Comparison of different methods of spatial disaggregation of electricity generation and consumption time series **First Part** Oriol Raventós (DLR-VE) in coordination with Thomas Dengiz (KIT-IIP)

Comparing Transmission Grid Models: MODEX-NET

25.11.2021

Outline

First Part

1. Introduction

2. Comparison of disaggregation workflows

Second Part (Thomas Dengiz, KIT – IIP)

- 1. Comparison of disaggregated output
- 2. Conclusions

Preprint: https://arxiv.org/abs/2109.04203

Gefördert durch: MODEX Net aufgrund eines Beschlusses des Deutschen Bundestages

Input data

We want to compare the following 8 models

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

We want to compare the following 8 models

Allocation methods:

I. Allocate data inside a node region into its node II. Distribute data region values into its nodes

III. Overlap of data and node regions

Gefördert durch: MODEX Net aufgrund eines Beschlusses

des Deutschen Bundestages

Allocation methods:

I. Allocate data inside a **node region** into its node II. Distribute data region values into its nodes

III. Overlap of data and node regions

• Voronoi cells

Allocation methods:

I. Allocate data inside a **node region** into its node II. Distribute data region values into its nodes

III. Overlap of data and node regions

- Voronoi cells
- Administrative regions

Typically

- LAU (municipalities)
- NUTS 3 (districts)

If more than one node in a region:

- Voronoi subdivision
- Weightings

Allocation methods:

I. Allocate data inside a **node region** into its node II. Distribute data region values into its nodes

III. Overlap of data and node regions

- Voronoi cells
- Administrative regions
- Circles

If more than one data location in a region, they can be distributed using a distance weighting

Gefördert durch: MODEX Net Bundesministerium für Wirtschaft und Energie auferund eines Beschlusses

des Deutschen Bundestages

Allocation methods:

I. Allocate data inside a node region into its node II. Distribute data region values into its nodes

III. Overlap of data and node regions

Voronoi cells

Allocation methods:

I. Allocate data inside a node region into its node II. Distribute data region values into its nodes

III. Overlap of data and node regions

- Voronoi cells
- Administrative regions

Allocation methods:

I. Allocate data inside a node region into its node II. Distribute data region values into its nodes

III. Overlap of data and node regions

- Voronoi cells
- Administrative regions
- Lattice

Typically derived from weather data

Allocation methods:

I. Allocate data inside a node region into its node II. Distribute data region values into its nodes

III. Overlap of data and node regions

MODEX

Net

110 kV-nodes could be used instead + shortest path to ehvnode

It could be a **postprocessing**, e.g. harmonize national values

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

PV installed capacity:

Bottom-up / Top-Down As LAU or NUTS level			
	BU/TD	Input resolution & source	Node allocation
ELMOD eTraGo Europower			Generator belonging to a node region Generator belonging to a node region Overlap of generation regions and node regions
ISAaR MarS/ZKNOT MILES			Generator belonging to a node region Generator belonging to a node region Generator belonging to a LAU region (& distributed to nodes in the allocation region)
PERSEUS PowerFlex			Generator belonging to a node region Overlap of LAU generation region and node regions

PV installed capacity:

PV profiles:

Gefördert durch: Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses

des Deutschen Bundestages

MODEX

Net

Summary of wind and demand regionalization:

- **Wind onshore** regionalization is mostly done as for PV: ٠
 - Installed capacity using a bottom-up allocatopm from LAU regions
 - Profiles from weather data using high spatial resolution •
- Wind offshore regionalization: ٠
 - Installed capacities mostly allocated to the grid connection points
 - Profiles either use offshore region potentials or one location •
- **Demand** regionlization: ٠
 - Mostly done by a top-down distribution from national sectoral load profiles (e.g. agricultural, residential, retail, industry) and
 - Annual demand factor using bottom-up allocation based on administrative regional parameters (e.g. GDP, population, temperature, land use...)

Gefördert durch: MODE) Net utschen Bundestages

Bundesministerium ür Wirtschaft

pines Reschlusse

Continues in the second part ...

Oriol Raventós, Institute of Networked Energy Systems, Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Tel.: +49 0441 99906-153, email: oriol.raventosmorera@dlr.de

