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Abstract: Vegetation structure is a key component in assessing habitat quality for wildlife and carbon
storage capacity of forests. Studies conducted at global scale demonstrate the increasing pressure of
the agricultural frontier on tropical forest, endangering their continuity and biodiversity within. The
Paraguayan Chaco has been identified as one of the regions with the highest rate of deforestation
in South America. Uninterrupted deforestation activities over the last 30 years have resulted in the
loss of 27% of its original cover. The present study focuses on the assessment of vegetation structure
characteristics for the complete Paraguayan Chaco by fusing Sentinel-1, -2 and novel spaceborne
Light Detection and Ranging (LiDAR) samples from the Global Ecosystem Dynamics Investigation
(GEDI). The large study area (240,000 km²) calls for a workflow in the cloud computing environment
of Google Earth Engine (GEE) which efficiently processes the multi-temporal and multi-sensor data
sets for extrapolation in a tile-based random forest (RF) regression model. GEDI-derived attributes of
vegetation structure are available since December 2019, opening novel research perspectives to assess
vegetation structure composition in remote areas and at large-scale. Therefore, the combination of
global mapping missions, such as Landsat and Sentinel, are predestined to be combined with GEDI
data, in order to identify priority areas for nature conservation. Nevertheless, a comprehensive
assessment of the vegetation structure of the Paraguayan Chaco has not been conducted yet. For that
reason, the present methodology was developed to generate the first high-resolution maps (10 m)
of canopy height, total canopy cover, Plant-Area-Index and Foliage-Height-Diversity-Index. The
complex ecosystems of the Paraguayan Chaco ranging from arid to humid climates can be described
by canopy height values from 1.8 to 17.6 m and canopy covers from sparse to dense (total canopy
cover: 0 to 78.1%). Model accuracy according to median R² amounts to 64.0% for canopy height, 61.4%
for total canopy cover, 50.6% for Plant-Area-Index and 48.0% for Foliage-Height-Diversity-Index.
The generated maps of vegetation structure should promote environmental-sound land use and
conservation strategies in the Paraguayan Chaco, to meet the challenges of expanding agricultural
fields and increasing demand of cattle ranching products, which are dominant drivers of tropical
forest loss.

Keywords: Google Earth Engine; Global Ecosystem Dynamics Investigation; Sentinel-1; Sentinel-2;
Paraguayan Chaco; vegetation structure modelling; random forest regression

1. Introduction

The provision of ecosystem services of forests, such as carbon storage, habitats of
rich biodiversity, and recreation are just a few key aspects of forests that foster sustainable
future environmental conditions [1–4]. Since decades. constant deforestation activities have
lead to the degradation of continuous forest, thus declining the provision of ecosystem
services [5]. Most important changes are made to carbon emissions, since timber extraction
and forest clearing amplify globally increasing atmospheric carbon concentrations on the
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one hand, and, on the other degrade carbon storage capacities of forests [3,6]. The forested
areas of the Paraguayan Chaco have been continuously decreasing for decades, accounting
to a total loss of 27% of the original cover from 1986 by 2012 [7]. One of the main drivers
of the conversion of forests in artificial grasslands is cattle ranching, which is known for
its high emissions and potentials to reduce emissions by intensification [8–11]. Therefore,
there is increasing concern about the future and protection of the unique dry and humid
forests of the Paraguayan Chaco.

For data processing and modelling, the cloud computing capabilities of Google Earth
Engine (GEE) are used to efficiently handle the multi-temporal high-resolution data for the
study area which spread over more than 240,000 km² (2/3 of Germany). GEE has proven
its capability for large-scale forest mapping and monitoring in numerous studies [12–15],
including the high-resolution global maps of forest cover change for the 21st century by
Hansen et al., 2021 [16]. By integrating the novel data sets of the full-waveform spaceborne
LiDAR (Light Detection and Ranging) sensor (GEDI), the first high-resolution maps of
canopy height, vegetation cover density and vertical foliage structure for the Paraguayan
Chaco are generated. Therefore, the new knowledge of forest structure enables a more
profound large-scale understanding of the Paraguayan Chaco’s forest ecosystems and
provides additional information for forest conservation and the assessment of expected
future forest loss.

For vegetation structure monitoring over large geographical areas, spaceborne LiDAR
sensors are more practical and less expensive than terrestrial and airborne instruments.
LiDAR sensors attached to satellites that are capable of capturing vegetation structure
characteristics are scarce and limited to the NASA GLAS and ATLAS missions, i.e., the
ICE-Sat instruments [17,18]. Characteristics of ICE-Sat, such as the discrete-return LiDAR
signal, the laser wavelength, and the sensor’s name, highlight that the focus is on the
measurement of ice properties. Therefore, the full-waveform LiDAR of GEDI, which is
attached to the International Space Station (ISS) and has been operating since April 2019,
samples vegetation structure characteristics near-globally (between 51.6°N and 51.6°S) and
stands for new opportunities in the assessment of carbon and water cycling processes,
biodiversity, and habitat modelling. Its specific characteristics, such as a sample footprint of
25 m, a laser wavelength in the near infrared (1064 nm), and a sampling scheme with eight
ground-tracks, make the GEDI highly applicable for forestry-related research. Moreover,
GEDI is characterized as a sampling mission, since vegetation structure attributes are
measured in all tropical and sub-tropical forests. The benefits of GEDI’s sampling scheme
are especially valuable in combination with globally operating sensors, such as Landsat
and Sentinel, because their time-series data allow for spatiotemporal modelling of GEDI-
derived vegetation structure [19]. An exemplary study of the aforementioned integration
of sensors is the Global Forest Canopy Height Model from Potapov et al. 2021 [20], but
monitoring approaches of GEDI and the derivation of attributes of forest structure using
coarse-resolution sensors are further use-cases [21]. In addition, the study of Pereira-Pires
et al., 2021 [22] presents the combination of GEDI and Sentinel-2 to model forest height
accurately based on high-resolution optical data.

The present approach builds on aforementioned studies [20–22] by modelling vege-
tation structure characteristics based on fused Sentinel-1 and -2 data in a random forest
regression model. Additionally, the high-resolution multi-temporal and multi-sensor data
of Sentinel is fully processed in the cloud-computing geospatial analysis environment
of GEE, which is why the presented workflow follows state-of-the-art remote sensing
processing techniques [23,24]. The final data products are the first high-resolution maps
(10 m) of canopy height, canopy cover density and vertical foliage structure complexity for
the Paraguayan Chaco.

2. Materials and Methods

The chapter “2. Materials and Methods” is sub-divided into the chapters “Study Area”,
giving an introduction to the Paraguayan Chaco, “Data Acqusition”, that explains Sentinel
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and GEDI data obtained, and “Data Processing and Methodology”, which presents the
workflows for “Quality Filtering of Data”, “Calculation of Spectral Indices and Temporal-
Spectral Metrics”, and “Modelling of Vegetation Structure and Validation”.

2.1. Study Area

The Paraguayan Chaco is located in the western part of Paraguay (Figure 1). Its forests
belong to the Great American Chaco, which is the second largest region of continuous
forest cover in South America after the Amazonian Forest [25]. It spreads over 240,000 km²,
covering about 60% of Paraguay’s territory and contributing about 25% of Great American
Chaco’s total area. The Paraguayan Chaco is divided into three political departments:
Boquerón in the west is characterized by the most arid conditions, sandy soils and lowest
annual precipitation rates. Alto Paraguay, which is located in the east, holds more humid
conditions and more developed and clay-rich soils in its eastern areas due to higher annual
precipitation rates and wetlands (Pantanal). The political department of Presidente Hayes
presents the most dominantly humid conditions with a rather weak seasonality and mostly
gleyic soils. Therefore, environmental conditions are especially diverse in the Paraguayan
Chaco, since there are different influences of the semi-annual shift from dry to rainy season.
Furthermore, soil fertility and water storing capacities differ between arid and humid
climates [11].

Figure 1. Overview map of the study area depicted as Sentinel-2 median image of 2020. Deforested
areas that have been converted to agricultural fields are characterized by their rectangular shape.

2.2. Data Acquisition

Sentinel data from the dry season 2019 (April to including September) was retrieved
to model characteristics of vegetation structure for the Paraguayan Chaco. Data from
the multi-spectral sensor Sentinel-2 in level 2A (Surface Reflectance) was processed to-
gether with C-Band Synthetic-Aperture-Radar (SAR) data from Sentinel-1 (Ground-Range-
Detected) in GEE using the Python API. Both Sentinel data sets have a geometric resolution
of 10 m which will be the target spatial resolution of the models.

Several attributes of vegetation structure have been obtained from the GEDI Release
2 data products “Elevation and Height Metrics” (L2A) [26] and “Canopy Cover and
Vertical Profile Metrics” (L2B) [27]. GEDI data is stored as point geometries representing the
centroid of the 25 m sample footprint. Vegetation structure attributes that were modelled are
canopy height (95th percentile of the relative height metrics from GEDI L2A), total canopy
cover (GEDI L2B), Plant-Area-Index (GEDI L2B) and Foliage-Height-Diversity-Index (GEDI
L2B). According to the study of Potapov et al., 2021 [20], the 95th percentile of the canopy
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height metrics was selected since it presented higher correlations than the 100th percentile
with airborne LiDAR. In addition, total canopy cover, defined as the vertical projection of
canopy material per area [28], and Plant-Area-Index are vegetation structure attributes that
describe the density of canopy cover material [29]. The Foliage-Height-Diversity-Index,
also known as Shannon’s diversity index, focuses on the assessment of vertical vegetation
structure complexity [30].

2.3. Data Processing and Methodology

In the following, the data processing workflow is explained in more detail, com-
prising quality filtering, derivation of spectral indices, calculation of temporal-spectral
metrics, modelling and model validation. Aforementioned processing steps are displayed
in Figure 2.

Figure 2. Workflow diagram depicting data preprocessing steps of Sentinel-1, -2 and Global Ecosys-
tem Dynamics Investigation (GEDI).

For data processing several computing resources have been used. Downloading multi-
temporal GEDI data was conducted using a virtual machine with 32 GB RAM (processing
time about five days). Quality and temporal filtering of GEDI, but also preparing the
GEDI data for the tile-based modelling approach, was conducted on a local computer with
16 GB RAM (processing time about one day). The cloud-computing environment of GEE
was used to access and preprocess Sentinel-1 and -2 for modelling (processing time about
three days). The preparation of the GEE exports for visualization and the model accuracy
assessment was conducted on the aforementioned local computer (processing time about
2 days).

2.3.1. Quality Filtering of Data

Sentinel-1 data was filtered to single co-polarization in vertical transmit and vertical re-
ceive (VV) and the dual-band cross-polarization in vertical transmit and horizontal receive
(VH). Preprocessing steps include speckle filtering and radiometric terrain normalization
for analysis-ready Sentinel-1 [31] and filtering for “Cloudy Pixel Percentage” lower than
30% and cloud masking for Sentinel-2. In total, 125 Sentinel-1 and 1029 Sentinel-2 scenes
were obtained for analysis.

GEDI data in level L2A and L2B was quality-filtered according to the Algorithm
Theoretical Basis Document [28] to remove degraded and low sensitivity shots. In addition
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GEDI data was temporally filtered to match the period of the Sentinel data (June to
including September 2019).

2.3.2. Calculation of Spectral Indices and Temporal-Spectral Metrics

Several spectral indices for Sentinel-2 have been calculated as additional vegeta-
tion structure proxies to the spectral information of Sentinel-1 and -2. Spectral indices
range from basic vegetation indices (VI) (e.g., Difference-Vegetation-Index (DVI) [32,33],
Normalized-Difference-Vegetation-Index (NDVI) [34]) over indices that consider atmo-
spheric effects (e.g., Atmospherically-Resistant-Vegetation-Index (ARVI2) [35]) to spectral
transformations (e.g., tasseled cap [36,37], Enhanced-Vegetation-Index (EVI) [38]). Table 1
displays calculated vegetation indices.

Table 1. Table of vegetation indices (VI) that were calculated for temporal-spectral metrics derivation.

Index Name
(Abbreviation) Properties and Application Reference

Normalized-Difference VI (NDVI) basic VI, distinguishes between non- and
photo-synthetically active vegetation

[34]

Enhanced VI (EVI) spectral transformation, high sensitivity to canopy
differences

[38]

Modified Normalized-Difference-Water-Index
(NDWI)

estimates water content in vegetation [39]

Tasseled Cap Transformation spectral transformations to assess greenness, soil
brightness and wetness of vegetation

[36,37]

Normalized-Difference-Moisture-Index (NDMI) captures differences in vegetation and soil moisture [40,41]

Infrared-Percentage-VI (IPVI) non-negative vegetation index, focusing only on
photo-synthetically active vegetation

[42]

Green-Normalized VI (GNDVI) uses the green band for normalization to estimate the
chlorophyll content more accurately

[43]

Atmospherically-Resistant VI 2 (ARVI2) VI that considers atmospheric effects [35]

Difference VI (DVI) basic VI of red and near infrared without normalization [32,33]

Leaf-Chlorophyll-Index (LCI) estimating leaf chlorophyll content from red, red edge
and near infrared

[44]

Band Ratios calculation of NIR to SWIR1 and SWIR1 to SWIR2 ratio [20]

According to Franklin et al., 2015 [45], Hansen et al., 2014 [46], Müller et al., 2016 [47]
and Potapov et al., 2021 [20], to aggregate multi-temporal satellite data, a reliable approach
is the calculation of temporal-spectral metrics to account for gaps and temporal variability
in the data series, e.g., due to atmospheric interference (clouds, cloud shadows) [20,45–47].
Additionally, the integration of multi-temporal data is essential to achieve a complete
coverage for large-scale study areas, such as the Paraguayan Chaco [48]. For Sentinel-1,
several percentiles (10th, 50th, 90th) and minimum, mean and maximum metrics were
calculated for both polarizations. The temporal-spectral metrics for Sentinel-2 consist of
percentile metrics for the bands and VI (10th, 25th, 50th, 75th, 90th). In addition, a NDVI
metrics (minimum, maximum, standard deviation, mean, variance, range) was calculated
to specifically capture phenological variations. In total, 138 spectral features of Sentinel-1
and -2 serve as input for modelling characteristics of vegetation structure.

In addition to the spectral information of Sentinel-1 and -2, elevation data from
TanDEM-X in 12 m [49,50] was added to the model stack.

2.3.3. Modelling of Vegetation Structure and Validation

To model the Paraguayan Chaco’s vegetation structure, the study area was subdivided
into 89 tiles (0.5° × 0.5°) to facilitate parallel processing and avoid computational limits in
GEE. For each attribute of vegetation structure, a random forest regression model was set
up with tuned hyperparameters.
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A random forest (RF) model is a machine-learning ensemble technique that has proven
its popularity in remote sensing applications due to high accuracy and performance [51,52].
An RF model applies bootstrapping and aggregation on a user-defined number of de-
cision trees which can lead to a substantial increase in accuracy due to the reduction
in variance of predictions to observations [53,54]. To improve the learning of the RF
model, hyperparameters, such as number of trees, minimum leaf population, variables
per split and bag fraction can be optimized using sensitivity analysis. By varying the
values of each hyperparameter, the model accuracy can increase, which enables a better
understanding of the algorithm and its sensitivity to parameter changes [55,56]. The sensi-
tivity analysis was conducted similar to the study of Janalipour et al., 2017 [57]. In GEE,
the RF model output can be set to regression to model continuous variables and apply
an averaging of the predictions from all decision trees, opposing to a RF classification
model where predictions are aggregated based on majority voting [58]. In total, about
700,000 quality-filtered GEDI samples have been used in model training and validation of
each attribute of vegetation structure.

According to the study of Potapov et al., 2021 [20], the set of GEDI samples was
randomly split before modelling in a collection of training samples (90%) and testing
samples (10%) for model validation. In addition, to match the ratio of samples/km² of
the studies from Potapov et al., 2021 (2.6 samples/km²) [20] and Rishmawi et al., 2021
(3.4 samples/km²) [21], 8000 samples (3 samples/km²) have been randomly selected from
a pool of more than 15,000 samples per tile-model. Due to the high number of samples,
the aforementioned sampling workflow results in a spatially and temporal balanced data
set. Only in some western and eastern tile-models, there are rather non heterogeneously-
scattered samples for the tile-models because GEDI samples do not cover the full temporal
range, e.g., observations are only of one month. The testing samples which are independent
from modelling, are used to calculate several model efficiency criteria, such as the mean-
average-error (MAE), coefficient of determination (R²) and root-mean-square-error (RMSE).

3. Results

The results chapter is divided into the sub-chapters “Error assessment”, that explains
modelling uncertainties, “Model Sensitivity Analysis”, which assesses influences of hy-
perparameter tuning on the RF models performance, and “Modelled Vegetation Structure
Attributes”, that presents the modelled results as maps.

3.1. Error Assessment

To assess the statistical uncertainty of modelled canopy height, total canopy cover,
Plant-Area-Index and FHDI, the independent set of GEDI samples (observations) was
compared to model predictions by calculating the mean-average-error (MAE), coefficient of
determination (R²) and root-mean-square-error (RMSE). Since modelling was conducted by
implementing a tile-based approach, for each modelled tile and GEDI attribute, the error
criteria were calculated and aggregated as mean and median values in Table 2. The highest
model accuracy was achieved, according to the non-scale-dependent criteria R², for the
canopy height (mean: 60.0%, median: 64.0%) and total canopy cover models (mean: 61.8%,
median: 61.4%). For modelled canopy height, MAE amounts to 1.1 m and RMSE to 1.6 m.
The statistical uncertainty of modelled total canopy cover has an average MAE value of 6.0
to 6.2% and average RMSE of 9.1 to 9.4%. Modelled Plant-Area-Index and FHDI present
identical errors for the scale-dependent criteria MAE (0.2) and RMSE (0.3). According to
R², modelled Plant-Area-Index is slightly higher (mean: 50.1%, median: 50.6%) than FHDI
(mean: 47.4%, median: 48.0%).
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The assessment of differences (Figure A3) between modelled canopy height (rh95)
and observations (GEDI validation samples) presents lowest relative errors in the range of
average canopy heights of the Paraguayan Chaco (4 to 6 m). Furthermore, there is a pattern
of model underestimation (2 to 4 m) to strong model overestimation (12 to 16 m).

Model accuracy of canopy height is similar to that of the Landsat based Global Forest
Canopy Height model of Potapov et al. 2021 [20] and canopy height models of Pereira-Pires
et al., 2021 [22], using Sentinel-2 spectral features.

Table 2. Table of model errors: MAE (Mean-Average-Error), coefficient of determination (R²) and
RMSE (Root-Mean-Square-Error). Median and mean values per error criteria have been calculated
from all modelled tiles.

Error Criteria Canopy
Height

Total Canopy
Cover

Plant-Area-
Index

Foliage-Height-
Diversity-Index

MAE mean 1.1 m 6.2% 0.2 0.2
MAE median 1.1 m 6.0% 0.2 0.2

R² mean 60.0% 61.8% 50.1% 47.4%
R² median 64.0% 61.4% 50.6% 48.0%

RMSE mean 1.6 m 9.4% 0.3 0.3
RMSE median 1.6 m 9.1% 0.3 0.3

3.2. Model Sensitivity Analysis

The sensitivity analysis of model accuracy (estimated using R² values) highlights that
varying the values of each hyperparameter, e.g., number of trees from 50 to 250 trees,
influences model accuracy (56.7% to 57.5%) (Figure 3, upper left). In comparison to
the hyperparameter tuning for number of trees (optimum at about 250 trees), the other
hyperparameters present stronger differences in R² when testing several values. The
sensitivity analysis reveals for the minimum leaf population that not trimming the decision
trees, i.e., allowing for low minimum leaf populations, results in highest model accuracy
(up to 57%) (Figure 3, upper right). In comparison to the negative correlation between R²
and minimum leaf population, the hyperparameters variables per split and bag fraction
are holding positive correlations with model accuracy. Therefore, an increased number of
variables per split and elevated fractions of samples for model training, improve model
accuracy (Figure 3, lower left and right).

To sum up the findings of the sensitivity analysis, tuned hyperparameters to the level
of highest model accuracy according to R², improve the model performance. Combining all
tuned hyperparameters in the model, results in the model accuracies presented in Table 2.

3.3. Modelled Vegetation Structure Attributes

Modelled canopy height ranges from 1.8 to 17.6 m, with a mean value of about
5.3 m for the Paraguayan Chaco. There are strong differences in canopy heights between
agricultural fields, which present values lower than 2 m and are characterized by their
rectangular shape (Figure 4, upper and lower sub-map), and clusters of elevated canopy
heights (greater than 14 m) in the north-east and south-east. The high geometric resolution
of 10 m allows the identification of road networks (middle sub-map) and of characteristics
of agricultural fields such as forest islands and wind barriers (lower sub-map). Furthermore,
the lowest modelled canopy heights outside agricultural fields (≈4 m) are found in the
Ecoregion Médanos which is located in the north-west and holds the most arid, desert-like
climate of the Paraguayan Chaco. The more humid regions (south-east) present linear
structures of increased canopy heights (greater than 9 m) along major rivers.
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Figure 3. The plots depict the sensitivity analysis of all random forest regression models according to
the hyperparameters number of trees (upper left), minimum leaf population (upper right), variables
per split (lower left) and fraction used for model training (lower right). The coefficient of determi-
nation (R²) serves as parameter to assess model accuracy. Findings are that an increased number of
trees, low minimum leaf populations, high number of variables per split, and an increased fraction of
samples used for model training, improve model accuracy according to R².

Figure 4. Modelled canopy height (rh95) for the Paraguayan Chaco.
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Modelled total canopy cover is presented in Figure 5 with canopy cover densities
ranging from about 0% (no canopy cover present) to 78.1% (dense to closed canopy covers).
The mean total canopy cover density amounts to 19.5%, which highlights the overall
rather sparse levels of canopy cover conditions in the Paraguayan Chaco. Small-scale
differences of total canopy cover are present in agricultural fields (upper and lower sub-
map), since agricultural fields are characterized by no canopy cover present (about 0%),
whereas the aforementioned wind barriers between agricultural fields and forest islands
hold higher total canopy cover densities (≈20%). In addition, there are also small-scale
differences (middle sub-map) between riparian areas (elevated total canopy cover of about
70%) and the open grasslands (total canopy cover lower than 20%) which can be identified
in the south-eastern parts of Figure 5, middle sub-map. An overall observation similar
to modelled canopy height (Figure 4), is the gradual increase of total canopy cover from
the north-west to the east and south-east when omitting agricultural fields. This finding
corresponds to the precipitation rates of the Paraguayan Chaco.

Figure 5. Modelled total canopy cover (cover) for the Paraguayan Chaco.

The map of modelled Plant-Area-Index (Figure 6), holds information similar to total
canopy cover, since both attributes describe canopy coverage densities. Values range
from 0 (no plant per area) to 4 (high plant area density) and present aforementioned
patterns of agricultural fields (Plant-Area-Index ≈ 0) that dominate in the center, western
and north-eastern regions of the Paraguayan Chaco. The mean Plant-Area-Index for the
Paraguayan Chaco amounts to 0.51, describing rather low overall cover densities. The
aforementioned longitudinal pattern of elevated canopy heights and total canopy covers
towards the eastern parts, is also identifiable for Plant-Area-Index.
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Figure 6. Modelled Plant-Area-Index (pai) for the Paraguayan Chaco.

Modelled Foliage-Height-Diversity-Index (FHDI) in Figure 7 differentiates between
simple (FHDI ≈ 0.7) and complex vertical foliage structures that consist of multiple canopy
layers (FHDI ≈ 2.8). The mean value of FHDI for the Paraguayan Chaco amounts to 1.79,
which describes medium complex foliage structures. The spatial patterns of FHDI match
the results of modelled canopy height and cover density, with the least complex foliage
structures in agricultural fields (FHDI ≈ 0.7) and elevated FHDI (≈2.8) in the more humid
regions of the Paraguayan Chaco in the north-east and south-east.

Figure 7. Modelled Foliage-Height-Diversity-Index (FHDI) for the Paraguayan Chaco.

4. Discussion

The cloud-processing capabilities of GEE greatly enabled the methodological devel-
opment and implementation of the present study. Multi-temporal and multi-sensor data
was efficiently processed to accurately model vegetation structure characteristics based on
Sentinel and GEDI data for the Paraguayan Chaco. To the authors’ knowledge, the present
study describes the first assessment of vegetation structure obtained from high-resolution
remote sensing imagery for the Paraguayan Chaco. Furthermore, the present approach
highlights the applicability and benefits of sensor fusion for vegetation modelling and
the derivation of large-scale key attributes of vegetation structure, valuable information
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for the improvement of biomass and emission models [59,60]. In addition, this approach
promotes reproducible research in the field of remote sensing, which is often hindered by
the necessity of processing high-resolution and multi-temporal satellite data for large study
areas, since the presented workflow is independent from institutional cluster-computing
infrastructures. In addition, the GEE data catalog provides various kinds of satellite data
in high processing levels, freeing up more time for analysis since the analysis is brought to
the data in a cloud-computing environment.

By accessing the data catalogue of GEE, which holds high-level products of Sentinel-1
and -2, data preprocessing was limited to speckle filtering and radiometric terrain nor-
malization for Sentinel-1 and cloud filtering and masking for Sentinel-2. Furthermore,
the state-of-the-art algorithms in GEE allow for efficient and rapid calculation of spectral
indices and temporal-spectral metrics for the complete Paraguayan Chaco. Therefore, in
this work, several spectral features suggested in the study of Pereira-Pires et al., 2021 [22]
have been combined for vegetation structure modelling in random forest regression models.
Since the presented methodological framework is implemented in the cloud-processing
capabilities of GEE, only final data products, such as the rasters of modelled vegetation
structure and model errors, are exported on the local computer. The limitation to fully
implementing the analysis in GEE is the lack of GEDI data, which is not part of the GEE
data catalogue yet. Therefore, preprocessing of GEDI was conducted in a local Python
environment to apply quality and temporal filtering for about 1.8 million LiDAR shots.
Preprocessed GEDI data was in the following imported as GEE asset for cloud computing.

To estimate the contribution of spectral features to the model performance, variable
importances of the RF model have been analyzed (Figures A1 and A2). Calculated per-
centiles of the Sentinel-2 red edge bands present for all attributes of vegetation structure
high importances. Those bands, which are unique to the Sentinel-2 sensor, are capable to
detect chlorophyll and nitrogen contents of vegetation, highlighting the added spectral
value, e.g., in comparison to Landsat data without bands in the red edge spectra [61,62].
Furthermore, the Sentinel-2 SWIR bands, specifically the 90th percentile of normalized-
difference between the SWIR1 and SWIR2 band, are of special importance for all modelled
GEDI attributes. SWIR bands are characterized by the ability to discriminate the moisture
content of soil and vegetation [63]. The increased importance of tasseled cap brightness for
all models of vegetation structure might be due to its information on soil albedo, e.g., dry
and wet soils [36,64]. Most important spectral features of Sentinel-1 are the 10th percentiles
of the VV and VH polarization. Sentinel-1 features might improve the model due to its
capabilities to detect permanent water bodies (rivers, riparian areas) and high biomass
levels [65]. To sum up, the presented methodology, which bases on the fusion of Sentinel-1
and -2, benefits from complementary sensor characteristics to assess various important
proxies for modelling GEDI-derived attributes of vegetation structure.

The dry season period (June to including September) was selected due to increased
cloud coverage in the rainy season (November to including April) [11]. Acquiring dry
season data only for Sentinel and GEDI, goes along with the fact that vegetation structure
is modelled at a phenological state of rather low canopy cover densities and little vege-
tation growth, compared to the rainy season. In addition, since multi-temporal Sentinel
data is processed for the Paraguayan Chaco, it needs to be assumed that some locations
of GEDI samples have undergone significant changes in their spectral information due
to changes in land cover. Therefore, a large variety of spectral indices and bands was
combined in temporal-spectral metrics to limit influences of significant spectral changes on
modelling [20]. In addition, the high number of GEDI samples might further reduce the
effect of significant spectral changes [19].

Modelled vegetation structure attributes present positive spatial correlations that
follow the climate conditions of the Paraguayan Chaco: the more humid regions in the
east present the highest canopy heights and most dense vegetation at elevated vertical
complexity, whereas the most arid regions in the north-west are characterized by low
canopy heights with open to sparse canopy cover densities. Agricultural fields can be easily
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detected due to abrupt changes of vegetation structure, i.e., lower canopy heights and more
sparse canopy covers in agricultural fields in comparison to surrounding non-deforested
vegetation. The integration of GEDI-based vegetation height data in combination with
Sentinel-1 has also improved the binary classifications of forests and non-forested areas in
tropical wetland regions as presented in the study of Verhelst et al., 2021 [66]. Furthermore,
the middle sub-maps of Figures 4–7 present elevated values for the vegetation structure
attributes in wetland and riparian areas, which are characterized by linear spatial patterns.
Along major rivers in the southern part of the Paraguayan Chaco, riparian areas highlight
that the availability of water, in combination with soils that are prone to flooding, promote
increased vegetation height and density. Although, to the knowledge of the authors, that
there is no research about forest structure based on remote sensing techniques for the
Paraguayan Chaco, the study of Akay et al., 2012 [67] for western Oregon (USA) describes
similar characteristics of riparian forests as modelled for the Paraguayan Chaco in the
present study: based on airborne LiDAR, elevated canopy cover densities and increased
tree heights have been detected in riparian forests, highlighting the particularly favorable
habitat conditions for wildlife [68].

Higher model accuracies might be hindered on the one hand by the 25 m GEDI foot-
print, which is a signal of mixed vegetation structure, that is on the other hand represented
by a single Sentinel pixel (10 m). In other words, only a fraction of the GEDI samples is
captured by the model predictors, limiting the spectral representation of model predictors.
Furthermore, the studies of Dorado-Roda et al., 2021 (european mediterranean forests) [69]
and Quirós et al., 2021 (Southwest Spain) [70] highlight that there are certain limitations to
GEDI-derived canopy height estimates and georeference. But limitations in GEDI-derived
canopy height are specifically related to highly multilayered forest structures [69], which
are only a minor proportion of the forests of the Paraguayan Chaco (Figure 7). Another
important point about the presented study is that there are lower numbers of GEDI samples
available in the western and eastern parts of the Paraguayan Chaco, and therefore less
spatially and temporally balanced sample sets. Those models might not be as accurate as
models with spatially and temporally balanced sample sets, since on the one hand, not the
complete range of vegetation structure is sampled due to a heterogeneous sample scatter-
ing. On the other, the availability of samples from a limited period, e.g., only one month,
only trains the model for a certain phenological state of the dry season. Nevertheless,
modelled canopy height of the present study is similar to the Landsat-based canopy height
model of Potapov et al., 2021 [20] in terms of accuracy and according to mean (difference:
0.3 m) and median values (difference: 0.1 m) for the forests of the Paraguayan Chaco.

Differences in model accuracy between vegetation structure characteristics can be
interpreted as the difference in Sentinel’s capability to represent various characteristics of
vegetation structure. Therefore, canopy height and total canopy cover, which present the
highest R² accuracies, can be considered as more direct proxies of the multi-spectral and
radar signals than Plant-Area-Index and FHDI. Especially FHDI aggregates vertical and
horizontal information of vegetation structures, which can hardly be represented by optical
information of Sentinel-2.

Research that is beyond the scope of this paper, but could be addressed in future
work, is a statistical assessment of correlations between modelled vegetation structure and
environmental conditions, such as temperature, precipitation, land cover, and soil types, to
better understand spatial patterns of vegetation structure. Furthermore, the combination of
information on forest cover and forest structure enables a more comprehensive evaluation
of changes in ecosystem services and functioning due to deforestation. In addition, upcom-
ing data of GEDI (nominal lifetime of 2 years) will allow for multi-temporal monitoring of
vegetation structure, e.g., to detect degraded forests due to differences in canopy height.
In this context, forest canopy height time-series profiles have been modelled based on
GEDI samples and Landsat time-series data in the study of Potapov et al., 2021 [20]. There-
fore, different land use practices have been detected, such as selective logging, clearcuts
and plantations.
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5. Conclusions

This paper presents a cloud-based vegetation structure modelling approach in GEE to
derive canopy height, total canopy cover, Plant-Area-Index and Foliage-Height-Diversity-
Index for the Paraguayan Chaco. The advantages of GEE to rapidly process large satellite
data sets, in combination with the provision of a rich data catalogue, facilitates the presented
methodology. Therefore, high-resolution multi-temporal data from Sentinel-1 and -2
was fused with GEDI data to model vegetation structure in tile-based random forest
regression models.

The main results are the first high-resolution maps of vegetation structure attributes
for the complete Paraguayan Chaco. There are strong differences in vegetation structure
within the Paraguayan Chaco due to diverse environmental conditions that range from
arid to humid climates, i.e., desert-like conditions to riparian and wetland areas. Overall,
vegetation is rather low (mean canopy height: 5.3 m) and rather sparse (mean total canopy
cover: 19.5%).

The novel generated data sets of vegetation structure from high-resolution spaceborne
LiDAR samples should support strategies to halt deforestation that has been going on
for decades in the Paraguayan Chaco. The developed methodology allows for the spa-
tiotemporal modelling of vegetation structure almost globally (restricted by the coverage
of GEDI). In addition, high-resolution global products of forest structure might improve
carbon emission and biomass models to determine global carbon balances more accurately
to further promote global emission reduction initiatives.
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MAE mean-average-error
ND Normalized difference
NDMI Normalized-Difference-Moisture-Index
NDVI Normalized-Difference-Vegetation-Index
NDWI Modified Normalized-Difference-Water-Index
p percentile
pai Plant-Area-Index
rh95 canopy height (95th percentile)
R² Coefficient of determination
RE Red Edge
RF Random Forest
RMSE root-mean-square-error
SAR Synthetic-Aperture-Radar
SWIR Shortwave infrared
VH vertical transmit, horizontal receive
VI Vegetation-Index
VV vertical transmit, vertical receive

Appendix A

Figure A1. RF Regression: ten most important variables for canopy height (rh95) and total canopy
cover (cover). Abbreviations: ND = Normalized difference, p = percentile, RE = Red Edge,
SWIR = Shortwave infrared, VV = vertical transmit, vertical receive polarization.

Figure A2. RF Regression: ten most important variables for Plant-Area-Index (pai) and Foliage-
Height-Diversity-Index (FHDI). Abbreviations: ND = Normalized difference, p = percentile,
RE = Red Edge, SWIR = Shortwave infrared, VH = vertical transmit, horizontal receive polarization,
VV = vertical transmit, vertical receive polarization.
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Figure A3. Statistical analysis of modelled canopy heights errors (difference model to observation
(GEDI validation samples)). The boxplots depict lowest errors at canopy heights of 4 to 6 m (average
modelled canopy heights of the Paraguayan Chaco). In addition, there is a trend of underestimation
(2 to 4 m) to strong overestimation (12 to 16 m) in terms of modelled canopy height.
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