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A CLOUD-BASED COASTAL EARTH OBSERVATION FRAMEWORK FOR REGIONAL 

SEAGRASS ENVIRONMENT MAPPING ACROSS THE EASTERN AFRICAN COASTLINES 

INTRODUCTION 
• Seagrasses provide a multitude of ecosystem services such as blue carbon sequestration, 

coastal protection, as well as biodiversity maintenance, however, they are underappreciated 

and underestimated 
• The coastlines of East African countries (Kenya, Tanzania, Mozambique, and Madagascar) are 

inhabited by 11 seagrass species belonging to the Tropical Indo-Pacific bioregion 
• Seagrass species in East Africa are facing loss and degradation due to climate change, over-

fishing, coastal development, and coastal eutrophication 
• Our aim is to present an end-to-end cloud-based tool to map the seagrass meadow extents in 

East Africa as a decision-support system for scientists, policy makers, and governments, and 

as a base for blue carbon accounting and sustainable development. 

 

MATERIALS AND METHODS 

 

RESULTS AND DISCUSSIONS 
Accuracy scores 

 

 

 

 

 

 

Seagrass area and depth 

CONCLUSION 
• Our cloud-based Earth Observation seagrass mapping framework is scalable and can be applied to map the 

worldwide seagrass extent thanks to the global Sentinel-2 L2A coverage 

• Cloud, land, deep water, and turbid zone masking provides the shallow clear water area for habitat mapping 

where the light attenuation of the benthic substrate was not hindered 

 

FUTURE STEPS 
• Reduction of noise on the  satellite image composite 

• Improved cloud, cloud shadow, deep water, and turbid zone masking 

• Object-based image analysis 

• Scaling up the study sites and blue carbon estimation 

• Liaison with local and national stakeholders of the study sites for better field data 
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Multi-temporal 

Satellite Data Synthesis 

 

1. Multi-temporal Analytics 

• Cloud masking 

• 20th percentile approach 

• S2 L2A SR archive 

(28/03/2017—20/04/2020) 

 

2. Land and Optically Deep 

Water Masking 

• Otsu (1979)-based threshol-

ding 

• Above-surface Rrs re-

flectance transformation 

Reference Data 

 

Self-labeled turbid zone 

 

 

 

 

 

 

 

 

Field-collected SDB data 
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Benthic habitat data points 

Turbidity Processor 

 

Spectral unmixing using polygons based on 50-m buffers of 

self-labeled data points 

Seagrass Classification Framework 

 

1. „Soft“ Classification 

Seagrass probability mapping with Random Forest  machine 

learning algorithm (Breiman, 2001) 

2. „Hard“ Classification 

• Binary class mapping of the seagrass presence and ab-

sence based on the probability thresholding 

• Accuracy assessments (overall accuracy, producer‘s ac-

curacy, user‘s accuracy, F1-score) 

Satellite-derived Bathymetry Processor 

 

1. Unsupervised k-means clustering 

2. Satellite-derived bathymetry modelling 

• Lyzenga (1985) 

• Stumpf et al (2003) 

• SVM regression (Burges, 2008) 

3.Accuracy assessment (R2, MAE, RMSE) 

Seagrass mapping 

Metric Class Score 

PA 
NS 99 
SG 47 

UA 
NS 84 
SG 92 

F1-score 
NS 91 
SG 62 

OA (%) 85 

Turbid zone mapping 

Metric Class Score 

PA 
TZ 87 
CW 97 

UA 
TZ 96 
CW 88 

F1-score 
TZ 91 
CW 92 

OA (%) 92 

SDB Cluster-Based Lyzenga 

RMSE 1.64 
MAE 1.22 
R² 7.51 
Max depth (m) 99.99 
Mean depth (m) 7.88 
Min depth (m) -82.20 

  Kenya Madagascar Mozambique Tanzania 

Seagrass area (m2) 679.59 1309.34 1779.30 548.16 

Max depth (m) 9.18 22.96 9.23 8.52 

Mean depth (m) 2.15 2.06 1.62 1.06 

Min depth (m) -6.79 -49.43 -6.41 -18.23 

• Seagrass extents were slightly underestimated as shown 

in UA values which are higher than PA values 

• The spectral value boxplot shows Tanzania as the noisiest 

composite, manifested by large ranges of seagrass refe-

rence data across the 5 S2 bands due to turbidity as well as 

spectral response non-uniformity and parallax effects of 

the sensor 

• SDB modeled with the Cluster-based Lyzenga  method has 

the highest accuracy scores 

•  Despite the high accuracy scores, , turbid zone detection is 

highly site-specific depending to the materials of the sus-

pended sediments. 

PA: Producer‘s Accuracy 

UA: User‘s Accuracy 

OA: Overall Accuracy 

NS: Non-seagrass 

SG: Seagrass 

TZ: Turbid Zone 

CW: Clear Water 

Figure 1. The East Africa (Kenya, Tanzania, Mozambique, and Madagascar) study area, Sentinel-2 L2A coverage, and the 

mapped seagrass extent 

Figure 2. Successive images of the mapping processes and results 

Figure 3. The training and validation data seagrass 

spectral profiles on the first 5 Sentinel-2 bands  
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