Status on molten nitrate salts above 600 °C

03.12.2021, Molten Salts 2021, online

<u>Julian Steinbrecher</u>, Alexander Bonk, Markus Braun, Andrea Hanke, Thomas Bauer

Knowledge for Tomorrow

State of the art

Thermal energy storage for CSP application

DOE, U. "The Year of Concentrating Solar Power." US Department of Energy (2014).

Research group Thermal Systems for Fluids (TSF) at the DLR

DLR.de • Chart 5 > Molten Salts Conference 2021 > J.Steinbrecher • Solar Salt above 600 °C

Stirrer before the experiment

"Stirrer" after the experiment

Careful parameter selection and experiment monitoring is necessary

The mission: Solar Salt chemistry above 600 °C

Molten salt stabilization at 600 and 620 °C

 $NO_3^- \rightleftharpoons \frac{1}{2}O_2 + NO_2^- \rightleftharpoons O^{2-} + NO_x$ (a) mol·mol⁻¹ X_{NO3} 0.45 620 °C •620 °C / mol·mol⁻¹ 0.05 X_{NO2} Experimental Design: Isothermal at 600/ 620 °C (b) 0.00 Salt composition monitoring (c) Purge gas control 8E-04 Oxygen (20 vol%) x₀²- / mol·mol⁻¹ 6E-04 Nitrous Gas (NOx) 0 4E-04 \rightarrow To prevent oxide ion (O²⁻) formation, 2E-04 nitrous gas (NOx) is necessary for molten salt stabilization

0.50

620 500 0E+00 500 1000 1500 time / h Sötz, V.A., Solar Energy 2020, 211, 453-462.

P_{NOx}

600 blank 600 50

100

200 500

blank

200

600

600

600

620

620

Molten salt regeneration at 600 °C

$$NO_3^- \rightleftharpoons \frac{1}{2}O_2 + NO_2^- \rightleftharpoons O^{2-} + NO_x$$

Experimental design:

- "aged" Solar Salt (+ nitrite, oxide)
- Isothermal at 600 °C
- Salt composition monitoring
- Purge gas control
 - Oxygen (20% / 80 %)
 - Nitrous Gas (NOx)

 \rightarrow An oxide ion (O²⁻) rich molten salt can be regenerated with adequate gas management

Steinbrecher, J., Materials 2021, 14. DOI:10.3390/ma14195664

Stable Solar Salt at 600 °C and above

- □ <u>First data</u> the stabilization of Solar Salt at 620 °C in terms of ion conten (NO₃⁻, NO₂⁻ and O²⁻).
- □ <u>First data</u> on the regeneration of an "aged" Solar Salt with active gas management (O_2 and 200 ppm NOx).
- Temperature increase (for nitrate salt TES) is not advisable without simultaneously controlling the gas atmosphere.
- $NO_{3}^{-} \rightleftharpoons \frac{1}{2}O_{2} + NO_{2}^{-} \rightleftharpoons O^{2-} + NO_{x}$

□ Future Work:

Development of a liquid – gas reaction mechanism (model), high temperature corrosion experiment with gas phase control

Federal Ministry for Economic Affairs and Energy

Steinbrecher, J.; Bonk, A.; Sötz, V.A.; Bauer, T. Investigation of Regeneration Mechanisms of Aged Solar Salt. *Materials* 2021, *14*.

Steinbrecher, J.; Bonk, A.; Sötz, V.A.; Bauer, **D-D/D-D** Investigation of Regeneration Mechanisms of A Salt. *Materials* 2021, *14*.

Steinbrecher, J.; Bonk, A.; Sötz, V.A.; Bauer, T. Investigation of Regeneration Mechanisms of Aged Solar Salt. *Materials* 2021, *14*.

Recap 2021: Solar Salt Chemistry - Oxygen

Upcoming Tasks

→Salt decomposition modeling based on our equilibrium data →Corrosion Experiment of prominent Steel samples (at 620 °C) under NOx gas atmosphere

