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Abstract—Spatiotemporal aggregation of solar irradiance oc-
curs when a spatially distributed receiver (e.g. a PV generation
facility) collects variable geographically distributed irradiance
and reduces it to a single electrical generation output. Models of
this phenomenon exist, and are designed to take variability from
a single point irradiance monitor and predict how that variability
will be reduced by aggregation. We have applied these models
in a revered manner to assess whether the models can be used
to predict the variability of a single point measurement given
an aggregate irradiance time series as an input. Results for an
advection-based model show that this approach leads to overpre-
diction of the high frequency variability due to overprediction
of the site-to-site correlation. Incorporating predictions of site
pair decorrelation from the wavelet variability model can temper
the degree of overprediction and produces more realistic point
time series. Further work may be warranted to further improve
upon these efforts and enable reliable, transfer function-based
downscaling of irradiance data.

Index Terms—variability, spatial aggregation, wavelet variabil-
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I. INTRODUCTION

Spatiotemporal variability of solar irradiance and its char-
acterization are well studied in the literature [1], [2]. It is
important to have a good understanding of variability for
both photovoltaic (PV) plant management and transmission
grid operation in order to anticipate and handle short term
ramp events in power generation. One specific aspect of
spatiotemporal variability that has been studied in the literature
is modeling how variability of a single point sensor is reduced
by the aggregation effect associated with collection by a
spatially distributed plant [3]–[5].

The Cloud Advection Model (CAM) of Ranalli et al. [5]
uses a transfer function to represent the aggregation process.
In principle, this approach is reversible. In the present study,
we evaluate the ability of the model to be used for the reverse
problem of predicting a single point irradiance time series on
the basis of a measured spatial aggregate time series. This
is similar to the study by Lave and Weekly who used an
extrapolated transfer function to generate a high frequency
irradiance time series from low resolution data [?]. The CAM
solves for the aggregation of a 1-D plant subject to advection
of a frozen cloud field over its spatial extent. The CAM
represents the plant as a transfer function, which can be written
as the Fourier transform of the plant’s spatial distribution.
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II. REVERSE AGGREGATION PROCESS

Given the reversible nature of the transfer function, it is
also possible in principle to compute the disaggregation effect,
whereby we input an aggregated time signal, p(t), compute
the transfer function of the distributed plant, and predict the
time series of a single site. This is done mathematically by
solving Eq. 2 for Gref (f) and performing the inverse Fourier
transform to yield the single point irradiance time series,
gref (t).

TF (f) =
P (f)

Gref (f)
(2)

We have performed this calculation for an approximately
1-D subset of the HOPE-Melpitz measurement campaign
[6], choosing a one hour window during with strong cloud
advection was observed. The predicted transfer function for
this case is shown in Fig. 1. The transfer function is an overall
low-pass filter with some dynamics that allow some bands of
high frequency content to pass.

The results of the inverse (disaggregation) transformation
for both time series and variability are shown in Fig. 2. The
result shows a significant degree of high frequency noise. This
is visible both in the time series, and the variability, which is
significantly overpredicted for small ∆t. In part, this is due
to the fact that the transfer function exhibits near-zero values
in its magnitude (see e.g. red curve in Fig. 1), that result in
substantial magnification of the oscillations described by the
input aggregate power spectrum.

We demonstrate one possible improvement on the calcula-
tion by limiting amplification of non-correlated portions of
the input. For example, we may see from the figure that
the aggregate power spectrum reaches low absolute values
at increasing frequency that correspond roughly to the re-
duction in the coherence shown in Fig. ??. The disaggre-
gated prediction from the CAM instead has a relatively large
peak around a frequency of 0.1 Hz, as well as uniformly
elevated power spectrum magnitude beyond about 0.2 Hz,
which show up as oscillating signal in the time series. As
a demonstration of improving the time series, we replaced the



Fig. 1. Predicted transfer function for the plant configuration during the 1 hour
window studied here. Several time scales corresponding to the frequencies are
labelled.

TABLE I
RMSE FOR CLEAR-SKY INDEX TIME SERIES PREDICTIONS.

CAM CAM Modified
RMSE 0.16 0.13

predicted disaggregated power spectrum values with those of
the aggregated power spectrum for values of the aggregate
power spectrum less than a threshold (magnitude less than 0.4
in this demonstration). This essentially corrects for the fact
that uncorrelated noise is present at high frequencies in the
power spectrum, and the assumption of correlation inherent to
the transfer function approach is violated. The results of this
simplistic correction are shown in Fig. 3. As is evident, this
correction removes the high frequency oscillations and creates
a somewhat more realistic time series, but the variability
predictions are reduced below the target values. Comparisons
of the Root Mean Square Error (RMSE) for the time series is
provided in Table I, demonstrating the improvement.

While this demonstration suggests the possibility of using
the transfer function for disaggregation, results indicate that
further research may be needed to fully develop the technique
to avoid the amplification of undesirable noise. One limitation

Fig. 2. Disaggregation calculation time series, power spectrum and variability
for 9 sites disaggregated to a single reference. Spectra are smoothed using 8
averages with a Hanning window and 50% overlap.



Fig. 3. Disaggregation calculation time series, power spectrum and variability
for 9 sites disaggregated to a single reference, with the low-power-spectrum-
magnitude correction applied. Spectra are smoothed using 8 averages with a
Hanning window and 50% overlap.

to this approach is that the results produced are deterministic in
nature. That is, for a given plant and reference position within
it, the transfer function, and therefore the disaggregated time
series, will always be the same. There is the potential to marry
this approach with other spatiotemporal variability techniques
that instead highlight decorrelated and statistical forms of
spatiotemporal variability, to incorporate all characteristics of
variability in a complete model.

Given length requirements for the abstract, we attach the
following note that for the full conference paper we hope to
include comparison of results at multiple reference sites within
the plant, and comparison with similar results utilizing the
wavelet variability model (WVM), and a combination of the
WVM and CAM.
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