literature comparisons. GO cellular

component (GOCC) term enrichment analyses revealed strong

enrichment for ADP-ribosylated proteins to be localized on the

cell surface and plasma membrane (Figure 2A), providing

further evidence that these proteins are most likely targets of

ARTC2.2. Other significantly enriched cellular components were
the endoplasmic reticulum and Golgi apparatus. GO biological

processes (GOBP) were enriched in immune system processes,

cell surface receptor signaling, cell adhesion and regulation of T

cell activity (Figure 2A). Reactome pathway enrichment analysis

provided additional separation of ADP-ribosylated proteins into

more specific functional terms such as antigen presentation,
signaling by interleukins, T cell receptor (TCR) signaling, and

integrin cell surface interactions (Figure 2A).

Next, we performed protein level visualization of all identified

ADP-ribosylated proteins by their association to Reactome

pathway terms, relevant protein features, and protein-protein

interactions. For this, we plotted the ADP-ribosylated proteins in

form of a STRING network (Figure 2B) (34). ADP-ribosylated
proteins with strong evidence for interactions among each other

are connected with a grey line and proteins that had no

interaction partners were preserved and shown as unconnected

nodes. ADP-ribosylated proteins are color coded based on their

affiliation to Reactome pathway terms identified in Figure 2A.

ADP-ribosylated proteins are additionally marked if they are
associated with the plasma membrane or cell surface (GOCC),

are an ADP-ribosyltransferase or were already identified under

basal conditions. The major hub of interacting proteins targeted

by ADP-ribosylation was identified to have a role in TCR

signaling, antigen presentation and cell surface integrin

interactions. Connected to this cluster was Nt5e (5-prime-

nucleotidase, CD73), a protein that hydrolyzes extracellular
AMP to adenosine (37). An additional hub of interacting

proteins consisted of the heteromeric IL-2 receptor complex,

including IL2Ra, IL2Rb and IL2Rg that were all found to be

ADP-ribosylated after addition of NAD+. We have previously

identified IL2Ra as a target of ARTC2.2 and shown that its ADP-

ribosylation functionally diminishes IL2 signaling (12). Most
ADP-ribosylated proteins present at basal conditions were

disconnected from these interaction hubs and less likely

localized to the cell surface (Figure 2B). Two ADP-

ribosyltransferases, ARTC2.2 (Art2b) and ARTD8/PARP14

(Parp14), were identified to be ADP-ribosylated, potentially by

auto modification. Both were found to be ADP-ribosylated under

basal and NAD+ treated conditions. Proteomic identification of
ADP-ribosylation sites on ARTCs have previously been observed

in mouse liver on ARTC2.2 (23), in mouse microglia cells on

ARTC2.1 (26) and on ARTC1 in mouse heart and skeletal

muscle tissues (24). ARTC (auto-)ADP-ribosylation can thus

serve as a marker for ARTC activity. ADP-ribosylation by

ARTD8/PARP14 has previously been associated with immune

cell functions (38).

Next, we compared ADP-ribosylation levels of a few selected
sites among the different conditions and with our previously

published data on mouse liver (23) and microglia cells (26)

(Figure 2C). ADP-ribosylation of CD73 at R149 was found

exclusively on T cells treated with NAD+. Proteins that were

identified in multiple different sample types showed modification

on the same site (Pdia3, Slc44a2, Ptprc, Itgb2, Il2rg, H2-K1), or
on additional sites (Ptprc, Itgb2, H2-K1) (Figure 2C). As

exemplified by Pdia3 (a cytosolic protein exclusively modified

on R62) and Slc44a2 (a multispan transmembrane protein

exclusively modified on extracellular R130), R-ADP-

ribosylation showed high site specificity on some proteins. In

most of the analyzed cases, the R-ADP-ribosylation sites are
located on the extracellular domain of the protein. An exception

is the intracellular ARTD8/PARP14, which we found to be

modified on S842 under basal and NAD+ treated conditions,

consistent with our recent observation that ARTD8/PARP14 is

modified by O-linked ADP-ribosylation (24). In summary, we

identified numerous T cell surface proteins with immune system

relevant functions that are R-ADP-ribosylated, likely by
ARTC2.2, in the presence of exogenous NAD+.

ADP-Ribosylation of CD73 Reduces
the Capability of CD8 T Cells to
Generate Adenosine
The majority of the identified T cell surface ADP-ribosylation

targets are membrane proteins that act as receptors in cell

signalling, antigen presentation or cell-cell adhesion. Apart

from ARTC2.2 itself, CD73 was the only identified cell surface
enzyme to be ADP-ribosylated. CD73 is expressed on several cell

populations of the immune system, including regulatory T cells,

CD8+ T cells and macrophages. It converts extracellular adenosine

monophosphate (AMP) to adenosine (ADO) (Figure 3A), which

acts as an immunosuppressant e.g. by inhibiting T cell

proliferation (39). While ADP-ribosylation has been shown to

impact the function of several cell surface receptors, little is known
about the impact of ADP-ribosylation on the enzymatic activity of

cell surface enzymes. Therefore, we investigated the impact of

ADP-ribosylation on the catalytic activity of CD73. Analyses of the

3D structure model of mouse CD73 (Q61503) revealed that the

identified ADP-ribosylation site R149 (red) is distant to the active

site (yellow) of CD73 (Figure 3B).
We first tested the impact of CD73 ADP-ribosylation in HEK

cells stably transfected with mouse CD73 upon transient co-

transfection with an expression vector for ARTC2.2. We

pretreated these cells with NAD+ 24 h after transfection, and

FACS-sorted equal amounts of CD73+ARTC2.2– and

CD73+ARTC2.2+ HEK cells (Figure 3C). The gates during cell

collections were adjusted for equivalent cell surface levels of
CD73 on ARTC2.2– and ARTC2.2+ HEK cells. We then

performed a comparative AMP degradation assay with the
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collected CD73+ARTC2.2– and CD73+ARTC2.2+ HEK cells. We

found that NAD+-treated CD73+ARTC2.2+ cells were slightly

but significantly less potent in degrading AMP than NAD+-

treated CD73+ARTC2.2– HEK cells (Figure 3C), consistent with

an inhibitory effect of ADP-ribosylation on CD73 activity.

We next analyzed the impact of NAD+ on the enzymatic

activity of CD73 on primary T cells. For this we chose CD8+ T

cells, which co-express ARTC2.2 and CD73, but are much less

sensitive to NAD+-mediated cell death along the ARTC2.2/P2X7

axis when compared to Tregs (15). We isolated CD8+ T cells

A

B

C

FIGURE 2 | Mouse T cell surface ADP-ribosylome analyses. (A) Gene ontology term enrichment was performed for ADP-ribosylated proteins identified in all

conditions against the whole mouse genome. Gene ontology biological processes (GOBP), gene ontology cellular components (GOCC) and Reactome pathways

were included. The q-values of selected and significantly enriched terms are plotted. Numbers of ADP-ribosylated proteins included in the specific terms are

indicated in brackets. (B) STRING protein-protein interaction network of ADP-ribosylated proteins identified in all conditions. Gene names of ADP-ribosylated proteins

are shown and high confidence protein-protein interactions (STRING interaction score ≥0.9) are indicated with grey lines. Protein nodes are color coded by their

affiliation to the Reactome pathways shown in (A) Proteins associated with the plasma membrane or cell surface are marked in orange. Proteins that were already

identified under untreated conditions are marked with a red line and the two identified ADP-ribosyltransferases with a dashed line. CD73 that was chosen for follow

up studies is highlighted. (C) ADP-ribosylation sites on selected proteins are plotted and compared to ADP-ribosylation sites identified in (23, 26).
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from untreated B6 WT mice, B6 WT mice treated with the

ARTC2.2 blocking nanobody s+16a in order to block ARTC2.2

already in vivo, or from B6 ARTC2ko mice. Of note, cell surface

levels of CD73 were comparable among WT and ARTC2.2ko

CD8+ T cells (Figure 3D). Since CD8+ T cells express much

lower cell surface levels of CD73 than CD73-transfected HEK
cells, we used an HPLC-based assay measuring the CD73-

dependent generation of etheno-adenosine (eADO) from

etheno-adenosine monophosphate (eAMP), as this was a more

sensitive approach compared to the AMP degradation assay. We

treated all three samples with NAD+ and quantified the

generation of eADO. Here, we observed that NAD+ treated
WT CD8+ T cells generated less eADO compared to CD8+ T

cells from s+16a treated WT mice or from ARTC2.2ko mice

(Figure 3D). Finally, we performed a similar assay with

peritoneal macrophages that express high surface level of

CD73 but lack ARTC2.2 expression. Here, NAD+-treated

peritoneal macrophages of WT mice generate slightly but

significantly more eADO compared to ARTC2ko macrophages,

consistent with the fact that a larger fraction of WT peritoneal

macrophages expressed high level of CD73 when compared to

ARTC2ko peritoneal macrophages (Figure 3E). In summary, we

could demonstrate that in an NAD+-rich environment, CD73

enzymatic activity is dampened on cells co-expressing ARTC2.2.

DISCUSSION

In this study we investigated the T cell ADP-ribosylome with a

focus on ARTC2.2-mediated ADP-ribosylation of T cell surface

proteins. We identified 67 ADP-ribosylated target proteins 48 of

which are expressed at the cell surface and 16 of which in the ER

or the Golgi apparatus. Of the identified ADP-ribosylation sites
35 were on arginine residues and 1 on a serine residue. Many of

the identified target proteins are involved in immune system

processes such as signalling, cell adhesion and regulation of T cell

A B C

D E

FIGURE 3 | ARTC2.2-dependent regulation of CD73 enzymatic activity. (A) CD73 can degrade adenosine monophosphate (AMP) to adenosine ADO. ARTC2.2

ADP-ribosylates CD73 at R149, potentially interfering with enzymatic activity. (B) The structure model Q61503 of a mouse CD73 dimer is shown in cyan. ADP-

ribosylation site R149 (red) and substrate binding site (yellow) are indicated. (C) ARTC2.2+CD73+ and ARTC2.2–CD73+ HEK cells (n = 3) were incubated with NAD+,

FACS sorted and compared towards their capacity to degrade AMP in the AMPGlo assay. (D) Spleen CD8+ T cells from B6 WT, B6 WT treated with ARTC2.2-

blocking nanobody s+16a, and from ARTC2ko mice were analyzed towards CD73 and ARCT2.2 expression. After NAD+ treatment, FACS sorted cells (n = 4-5

technical replicates) were further subjected to an HPLC-based assay to measure their capacity to generate etheno-ADO (eADO) from etheno-AMP (eAMP).

(E) Peritoneal macrophages from B6 WT and ARTC2ko mice were analyzed towards CD73 and ARCT2.2 expression. After NAD+ treatment, FACS sorted cells (n =

6 technical replicates) were analyzed for their capacity to generate eADO. Statistical comparison of the two groups was performed by using the Student’s t test,

comparison of more than two groups was performed by using oneway ANOVA analyses with Dunnett’s multiple comparisons (p < 0.05 = */p < 0.001 = ***). Data

represent results from two (C, E) or three (D) independent experiments.
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activity. It is conceivably that ADP-ribosylation modifies the

function of many of these target proteins, thereby fine tuning

immune reactions (2, 20). As an example, we analyzed the

impact of ADP-ribosylation on the capacity of CD73 to

hydrolyze AMP into adenosine. Our results indicate that ADP-

ribosylation of CD73 leads to a reduced conversion of AMP
to adenosine.

In our study we analyzed the ADP-ribosylome of T cells

treated with or without exogenous NAD+. It is important to note

that NAD+ is also released during the preparation of murine T

cells (30), which is sufficient to allow the ADP-ribosylation of T

cell surface proteins. Therefore, we can not exclude that at least
some of the observed ADP-ribosylated T cell surface proteins

detected under basal conditions without addition of exogenous

NAD+, such as Slc44a2 or Itgal, identified in untreated T cells

from spleen or liver were modified during cell isolation. To

further investigate whether the observed ADP-ribosylation of

proteins occurred during the cell isolation or is catalyzed in vivo,
systemic injection of the ARTC2.2 blocking nanobody s+16a

prior to cell harvesting would prevent ADP-ribosylation during

preparation (17, 28). However, this would also block ADP-

ribosylation in vivo during the time between injection and the

sacrifice of mice, but would not prevent de-ADP-ribosylation by

enzymes. In order to identify further targets that are ADP-

ribosylated in vivo it might thus be necessary to block de-
ADP-ribosylation. Finally, it would also be interesting to

compare the ADP-ribosylome of different T cell types such as

CD4+ helper T cells, CD4+ regulatory T cells or cytotoxic CD8+ T

cells as well as the ADP-ribosylome of the same T cell population

from different organs, e.g. spleen and liver. However, this would

probably need large amounts of cell material to start with.
Our analyses of proteins derived from NAD+ treated T cells

identified known and new targets of ARTC2.2-mediated ADP-

ribosylation. We confirmed already known ARTC2.2 targets

such as CD25 (Il2rg), CD8b (Cd8b) and CD45 (Ptprc). For

CD25 we confirmed R196 (R178 in the mature protein) as

ADP-ribosylation site, as reported in a previous study (12).

Similarly, CD45 was found to be ADP-ribosylated on R331 of
cells analyzed in the microglia study (26). Of note, the T cells

used in this study were isolated from C57BL/6 (B6) mice,

whereas the microglia study used cells from Balb/c mice. B6

mice carry a premature stop codon in the gene for the ARTC2.1

(40), and B6 T cells therefore exclusively express ARTC2.2 as cell

surface ADP-ribosyltransferase (41). Balbc microglia express the
thiol-activated ARTC2.1, but not ARTC2.2 and Balb/c T cells co-

express ARTC2.1 and ARTC2.2 (5, 6). The finding of the same

ADP-ribosylated targets on microglia and T cells indicates that

these two closely related ADP-ribosyltransferases may share

common targets and modify common sites.

MHC class I (MHC-I) molecules are yet not well

characterized regarding the potential impact of ADP-
ribosylation. In this study we identified H2-D, H2-K and the

MHC-Ib molecule H2-Q to be ADP-ribosylated on T cells.

MHC-I molecules present endogenous peptides to CD8+ T

cells. Therefore, it would be interesting to test if MHC-I ADP-

ribosylation affects its interaction with the T cell receptor (TCR)

or loading of the peptide to form the MHC-I/peptide complex.

Indeed, the identified R169 ADP-ribosylation site in H2-D1 is in

close proximity to the TCR interaction surface (see PDB file

5m01). Further, a former study showed that ADP-ribosylation of

the CD8b T cell coreceptor affects MHC-I/TCR interaction (13).

It would thus be interesting to investigate, whether MHC-I ADP-
ribosylation diminishes TCR binding in a similar fashion.

Moreover, it is tempting to speculate that MHC-I ADP-

ribosylation has an impact on TCR binding in an antigen-

specific fashion: introduction of an ADP-ribose group at the

MHC-I/TCR interaction site could lead to the activation of

alternative CD8+ T cell clones that recognize this modified
MHC-I/peptide complex. Future studies should address

this hypothesis.

The list of ADP-ribosylation targets on T cells identified here

is probably underestimated. The ATP gated P2X7 ion channel

for example, a prominent and well characterized ARTC2.2 target

on T cells (14), was not identified as target for ADP-ribosylation
by our MS approach. P2X7 is expressed on regulatory T cells,

NKT cells and CD4 effector/memory T cells (15, 17, 42) –

together these cells constitute only a minor fraction of the T

cells analyzed here. Therefore, the amount of available P2X7

proteins might have been below the detectable threshold.

Furthermore, it is possible that ADP-ribosylated peptides are

lost during sample preparation or mass spectrometry analysis
due to technical circumstances.

In this study, we focused on the functional impact of CD73

ADP-ribosylation. CD73 is a ecto-5´-nucleotidase that generates

immunosuppressive adenosine from AMP and thus plays a

critical role in balancing the course of an inflammatory

reaction (43). From a technical point of view, it is worth
noting that adenosine is rapidly degraded to inosine by

adenosine deaminase (ADA), both in vivo and in vitro. The

etheno-adenosine (eADO) used in our HPLC-based assay to

monitor and quantify CD73 enzymatic activity, however, is not a

substrate for ADA (44) and therefore much more stable. Further,

it has been recently shown that eADO is not taken up by cells via

adenosine transporters (45). Therefore, differential degradation
or uptake resulting in an experimental bias seems unlikely to

explain the impact of NAD+ on the CD73 enzymatic activity. The

identified ADP-ribosylation site at R149 is distant from the active

site of CD73 and is therefore likely to act allosterically. When

comparing CD8+ T cells and macrophages, NAD+ only had a

dampening impact on the catalytic activity of CD73 on CD8+ T
cells that co-express ARTC2.2 but not on macrophages that lack

ARTC2.2. Therefore, CD73 ADP-ribosylation might be a T cell-

specific mechanism that modulates CD73 activity in an NAD+

rich microenvironment, such as tumor tissue. Here, NAD+ could

be released along with ATP during tumor cell secondary

necrosis. Indeed, prostate cancer cell lines have been reported

to actively release intracellular NAD+ into the culture medium
(46). CD8+ T cells play a critical role in anti-tumor immune

responses. CD73 on CD8 T cells seems to significantly contribute

to the anti-tumor immunity response, since adoptively transferred

CD73-deficient ovalbumin-specific OT-I T cells were more potent

in killing OVA-expressing B16 melanoma tumors compared to
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WTOT-I T cells (47). This was accompanied by lower expression

levels of the exhaustion markers programmed cell death protein 1

(PD-1) and CD39, strengthening the role of CD73 as an immune

checkpoint and as a potential target in tumor therapy. Vice versa,

it would be interesting to evaluate whether ARTC2-deficient OT-I

T cells are less potent in killing OVA-expressing B16 melanoma,
as CD73 activity would not be dampened by NAD+ in the

tumor environment.

Interestingly, both ARTC2.2 and CD73 can be shed from T

cells (48, 49) and it has recently been shown that soluble

ARTC2.2 can ADP-ribosylate various cytokines, including

IFNg (50). Therefore, it would be interesting to elucidate
whether soluble ARTC2.2 could also ADP-ribosylate the

soluble form of CD73 and thereby control the cell-independent

generation of adenosine.
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