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Summary 

The aim of this thesis was to analyse the symbiotic status of the genus Dryas and the genes 

determining symbiosis competence in this clade. Several plants form mutualistic associations with 

nitrogen-fixing bacteria and mycorrhizal fungi which increases nutrient availability to the plants. 

The nitrogen-fixing root nodule symbiosis (RNS) is phylogenetically restricted to four orders, the 

Fabales (e.g. Leguminosae i.e. Fabaceae), Fagales (e.g. Betulaceae, Casuarinaceae, Myricaceae), 

Cucurbitales (e.g. Coriariacreae, Datiscaceae) and Rosales (e.g. Elaeagnaceae, Rhamnaceae, and 

Rosaceae). During evolution, genes required for the arbuscular mycorrhizal (AM) symbiosis were 

co-opted for RNS. As result, all symbiotic hosts share a core set of orthologous genes. Interestingly 

all of the Rosaceae genera confirmed to contain nodulating species (i.e. Cercocarpus, 

Chamaebatia, Dryas, and Purshia) belong to a single subfamily, the Dryadoideae. The Dryas 

genus is particularly interesting from an evolutionary perspective because it contains closely 

related nodulating (Dryas drummondii) and non-nodulating (Dryas octopetala) species. The close 

phylogenetic relationship between these two species makes Dryas an ideal model genus to study 

the genetic basis of nodulation by whole genome comparison as well as by classical genetics 

techniques. 

In order to make a step forward in the evolutionary studies of root symbioses in Rosaceae, 

I developed Dryas as a new model genus and completed the overview of its root symbioses. To 

set up and use Dryas as model genus, plant cultivation methods (from seed surface sterilisation to 

hydroponic systems), Agrobacterium rhizogenes transformation and DNA extractions methods 

were established. Through the development of genomic DNA extraction protocols, de novo whole 

genome sequencing was carried out for D. drummondii and D. octopetala. I discovered that 

D. octopetala does not form AM in the laboratory, and this result was confirmed by Prof. Didier 

Reinhardt on root material collected in the Swiss Alps. These results highlighted a previously 

unknown endosymbiosis-related polymorphic trait between D. drummondii and D. octopetala. 

Having access to their genomes and focusing our efforts for understanding the loss of root 

endosymbioses in D. octopetala, a targeted genomic comparison has been performed on 

orthologous genes known to be important for both endosymbioses. 

This thesis contributes to establish Dryas spp. in a laboratory context and also describes 

for the first time an unexpected rare case of AM-symbiosis polymorphic trait within the same plant 

genus. Due to the closely relation between both Dryas spp., the whole genome sequencing of both 

species and the established methods, Dryas can now be considered as a model genus with 

significant value to study evolution of both root symbioses and Rosaceae. 
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µ:  micro- (10-6) 
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Species names and affiliations 

Kingdom Plantae 

Full scientific name Abbreviation Order Common name 

Agrimonia pilosa Ledeb. A. pilosa Rosales Long ya cao 

Allium schoenoprasum L. A. schoenoprasum Asparagales Chive 

Alnus glutinosa (L.) Gaertn. A. glutinosa Fagales Common alder 

Alnus rubra Bong. A. rubra Fagales Red alder 

Casuarina cunninghamiana 

Miq. 

C. cunninghamiana Fabales River oak 

Casuarina equisetifolia L., 

1759 

C. equisetifolia Fabales Australian pine 

Casuarina glauca Sieber ex 

Spreng. 

C. glauca Fabales Swamp oak 

Ceanothus caeruleus Lag. C. caeruleus Rosales - 

Chaenomeles japonica 

(Thunb.) Lindl. ex Spach 

C. japonica Rosales Maule's quince 

Crataegus pinnatifida 

Bunge 

C. pinnatifida Rosales Chinese hawthorn 

Datisca glomerata (C.Presl) 

Baill. 

D. glomerata Cucurbitales Durango root 

Discaria trinervis (Gillies 

ex Hook. & Arn.) Reiche, 

1897 

D. trinervis Rosales Chacay 

Dryas drummondii 

Richardson ex Hook. 

D. drummondii Rosales Drummond's mountain-
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Dryas integrifolia Vahl D. integrifolia Rosales Entire leaf mountain-avens 

Dryas octopetala L. D. octopetala Rosales Eight-petal mountain-avens 

Dryas x lewinii Rouleau D. x lewinii Rosales - 

Dryas x sundermannii 

Kellerer ex Sundermann 

D. x suendermannii Rosales Sundermann’s mountain-

avens 

Elaeagnus angustifolia L. E. angustifolia Rosales Russian olive 

Eriobotrya japonica 

(Thunb.) Lindl. 

E. japonica Rosales Loquat 

Exochorda racemosa 

(Lindl.) Rehder 

E. racemosa Rosales Common pearlbush 

Fragaria vesca L. F. vesca Rosales Wild strawberry 

Fragaria x ananassa 

(Weston) Duchesne ex 

Rozier 

F. x ananassa Rosales Strawberry 

Geum aleppicum Jacq. G. aleppicum Rosales Common avens 

Kerria japonica (L.) DC. K. japonica Rosales Japanese kerria 

Lotus corniculatus L. var. 

japonicus Regel 

L. japonicus Fabales Bird's-foot trefoil 

Malus domestica Borkh., 

nom. cons. prop. 

M. domestica Rosales Apple 

Malus pumila Mill., 1754, 

non auct. 

M. pumila Rosales Paradise apple /  

Ping guo 

Medicago truncatula Gaertn M. truncatula Fabales Barrelclover 

Muscari armeniacum 

Leichtlin ex Baker 

M. armeniacum Asparagales Armenian grape hyacinth 

Morella cerifera (L.) Small, 

1903 / Myrica cerifera L., 

1753 

M. cerifera Fagales Candleberry 

Myrica gale L. M. gale (M. scabies) Fagales Bog-myrtle / Sweetgale 

Oryza sativa L. O. sativa Poales Rice 

Oxalis corniculata L. O. corniculata Oxalidales Creeping woodsorrel 

Petunia x hybrida hort. ex 

E. Vilm., 1863 

P. x hybrida Solanales Garden petunia 

Phaseolus vulgaris L. P. vulgaris Fabales French bean 

Pisum sativum L. P. sativum Fabales Garden pea 

Populus trichocarpa Torr. 

& A. Gray 

P. trichocarpa Malpighiales Western balsam poplar 

Potentilla indica (Andrews) 

Th. Wolf / Duchesnea 

indica (Andrews) Teschem. 

P. indica / D. indica Rosales Mock strawberry / Indian 

strawberry / 

False strawberry 
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Potentilla supina L. P. supina Rosales - 

Prunus armeniaca L. P. armeniaca Rosales Apricot / Almond 

Prunus avium (L.) L. P. avium Rosales Sweet cherry 

Prunus mume (Siebold) 

Siebold & Zucc. 

P. mume Rosales Japanese apricot 

Prunus persica (L.) Batsch P. persica Rosales Peach 

Prunus salicina Lindl. P. salicina Rosales Japanese plum 

Pyrus x bretschneideri 

Rehder 

P. bretschneideri Rosales Chinese white pear 

Pyrus communis L. P. communis Rosales Pear 

Rosa chinensis Jacq. R. chinensis Rosales China rose 

Rosa laevigata Michx. R. laevigata Rosales Cherokee rose 

Rubus plicatus Weihe & 

Nees 

R. plicatus Rosales Blackberry 

Rubus idaeus L. R. idaeus Rosales European raspberry 

Sesbania rostrata Bremek. 

& Oberm. 

S. rostrata Fabales 
- 

Solanum lycopersicum L. S. lycopersicum Solanales Garden tomato 

Spiraea thunbergii Siebold 

ex Blume 

S. thunbergii Rosales - 

Vicia sativa L. V. sativa Fabales Spring vetch 

Vitis vinifera L. V. vinifera Vitales Wine grape 

Zea mays L. Z. mays Poales Maize 

 

All the plant species mentioned in this thesis and the figure legends are listed here. 

 

 

Kingdom Fungi 

Full scientific name Abbreviation Order Common name 

Agaricus bisporus (J.E. 

Lange) Imbach, 1946 

A. bisporus Agaricales Button mushroom 

Amanita muscaria (L.) Lam. 

(1783) 

A. muscaria Agaricales Fly agaric 

Geosiphon pyriformis 

(Kütz.) F. Wettst. (1915) 

G. pyriformis Archaeosporales - 

Gigaspora margarita W.N. 

Becker & I.R. Hall, 1976 

G. margarita Diversisporales “AM fungus” 

Gigaspora rosea T.H. 

Nicolson & N.C. Schenck 

G. rosea Diversisporales “AM fungus” 

Laccaria bicolor (Maire) 

P.D. Orton 1960 

L. bicolor Agaricales Bicoloured deceiver 

Penicillium roqueforti Thom 

(1906) 

P. roqueforti Eurotiales - 

Pisolithus microcarpus P. microcarpus Boletales - 

Postia placenta (Fr.) M.J. 

Larsen & Lombard, 1986 

P. placenta Polyporales Brown rot fungus 

Rhizophagus irregularis 

(Blaszk., Wubet, Renker & 

Buscot) C. Walker & A. 

Schuessler 

R. irregularis Glomerales “AM fungus” 

Serpula lacrymans (Wulfen) 

P. Karst. (1884) 

S. lacrymans Boletales Dry rot fungus 

Tuber melanosporum Mel28 T. melanosporum Pezizales Périgord black truffle 

 

All the fungi species mentioned in this thesis and the figure legends are listed here. 
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1. Introduction 

1.1. Root symbioses 

1.1.1. Soil nitrogen and phosphorous 

Plants requires sixteen essential elements for their growth and development. Three of them 

are derived from the atmosphere and water: carbon (C), hydrogen (H) and oxygen (O). The 

remaining thirteen essential elements are supplied from soil minerals and soil organic matter 

(Uchida 2000). Among those elements, nitrogen (N) and phosphorous (P) play crucial roles. 

Indeed, N is present in many vital organic compounds such as amino acids, vitamins and nucleic 

acids. By this, N is needed for all of the enzymatic reactions in a plant and is a major part of the 

chlorophyll molecule and is therefore necessary for photosynthesis. In photosynthesis and 

respiration, P plays a major role in energy storage and transfer as ADP and ATP (adenosine di- 

and triphosphate). P is an indispensable component of nucleic acids since the backbone of DNA 

and RNA is composed of triphosphate nucleotides. Another area where P plays a structural role is 

in cellular membranes (largely made up of phospholipids). P is also utilized for metabolic 

processes e.g. phosphorylation events (Schachtman et al. 1998). One of the most prominent 

mechanisms for the modulation of protein activity is reversible protein phosphorylation. 

The N and P availability depends on climatic and edaphic factors including soil drainage, 

texture, temperature, aeration and the rate of mineralization from organic matter decomposition 

(Masclaux-Daubresse et al. 2010). They are the two most limiting elements in terrestrial 

ecosystems (Maathuis 2009; Menge et al. 2012). 

The preferred form in which N is taken up depends on soil conditions and plant species 

(Miller and Cramer 2005). In general, plants adapted to low pH and reducing soil conditions tend 

to take up ammonium (NH4
+). At higher pH and in more aerobic soils, nitrate (NO3

-) is the 

predominant form. Around 80% of our atmosphere consists of N. However, the extremely stable 

dinitrogen (N2) is not available to plants. Both free living and symbiotic microorganisms are 

capable of fixing atmospheric N2 in the form of NH4
+ that can be directly taken up by plants or 

converted into NO3
- by nitrifying bacteria. Moreover, the rock incorporated N is slowly 

mineralized and both NO3
- and NH4

+ are highly mobile in the soil due to their water-solubility. So 

they can easily be drained away below the root zone (Maathuis 2009; Masclaux-Daubresse et al. 

2010; Menge et al. 2012). 

More than 90% of soil P is normally chemically fixed and cannot be used by plants. The 

inorganic P (Pi) released from the labile compartment, another part of insoluble P, can be taken up 

by plants. However, this release of the Pi from the labile fraction to soil solution is extremely 

slow and therefore P deficiency is widespread. The form in which Pi is found in 
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Figure 1 | Schematic representation of phosphorus status in soil. 

The exact “availability of P” depends not only on pH, but also on 

concentrations of the sorbing minerals as well as other soil factors. 

From Lambers et al. 2012 
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the soil solution is pH dependent. Dihydrogen phosphate (H2PO4
-), the form in which plants take 

up Pi, is almost exclusively the Pi-containing formulation found at  typical soil solution pH. 

P depletion due to prolonged weathering is the main cause of P limitation in ancient soils. 

Indeed, rainfall washes P out of rocks and subsequent run-off into groundwater and oceans where 

it is deposited as sediments on the seabed and slowly extracted back into the water (Schoumans et 

al. 2015). In young soils, N is widely thought to be the nutrient most limiting to plant growth. 

However, it is becoming increasingly clear that P limitation or N/P co-limitation of terrestrial 

primary production is widespread, even in young ecosystems (Wassen et al. 2005; Elser et al. 

2007; Harpole et al. 2011). P limitation in young ecosystems may result from a variety of 

mechanisms (Vitousek et al. 2010). P can be limiting, even if total amounts of P in the soil are 

high, if it is  poorly soluble. In particular, when it is strongly bound in complexes with aluminium, 

iron, calcium or allophane clay, as occurs when pH is either relatively high or low (Figure 1). 

In order to overcome the soil N and P deficiency, humans have accelerated the natural 

circuits by an unsustainable N and P management. Over-use of N fertilizers, facilitated by the 

synthetic production of the Haber-Bosch process, resulted in a run-off into ground water and 

oceans causing water pollution and eutrophication (Howarth and Marino 2006; Howarth et al. 

2006). P mining, excessive fertilizer application and effluent losses in cities caused a “terminal 

steady state” of P deficiency (Menge et al. 2012). Besides recycling and identifying new fertilizer 

production ways, researchers and farmers try to reduce the fertilizer input by breeding more 

effective crop varieties with reduced need for fertilizers and by finding ways to manage N and P 

application in a most efficient manner (Schoumans et al. 2015; Bonvin et al. 2015). 

Plants have evolved a variety of mechanisms to overcome deficient nutrient concentrations 

in the soil. Indeed, nutrient acquisition from nutrient-impoverished soils frequently involves 

specialized root structures (i.e. cluster roots: Christmas-tree-like structures in roots with a dense 

packing of root hairs; these structures release carboxylates into the rhizosphere, thus solubilizing 

poorly available nutrients within the soil) or symbiotic structures (e.g. mycorrhizas, root nodules). 

Those last acquisition pathway called in association, with beneficial fungi or bacteria, will be 

detailed in the next sections. 
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Figure 2 | Principal structural features of the five main types of mycorrhiza. 

Modified from Selosse and Le Tacon 1998  
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1.1.2. Mycorrhizal symbioses 

The mutualistic symbiotic relationship between plant roots and soil fungi, called 

mycorrhizal symbiosis, is one of the most prevalent associations within terrestrial ecosystems 

(Smith and Read 2008). Mycorrhizal symbiosis plays a key role in carbon bio sequestration, 

nutrient cycling, plant biodiversity and the productivity of natural and agricultural ecosystems. 

Indeed, mycorrhizal fungi form symbiosis with almost 90% of terrestrial plants (Wang and Qiu 

2006), colonizing environments such as boreal, temperate and tropical forests as well as tundra, 

grasslands and many croplands (Read and Perez‐Moreno 2003; Soudzilovskaia et al. 2015). In this 

interaction, fungal hyphae networks, specialized in the absorption of soil minerals and organic N, 

act as an extension of the root system, increasing plant uptake of essential nutrients such as P, N, 

sulphur, and water (Smith and Read 2008). Through this symbiosis, with mutualistic fungi, plant 

species are able to acquire metabolic capacities allowing them to use previously inaccessible 

ecological niches (Read and Perez‐Moreno 2003). In addition, fungi protect their hosts against 

abiotic (metal pollution, drought) and biotic (pathogen infection) stresses (Smith and Read 2008). 

In return, the fungi obtain sugars derived from photosynthesis, as well as lipids (Garcia et al. 2016; 

Keymer and Gutjahr 2018). 

Depending on the phylogenetic position of their partners and their symbiotic structures, 

several types of mycorrhizae are distinguished: ectendomycorrhiza, orchid, ericoid (EM), 

arbutoid, monotropoid and the two most common types, arbuscular mycorrhiza (AM) and 

ectomycorrhiza (ECM). In the ECM symbiosis, the fungal partner colonizes the intercellular 

spaces of the roots (apoplast), whereas during AM symbiosis, part of the hyphae develops inside 

the plant cells (Figure 2) (Smith and Read 2008). 

Currently, more than one hundred genome sequencing projects of saprotrophic, parasitic 

or symbiotic fungal species have been completed or are in progress. These projects were made 

possible through the Broad Institute's "Fungal Genome Initiative" and Joint Genome Institute (JGI, 

from United States Department of Energy)’s programs. Regarding the symbiotic plant partners, 

several genomes has been sequenced; at least 19 tree genomes associating with ECM fungi (Neale 

et al. 2017). Regarding AM fungi host, several model plants could be quote such as Medicago 

truncatula (Tang et al. 2014), Solanum lycopersicum (Consortium et al. 2014) and Oryza sativa 

(Sakai et al. 2013). 
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Figure 3 | Principal structural features of the ectomycorrhizal symbiosis. 

(a) Dynamics of the colonization of the Eucalyptus root by the ectomycorrhizal fungus 

Pisolithus microcarpus during symbiosis development. The hyphae enter the root at 

the root cap and spread to reach the plant cells. The epidermal plant cells elongate 

radially and the Hartig network develops between these cells. (b) A transverse section 

through a rootlet of Populus trichocarpa that has been colonized by Laccaria bicolor 

(green). A dense mantle of fungal mycelium ensheaths the external surface of the 

rootlet, and intrusions of L. bicolor hyphae can be seen between the cell walls (red) of 

epidermal and cortical cells; these intrusions form the Hartig net. (c) A 3D 

reconstruction of the ectomycorrhizal interaction that shows the hyphal mantle 

covering the root surface, and the labyrinthine Hartig net.  

(a) From Martin and Tunlid 2009. (b&c) From Martin et al. 2016  
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1.1.2.1. Ectomycorrhizal (ECM) symbiosis 

1.1.2.1.1. Evolution and origin of the ECM symbiosis 

ECM symbiosis evolution is quite recent. Berbee and Taylor (1993) suggest that ECM 

fungi first appeared ca. 130 million years ago (Mya). Phylogenetic and biogeographical studies 

support the diversification of symbioses between ECM fungi and conifers until about 50–60 Mya 

(Hibbett and Matheny 2009; Skrede et al. 2011); the fossil records of ECM roots date back to 

about 50 Mya (Lepage et al. 1997). 

The ECM symbiosis mainly involves woody species representing a relatively small number 

of plants (about 8 000, 3% of seed plants, spread into 137 genera (Smith and Read 2008). However, 

these species are the dominant species of boreal, temperate, Mediterranean and some subtropical 

forests, so that this symbiosis can be considered as dominant in these ecosystems (Read and Perez‐

Moreno 2003). ECM fungi, whose number of species is estimated between 7 000 and 10 000, do 

not form a phylogenetically distinct group, but have appeared in Basidiomycetes and 

Ascomycetes; among saprotrophic, non-mycorrhizal fungi. The switch from saprotrophic to 

mycorrhizal nutrition modes probably happened convergently during fungal evolution, and in 

many independent lineages (Wang and Qiu 2006; Hibbett and Matheny 2009; Tedersoo et al. 2010; 

Skrede et al. 2011; Kohler et al. 2015). 

1.1.2.1.2. Development of ECM symbiosis 

The development of ECM symbiosis occurs through a series of well-characterized 

morphological events. ECM fungi are not obligate symbiote and can live independently of plant 

roots, as demonstrated by their growth capabilities in Petri dishes (Smith and Read 2008) and by 

the fact that they can live as facultative saprotrophs in soil (Martin and Nehls 2009). 

Fungal hyphae emerge from spores or previously mycorrhizal roots and grow in the 

rhizosphere. The encounter and recognition between the two symbiotes involve the exchange of 

chemical signals. Only the outline of this signalling process is defined. In the vicinity of the root, 

the morphology of the fungi changes, especially with an increase in growth and an intense 

branching of the hyphae. Such a response is likely triggered by root exudates from the host, 

e.g. rutin and zeatin (Lagrange et al. 2001). This suggests that the fungus perceives the position of 

the host through the detection of host-derived signals. In return, the fungal hyphae, present in the 

rhizosphere, stimulates lateral root formation and root cell differentiation, through the action of 

secreted molecules, such as ethylene, auxin or hypaphorin, thereby providing a means of 

increasing the contact sites (Felten et al. 2009). 

The fungal hyphae come into contact with the root surface, enter the region of the root cap, 

and propagate to living cortical cells (Figure 3 a; (Horan et al. 1988). This contact causes a change 
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of the fungi morphology. The apex of the hyphae swells forming a structure close to the infection 

structures of pathogens, appressoria. The plant also undergoes morphological changes such as 

radial elongation of cortical cells. The fungal hyphae then differentiate into different tissues. 

The hyphae multiply and form a very dense sheath around the root, consisting of a series 

of thick layers, called the mantle (Figure 3 b&c). The hyphae of this structure are enclosed in a 

matrix of extracellular polysaccharides and proteins (Dexheimer and Pargney 1991). The main 

function of the mantle is the storage of nutrients. 

From the mantle, the hyphae progress between the cortical cells within the apoplastic 

space, leading to the formation of a complex digital structure, like a labyrinthine, called the Hartig 

net (Figure 3 b&c) (Bonfante 2001). The hyphae of the Hartig net are coenocytic and contain 

numerous mitochondria, lipid bodies and a large endoplasmic reticulum, reflecting a very active 

metabolic status (Kottke and Oberwinkler 1987). The abundant membranes of this structure allow 

the exchange of nutrients and signals between plant and fungal cells. No penetration of hyphae 

into root cells could be observed in ECM fungi with the exception of senescent cells. 

On the other hand, a network of extramatricial hyphae extends into the soil from the upper 

layers of the mantle to explore the soil and collect nutrients. These hyphae are sometimes 

organized into a root-shaped structure, called rhizomorphs. These structures are also capable of 

initiating primordia formation for the development of carpophores that will ensure the spread of 

sexually transmitted spores. 

 

 

Figure 4 | Patterns of gene duplication and loss in 12 lignocellulose-active CAZy gene families in 

Agaricomycetes. 

The histogram indicates the number of copies in each genome. Red, blue, and black branches indicate lineages with 

net expansions, net contractions, or no change in copy number, respectively. Numbers at nodes and along branches 

indicate estimated copy numbers for ancestral species and ranges of gains and losses, respectively. 

From Eastwood et al. 2011 
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1.1.2.1.3. Genomes of ECM fungi 

In the database of JGI Mycorrhizal Genomics Initiative project, sixty ECM genomes are 

already sequenced, including sixteen ECM species genomes which are published (Nordberg et al. 

2014). Those genomes present an average of 17 580 predicted genes (with a maximum of 23 130 

for Laccaria bicolor and a minimum of 7 496 for Tuber melanosporum). 

The two first published genomic sequences of ECM fungi were L. bicolor (Martin et al. 

2008a) and T. melanosporum (Martin et al. 2010). Their analysis identified several molecular 

features related to mycorrhizal symbiosis. Compared to most fungal genomes, these two fungi 

have relatively large genomes, 65 and 125 Mbp, respectively. This is mainly explained by a 

significant proliferation of transposable elements (TE) which represent approximately 20% and 

60% of the L. bicolor and T. melanosporum genomes, respectively (Martin et al. 2008a; Martin et 

al. 2010). These TE are distributed uniformly across both genomes. By allowing genomic 

rearrangements, they could have played a fundamental role in the plasticity and evolution of 

symbiotic genomes. 

The comparison of genomes of L. bicolor and T. melanosporum with those of saprotrophic 

and pathogenic fungi reveals massive losses of genes encoding plant cell wall (PCW) polymers 

degrading enzymes such as cellulose, lignin, pectin and xylan (Figure 4) (Martin et al. 2008a; 

Martin et al. 2010). Similarly, ECM fungi of the genus Amanita have also lost several genes 

encoding cellulases (Nagendran et al. 2009). Adaptation to the symbiotic lifestyle would therefore 

lead to convergent losses of enzymes acting on PCW, probably to avoid the onset of defence 

reactions of the plant. Interestingly, the genomes of two brown rot, Postia placenta (Martinez et 

al. 2009) and Serpula lacrymans (Eastwood et al. 2011) also have a reduced repertoire of cellulases 

acting on PCW. Recent phylogenetic analyses indicate that the ancestor of Agaricomycotina was 

probably a saprotrophic fungus (Hibbett and Matheny 2009). The loss of the enzymatic machinery 

of degradation of cellulose and lignin, from a white rot ancestor, would have led to the appearance 

of brown rot fungi. The loss of these enzymes would have facilitated the interaction between the 

saprotrophic fungi, colonizing the litter, and the roots without damaging them, giving rise to 

mycorrhizal symbiosis (Eastwood et al. 2011). 
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Figure 5 | Arbuscular mycorrhiza fungi form an independent phylum, the Glomeromycota. 

A phylogenetic tree showing the Glomeromycota in relation to other main fungal lineages: the Ascomycota and 

Basidiomycota and the non-monophyletic Chytridiomycota (green) and Zygomycota (blue) All AM fungi 

belongs to Glomeromycota clade and excepted Geosiphon pyriformis, all tested members of the Glomeromycota 

form AM. 

From Parniske 2008 modified from Schüßler et al. 2001. 

 

 
Figure 6 | Common symbiosis signalling components for arbuscular mycorrhiza and root-nodule symbiosis. 

Perception of AM fungal or rhizobia-derived signals triggers early signal transduction. The symbiosis receptor kinase 

SYMRK acts upstream of the Nod factor and Myc factor-induced calcium signatures that occur in and around the 

nucleus. Perinuclear calcium spiking involves the release of calcium through calcium channels. The potassium-

permeable channels CASTOR and POLLUX might compensate for the resulting charge imbalance. The nucleoporins 

NUP85 and NUP133 are required for calcium spiking. The calcium–calmodulin-dependent protein kinase (CCaMK) 

forms a complex with CYCLOPS, a phosphorylation substrate. Together with calmodulin, this complex might decode 

the symbiotic calcium signatures. Lotus japonicus protein nomenclature is used. 

From Singh and Parniske 2012.  
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1.1.2.2. Arbuscular mycorrhizal (AM) symbiosis 

1.1.2.2.1. Evolution and origin of the AM 

AM symbiosis is probably the most common terrestrial symbiosis. Indeed, it is associated 

with more than 80% of current land plant species, mainly herbaceous species, including important 

crop species, such as wheat, rice, corn and soybean (Smith and Read 2008). However, there are 

only about 160 AM symbiosis species of fungi, all belonging to the phylum Glomeromycetes, a 

monophyletic clade distinct to the Ascomycetes and Basidiomycetes ones (Figure 5) (Schüßler et 

al. 2001). Fossil data provide proof of the existence of this symbiosis more than 400 Mya, 

coinciding with the appearance of the first terrestrial plants (Figure 18 (Selosse and Le Tacon 

1998). As Delaux et al. (2015) have shown ancestral of land plants, algae, were preadapted for 

symbiosis. It has therefore been suggested that AM fungi may have played a crucial role in the 

colonization of the terrestrial environment by plants. This could explain the quasi-ubiquitous 

distribution of this AM symbiosis in the plant kingdom as well as in ecosystems. 

1.1.2.2.2. Development of AM symbiosis 

AM fungi are obligate biotrophs that depend on their association with plant roots to 

complete their life cycle. The colonization of roots follows a series of distinct stages. AM fungi 

exist in soil as spores. Fungal development begins with the germination of the hyphae from the 

spores, which explore the soil in search of a host root. In the absence of a host, growth of hyphae 

is limited by the amount of carbon and lipid stored in spores that feed the hyphae (Bécard and 

Piché 1989; Bago et al. 2000). The hyphae then stop their growth and retract their cytoplasmic 

mass into the spore, which returns to dormancy (Bécard et al. 2004). Successive cycles of spore 

germination can occur in AM fungi. Mycelium perception of the host plant is via short-range, 

rapidly degraded root exudates, which have been identified as strigolactones (Akiyama et al. 

2005). These compounds induce a pre-symbiotic fungal reaction characterized by continuous 

hyphal growth, increased physiological and mitochondrial activity, and abundant hyphae 

branching, thereby increasing the chances of encounter with the host. In return, germinated spores 

produce diffusible signals, called Myc factors, such as lipochitooligosaccharides (LCOs), which 

are perceived by plant roots even in the absence of physical contact with the fungus (Maillet et al. 

2011). These signals, which stimulate root growth and branching, activate in the plant a signalling 

pathway involving common symbiosis genes (CSG) to those triggered by the symbiosis between 

rhizobial bacteria and legume plants, Figure 6 (Kistner et al. 2005). As AM symbiosis occurred 

before the nitrogen-fixing rhizobial symbiosis, the mycorrhizal signal transduction pathway may 

have been recruited by nitrogen-fixing bacteria (Kistner and Parniske 2002). 
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Figure 7 | The arbuscular mycorrhizal fungi lifestyle. 

(a) Germinated fungal spores have to find a plant root in order to survive, but it is 

also possible that they could connect directly to existing fungal hyphal networks. 

The fungus penetrates the plant root, after forming an appressorium, then colonizes 

the cortex of the plant root and develops arbuscules which allow the transfer of 

nutrients between the two partners. (b) The fungus then produces new hyphae that 

grow out from the root and can absorb nutrients and transport them back to the 

plant. (c) Hyphae can produce new spores. Inset (c) shows a spore containing many 

nuclei labelled with a fluorescent dye. (d) Hyphae can continue to grow through 

the soil and colonize new plants, thereby creating the hyphal network. (e) Other 

genetically different individuals may colonize adjacent plants or even the same 

plant. (f) Hyphae of genetically different individuals can fuse. 

From Sanders and Croll 2010. 
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After the first physical contact between the hyphae and the plant, the fungus forms an 

appressorium or hyphopodium on the surface of the root by which it colonizes the intercellular 

space of the root cortex (Genre et al. 2005). The plant cell forms a subcellular structure called the 

prepenetration apparatus that predetermines the path of hypha growth through the plant cell 

(Figure 7 a). It is only after the differentiation of this cytoplasmic bridge that the fungal hypha 

enters the host cell (Genre et al. 2005). 

Then, the fungus crosses the outer cell layers, propagates longitudinally in the inner cortex 

and forms dichotomous branched hyphae within the cortical cells, called arbuscules (Figure 7 a). 

These elaborate structures remain separated from the cytoplasm of plant cells by an extension of 

the plasma membrane of the host, the periarbuscular membrane. This membrane follows the 

contours of the branches of the hyphae, leading to an increase in the surface of the plasma 

membrane. Arbuscules are considered to be the main nutrient exchange site between the fungus 

and the plant (Paszkowski 2006; Bonfante and Genre 2010). Arbuscules are ephemeral structures 

with an estimated lifespan of 4-5 days. The fungal structures are then degraded, and the host cell 

recovers its old organization. The cortical cells are then able to allow a new fungal penetration and 

the formation of arbuscules (Paszkowski 2006; Bonfante and Genre 2010). 

The fungus also develops extra radicular mycelium that extends out of the root. This 

mycelium acquires the nutrients in the soil that will be transferred to the plant. The life cycle of 

AM fungi is supplemented by extraradical mycelial spore formation, which may enter another 

colonization process (Figure 7). 

1.1.2.2.3. Genomes of AM fungi 

Glomeromycetes are coenocytic organisms, their spores and hyphae contain hundreds of 

nuclei within the same cytoplasm, Figure 7 c (Jany and Pawlowska 2010). In addition, there is 

great genetic variability within the same spore. This variability has been observed within 

ribosomal DNA sequences (Sanders et al. 1995; Clapp et al. 2001; Rodriguez et al. 2004) and, 

later, in protein coding regions such as β-tubulin and H+/ATPase (Corradi et al. 2004; Corradi et 

al. 2009). This polymorphism could come from a population of genetically different nuclei within 

the same spore (Kuhn et al. 2001), or from a population of genetically identical nuclei 

characterized by intranuclear polymorphism (Pawlowska and Taylor 2004). 

Currently, only few genomic AM fungal sequences are available. The size of these 

genomes, generally estimated by flow cytometry, is very variable depending on the species, 

ranging from 15 Mbp (Rhizophagus irregularis) to more than 700 Mbp (Gigaspora margarita) 

per nucleus (Hijri and Sanders 2004). In 2004, R. irregularis was selected by JGI as candidate for 

the first AM genome sequencing project (Martin et al. 2004). Although a considerable amount of 
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sequences has been acquired, the assembly of these sequences had proved problematic. Indeed, 

the size of the assembled genome was several times greater than the size estimated by the amount 

of DNA per nucleus (Martin et al. 2008b). However, the first complete genome of R. irregularis 

was published by Tisserant et al. (2013) and improved and completed with other R. irregularis 

strains by Chen et al. (2018). Due to the lack of large-scale genomic and transcriptomic data 

available for the fungal partner during long time, AM symbiosis has been mainly studied from the 

perspective of the plant partner. 

1.1.2.3. Nutrient exchange during mycorrhizal symbioses 

Nutrient exchanges between the plant and the fungus are at the heart of the mycorrhizal symbiosis. 

Indeed, in soils of natural ecosystems, essential nutrients for plant growth are fixed in the organic 

layers of the soil. They are therefore only available in limited quantities for plants. This makes 

them ecologically dependent on their fungal partner (Smith and Read 2008). On the other hand, 

AM fungi, which are obligate biotrophs, are entirely dependent on the host plant for carbon. In 

contrast, ECM fungi are not dependent on their host for their carbon requirement. However, since 

simple sugars are rare in forest soils, the symbiotic way of life allows them to gain privileged 

access to the sugars present in large quantities in root exudates (Smith and Read 2008). Host plant 

growth is enhanced by mycorrhizal infection via increases in the absorbing surface area, by 

mobilizing sparingly available nutrient sources, or by excretion of chelating compounds or 

ectoenzymes. Mycorrhizal infection may also protect roots from soil pathogens (Smith and Read 

2008) and thereby increase root growth and nutrient acquisition of the host root. For these 

beneficial effects, mycorrhizal plants allocate between 10 and 20% of the net photosynthates to 

the fungus for formation, maintenance and function of mycorrhizal structures (Jakobsen and 

Rosendahl 1990). Invasion of plant tissue by fungal mycelium and the establishment of a stable 

relationship result from coordinated developmental programs in both partners that cannot be 

reproduced in the absence of the other. Indeed, both partners must activate the transporters and the 

necessary anabolic and catabolic enzymes. 

Since decades, by combined stable isotope labelling and RNA-sequencing approaches, 

several nutrient exchanges between the plant host and fungi symbiont were characterised. It was 

described for different mycorrhizal symbioses the capacity for the external hyphae to take up and 

deliver nutrients to the plant for several nutrients: such as P (AM, EM, ECM), NH4
+ (AM, EM, 

ECM), N03
- (ECM), potassium (K; AM, ECM), calcium (Ca; AM, EM, ECM), sulphate (S04

2-; 

AM), copper (Cu; AM), zinc (Zn; AM) and iron (Fe; EM). For example, it was quantified, in 

experimental chambers, that the AM external hyphae can deliver up to 80% of plant P (Li et al. 

1991a), 25% of plant N (Ames et al. 1983), 10% of plant K (George et al. 1992), 25% of plant Zn 
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(Kothari et al. 1991) and 60% of plant Cu (Li et al. 1991b). In exchange plant furnish 

photosynthates to the fungi partner in the form of sugar and lipids (Laczko et al. 2004; Keymer 

and Gutjahr 2018). From both partners, several transporters were identified to play a role during 

symbiosis. In the transporters so far identified some are involved in sugar (e.g. for ECM AmMST1 

(Nehls et al. 1998)), amino acid (e.g. in Amanita muscaria (Nehls et al. 1999)), lipids, N, P, K, 

SO42-, metal ions, Zn … (for an overview of transporter in AM see the review of Wang et al. 

(2017). 

1.1.3. Bacteria symbiosis focus on root nodule symbioses (RNS) 

During evolution, some bacteria and archaebacteria evolved in order to be able to convert 

N2 into NH3 (ammonia) by the process termed biological nitrogen fixation, these diazotrophs are 

either free-living or form symbiotic associations with some organisms; e.g. termites, protozoa 

(French et al. 1976; Sapountzis et al. 2016). 

Some cyanobacteria can establish symbiotic associations with plants of different branches 

such as pteridophytes (symbiosis between Azolla, aquatic fern, and Anabaena), tropical 

gymnosperms of the cycad family (Cycas-Nostoc symbiosis) or Angiosperms (Gunnera-Nostoc 

(Rai et al. 2007)). Symbiosis with cyanobacteria does not necessarily lead to the formation of 

visible specialized structures, but rather to the hijack of existing organs. This is the case for the 

Azolla-Anabaena interaction where the nitrogen-fixing microorganism is housed in a leaf cavity 

(Lechno-Yossef and Nierzwicki-Bauer 2002). Other symbioses are characterized by the formation 

of specialized organs; Cycobacteria-Cycas interaction leads, for example, to the formation of 

coralloid roots in the plant partner (Costa et al. 1999; Costa and Lindblad 2002). 

However, the main nitrogen-fixation symbiosis involving a microorganism and a plant host 

are endosymbiosis with the ability to form a new organ called nodule, which is usually on roots. 

In some legumes such as Aeschynomene, Cassia, Parkinsonia (Prin et al. 1991) and Sesbania 

rostrata (Dreyfus et al. 1988), shoot nodules can also be observed. The establishment of this organ, 

developed de novo and optional for the survival of the plant, requires a program of organogenesis 

induced by the presence of the symbiont (Kouchi et al. 2010; Mortier et al. 2012). The RNS is 

restricted to plant species in the related orders Fabales, Fagales, Cucurbitales and Rosales, 

abbreviated FaFaCuRo clade (Soltis et al. 1995; Werner et al. 2014; Griesmann et al. 2018). The 

most recent (60 Mya) and the most studied of endosymbioses is that involving the plants of the 

Fabaceae family (previously known as Leguminosae), as well as the genus Parasponia (non-

leguminous) of the family Cannabaceae, with certain bacteria of the Rhizobia family (Kistner and 

Parniske 2002; Lafay et al. 2006). 
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Figure 8 | Phylogeny and subfamily classification of the Leguminosae. 

It is depicted on a 95% majority-rule Bayesian consensus tree based on analysis of 81 plastid peptide sequences. The 

six subfamilies are indicated by the coloured boxes. Coloured branches indicate the three traditionally recognised 

subfamilies: red the paraphyletic old-sense Caesalpinioideae, blue the Mimosoideae and green the Papilionoideae. 

From LPWG 2017. 

Rhizobia Host plants 

Sinorhizobium meliloti 

Rhizobium leguminosarum 

biovar viciae 

biovar trifolii 

biovar phaseoli 

Mesohizobium loti 

Sinorhizobium fredii 

Sinorhizobium fredii NGR234 

Rhizobium tropicii 

Bradyrhizobium japonicum 

Azorhizobium caulinodans 

Medicago spp.  

 

Pisum, Vicia  

Trifolium  

Phaseolus  

Lotus  

Glycine  

Broad scale and Parasponia (non-legume) 

Phaseolus, Leucaena  

Glycine  

Sesbania 

Table 1 | Associations between Rhizobia and legumes. 

From Dénarié et al. 1992; Sawada et al. 2003.  
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In addition to rhizobia, the soil contains filamentous actinobacteria of the genus Frankia 

that can infect the roots of so-called actinorhizal plants (Casuarina, Alnus, …) resulting in the 

formation of actinorhizal nodules (Huss-Danell 1997; Wall 2000). In the 1980s, Fessenden 

proposed the name "actinorhizal" for "actinorhizal nodules", by analogy with the term mycorrhizal 

(Prin and Duhoux 1996). Appeared about 80 Mya, actinorhizal symbioses are less studied than 

legume-rhizobia symbioses, but nevertheless have great ecological importance; they are seen as 

major contributors to overall N2 fixation to sustain diverse forest and ecosystem settings. 

Moreover, this symbiotic relationship with Frankia shows significant differences with the 

rhizobial symbiosis, which fully justifies its study (Pawlowski and Bisseling 1996; Pawlowski and 

Sprent 2007; Franche et al. 2009). 

1.1.3.1. Rhizobial symbiosis 

1.1.3.1.1. The Legume plants 

The legumes form a diverse and important family of Angiosperms, with more than 

650 genera and 20 000 species. Legumes are the third largest family of higher plants and are 

second only to grasses in agricultural importance (Doyle 2001). They provide largest single source 

of vegetable protein in human diets and livestock feed. Legumes were traditionally divided into 

three sub-families: Mimosoideae, Caesalpinoideae and Papilionoideae however new 

phylogenomic study recognises six subfamilies in Leguminosae (Figure 8). Most cultivated 

legumes are found within the Papilionoideae, the sub-family with largest total number of genera. 

In legumes the root nodule is induced after infection with the soil bacterium Rhizobium or 

Bradyrhizobium. Of the three “traditionally” sub-families of legumes, over 90% of the 

Papilionoideae and Mimosoideae nodulate, whereas less than 30% nodulate in the paraphyletic 

old-sense Caesalpinioideae clade (Doyle 2001). Legumes are grown on approximately 250 Mha 

(Mega hectare) and they fix about 90 Tg (teragram) of N2 per year (Kinzig and Socolow 1995). 

Legume productivity is theoretically independent of soil nitrogen status and they provide 

important grain and forage crops in both temperate and tropical zones (Cooper 2004). 

Two legumes with favourable genetic attributes, namely M. truncatula and Lotus 

japonicus, have been selected as model species. These plants were selected to be model plants for 

their small genome size (between 450 and 500 Mbp) and the easiness of transformation by 

Agrobacterium rhizogenes and Agrobacterium tumefaciens (Boisson-Dernier et al. 2001; Chabaud 

et al. 2003). In the last decade the technical advances in molecular biology have allowed to 

construct many resources to identify the genes involved in nodulation and nitrogen fixation. For 

example in M. truncatula, the scientists constructed ESTs banks and studied the expression profile 

of many genes by using the microarray (Benedito et al. 2008; He et al. 2009). Moreover, different 
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Figure 9 | Relationship between the phylogeny of Rhizobia and their symbiotic properties. 

(a) Comparison of legume and bacterial molecular phylogenies. The bacterial phylogeny (left) is based on 16S rRNA 

gene sequences and shows three very distinct groups of bacteria involved in nitrogen-fixing symbiosis with legumes 

and Parasponia (Ulmaceae). Representative symbiotic bacteria are shown; lineages of non-symbiotic bacteria are 

shown by boxes, with a representative given in parentheses for lineages closely related to symbiotic groups. On the 

right, phylogenetic relationships are shown for selected legume genera nodulated by bacteria shown on the bacterial 

tree. Arrows connect bacterial symbionts with their plant hosts. The wide host-range of Sinorhizobium fredii 

NGR234 is shown only by indicating its ability to nodulate Parasponia. Although host-ranges of individual bacteria 

are likely to be wider than shown here, the lack of correlation between the 16S rRNA bacterial phylogeny and the 

rbcL phylogeny of Leguminosae is still apparent. (b) Unrooted phylogenetic showing the close phylogenetic 

relationship between the NodA of strain STM678 and those of a-rhizobia. The tree is based on full-length sequences 

and constructed by using the neighbour-joining method. Bootstrap values (% from 1,000 replications) are indicated. 

A, Azorhizobium, B., Bradyrhizobium. M, Mesorhizobium. Me; Methylobacterium. R, Rhizobium. S, Sinorhizobium. 

(a) From Doyle 1998. (b) From Moulin et al. 2001 
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population of mutants were generated using the chemical mutagenesis (Le Signor et al. 2009) or 

by using transposable elements (d'Erfurth et al. 2003; Tadege et al. 2008). In addition to all 

described above, the complete sequence of genome of M. truncatula (Tang et al. 2014) and of its 

symbiote (Sinorhizobium meliloti, (Barnett et al. 2001; Galibert et al. 2001)) gave the possibility 

to identify the genes implicated in symbiosis process via direct or reverse genetics tools. 

1.1.3.1.2. Rhizobia 

In the rhizobial symbioses, several bacterial groups induce nodules on the roots of legumes 

and one non-legume, Parasponia (Cannabaceae). For instance, among these bacteria, it could be 

quoted nine genera belonging to the Proteobacteria phylum and the α-sub-class (Rhizobium, 

Allorhizobium, Azorhizobium, Bradyrhizobium, Mesorhizobium, Sinorhizobium, 

Methylobacterium, Blastobacter, Devosia) and two β-proteobacteria belonging to the genera 

Burkholderia and Ralstonia (Chen et al. 2001; Moulin et al. 2001; Rivas et al. 2002; Van Berkum 

and Eardly 2002; Vandamme et al. 2002; Young et al. 2001; Gyaneshwar et al. 2011) This 

symbiotic relationship between the plant host and rhizobia is specific (Table 1, Figure 9 a). For 

example, the legume S. rostrata can establish symbiosis with three groups of rhizobia but 

Azorhizobium caulinodans forms an effective symbiosis almost exclusively with S. rostrata. 

Moreover, another legume-like Phaseolus vulgaris is able to form symbiosis with several species 

of rhizobia like Rhizobium tropicii, R. leguminosarum bv. phaseoli and R. etli. At the other hand, 

bacteria like R. leguminosarum bv. vicieae is able to nodulate Vicia sativa and Pisum sativum 

(Doyle 1998). Although rhizobia have been studied for more than 100 years, symbionts have been 

identified for around 10% of the 720 genera of Fabaceae. It is therefore likely that new genera of 

rhizobia are found among the subclasses α and β of proteobacteria and perhaps even among other 

taxa. 

Several strains are entirely sequenced, such as Mesorhizobium loti MAFF303099 (Kaneko 

et al. 2000), Bradyrhizobium japonicum USDA110 (Göttfert et al. 2001; Kaneko et al. 2002), 

Sinorhizobium meliloti 1021 (Barnett et al. 2001; Galibert et al. 2001), Rhizobium leguminosarum 

3841 (Young et al. 2006), and Bradyrhizobium sp. BTAi1 and ORS278 (Giraud et al. 2007). For 

other rhizobia only "symbiotic islands" or symbiotic plasmids have been sequenced. This is the 

case, for example, with Sinorhizobium fredii NGR234 (536 kbp symbiotic plasmid (Freiberg et al. 

1997)) or Mesorhizobium loti R7A ("symbiotic island" of 611 kbp (Sullivan et al. 2002)). 

The phylogenetic analyses based on the 16S RNA made it possible to highlight a great 

evolutionary diversity of rhizobia. Rhizobia belong to some major groups of proteobacteria, but 

generally each group containing symbiotic bacteria is closer to a group without any symbiotic 

capacity (such as Rhizobium spp. close to A. tumefaciens) than to other groups of bacteria 
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Figure 10 | Flavonoid-inducible determinants of nodulation in Sinorhizobium fredii NGR234. 

(A) Flavonoids secreted from the roots trigger the expression of the rhizobial nodulation genes (nod, nol and noe) 

required for nodulation. Regulation of these genes is mediated by the transcriptional regulator NodD1. Most 

nodulation genes are involved in the synthesis of a family of nodulation signals called Nod-factors. In S. fredii 

NGR234, NodD1 also controls y4xI that regulates the expression of genes encoding components of a bacterial type 

III secretion system (TTSS). (B) Nod-factors are modified lipo-chito-oligosaccharides i.e., β-1,4-linked oligomers 

of N-acetyl-D-glucosamine, with a fatty acid replacing the N-acetyl group on their non-reducing terminus. The Nod-

factor core is synthesised by NodC (a N-acetyl-glucosaminyltransferase required for chain elongation), NodB (a 

deacetylase that removes the N-acetyl group at the non-reducing terminus), and NodA (an acyltransferase that links 

the acyl chain to the deacetylated oligosaccharide). Synthesis of S. fredii NGR234 Nod-factors requires a number of 

additional nodulation genes (e.g., nodS is involved in N-methylation, nodU in carbamoylation, and nodZ in 

fucosylation). 

Modified from Broughton et al. 2003 

 
Figure 11 | Model of three kinds of infection mechanisms in legumes. 

From Madsen et al. 2010  
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competent to nodulate (Figure 9 a). It is possible, however, that a phylogenetic analysis based on 

16S RNA does not provide the right answers with respect to symbiotic origins. Indeed, many of 

the bacterial genes involved in nodulation are on plasmids and horizontal transfers may have 

played an important role in the evolution of the nodulation process. In addition, many bacterial 

nodulation genes are grouped into "symbiotic islands" (Doyle 1998). Thus, when the phylogenetic 

analyses are carried out from nodA gene (and no longer from 16S RNA), the distances between 

rhizobia are shorter (Figure 9 b), which again suggests a horizontal gene transfer (Moulin et al. 

2001). 

1.1.3.1.3. Nodule formation 

1.1.3.1.3.1. Signal exchange 

The establishment of the legume-rhizobia symbioses is initiated by the exudation of 

flavonoids compounds (e.g. genistein, naringenin, luteolin) from the host plant (Miklashevichs et 

al. 2001). These substances act as both chemoattractant to the rhizobia and inducers of the nod 

genes in the rhizobia (Figure 10). Thus, led to the bacterial synthesis of LCOs also named Nod 

factors (Figure 10 b). Perception of Nod factors by the host legume results in numerous responses 

involved in infection and nodule formation, including root hair (RH) deformation, development of 

preinfection threads, cortical cell divisions, and induction of nodule-specific genes (ENOD genes) 

expressed early in nodule development (Schultze and Kondorosi 1998; Miklashevichs et al. 2001). 

1.1.3.1.3.2. Infection and nodule development 

Three kinds of infection mechanisms allow symbiotic bacteria to infect their host plants 

(Figure 11) (Madsen et al. 2010). The best studied of these involves infection via RH and is shared 

by the two model legumes M. truncatula and L. japonicus, as well as most temperate legumes 

(Figure 11). RH infection begins with the attachment of rhizobia to growing RH and the formation 

of infection foci, created either by individual RH tip curling or by contact between adjacent RH. 

Transcellular apoplastic infection through the RH then takes place via the progressive formation 

of a host-derived inwardly growing tubular compartment known as the infection thread (IT) 

(Brewin 2004). Rhizobia enter and divide within the IT, which subsequently traverses the entire 

RH and outer cortex. At the same time cortical cell divisions are initiated in the inner cortex that 

subsequently leads to nodule formation. The second mode of infection known as crack entry is 

often observed in tropical legumes (Figure 11). Rhizobia penetrate through cracks or wounds, 

usually at the base of lateral roots and form an infection pocket resulting from localized cell death 

at the site of penetration. ITs are formed from these infection pockets and subsequently invade the 

cortex as for RH infection (Figure 11). Finally, in a limited number of cases, rhizobia penetrate 
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Figure 12 | Comparison of indeterminate and determinate nodules. 

The figure shows the major structural and biochemical differences between the two types 

of nodules. In the photographs, note the red colour in the fixation (III) zone of the 

indeterminate nodule and in the infected zone of the determinate nodule, which is due to the 

high concentration of leghemoglobin (Lb). Also note the green colour in the senescent (IV) 

zone of the indeterminate nodule, indicative of Lb degradation to biliverdin-like pigments. 

From Matamoros et al. 2017 diagram adapted from Franssen et al. 1992 

 

 

 

 

 
 

Figure 13 | Phylogenetic relationships between plant families containing actinorhizal species and the 

corresponding Frankia strains. 

Strains of cluster IV are not able to induce root nodules 

Adapted from Van Nguyen and Pawlowski 2017 for the phylogenomic tree of Frankia and Perrine-Walker et al. 

2011 for the phylogenomic tree of actinorhizal plants and relationship between actinorhizal plants and groups of 

Frankia strains were based on Normand et al. 2007  
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through the intercellular spaces between epidermal cells and progress through the root cortex 

intercellularly, without forming ITs towards the nodule primordia where the bacteria are 

internalized (Figure 11). 

1.1.3.1.3.3. Structure of legume nodules 

Two types of legume nodules have been described, determinate and indeterminate 

(Pawlowski and Bisseling 1996) and this depends on the host plant (Trinick and Galbraith 1980). 

Indeterminate nodules have an apical meristem, the activity of which leads to the formation of a 

developmental gradient in the inner tissue. Close to the meristem, cells are infected by IT. 

Indeterminate nodules (Figure 12) can be unbranched (caesalpinoid type) or lobed (mucunoid and 

crotalarioid type (Corby 1988). In determinate nodules (Figure 12), the meristem stops its activity 

early in nodule development, and new infected cells mostly do not arise by infection, but by 

division of infected cells (Newcomb 1981b; Rolfe and Shine 1984). There are two types of 

determinate nodules, the desmodioid type, which occurs in the Phaseoleae and Loteae, and the 

aeschynomenoid type (Sprent 1995; Doyle 1998; Sprent 2001). 

1.1.3.2. Actinorhizal symbiosis 

1.1.3.2.1. The actinorhizal plants 

With the exception of the Datisca genus which is a herbaceous perennial plant, actinorhizal 

plants are trees and shrubs distributed among three angiosperm orders (Fagales, Cucurbitales and 

Rosales), 8 families and 24 genera (Figure 13, Table 2), among which we find the Australian pine 

(Casuarina equisetifolia), the Russian olive (Elaeagnus angustifolia), the sweetgale (Myrica 

scabies) and the Alder (Alnus spp.) (Benson and Silvester 1993). They are capable of forming root 

nodules (Figure 14) as result of infection by a nitrogen fixing actinomycete called Frankia. In 

particular climatic conditions characterized by high humidity, cauline nodules can be observed at 

130-150 cm above the ground in Casuarina cunninghamiana (Figure 14) (Prin et al. 1991).  

Actinorhizal species play important roles in wild-land ecosystems and are used in land 

reclamation, range management, agroforestry, and horticulture. They are distributed on all 

continents except Antarctica. Silvester (1977) provided a map showing the geographical 

distribution of the different kinds of actinorhizal plants, some species of which have been 

introduced by man, who has introduced it for centuries into his cultural practices (horticulture and 

reforestation as Casuarina spp. and Elaeagnus spp.). As a result, their geo-ecological distribution 

is quite disparate; some species colonize temperate and tropical forests, others alpine, semi-arid 

(Cercocarpus and Allocasuarina) and lacustrine (Alnus spp. and Myrica gale) (Moiroud 1996; 

Dawson 2007; Bargali 2011).  
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Family Genus Number of species Known nodulated Native distribution 

Betulaceae Alnus 47 47 Europe, Asia, N. America, Andes Mtns. 

Casuarinaceae Allocasuarina 59 54 Australia 
 Casuarina 18 18 Australia, Tropical Asia, S -W Pacific 
 Ceuthostoma 2 2 Oceania 

  Gymnostoma 18 18 Australia, New Caledonia, Sumatra 

Coriariaceae Coriaria 16 16 Mediterranean, Asia, New Zealand, N America 

Datiscaceae Datisca 2 2 Asia, N America, Europe 

Elaeagnaceae Elaeagnus 45 35 Europe, Asia, N America 
 Hippophae 3 2 Europe, Asia 

  Shepherdia 3 2 N America 

Myricaceae Comptonia 1 1 N America 
  Myrica 60 28 All continents except Australia 

Rhamnaceae Adolphia 1 1 N America 
 Ceanothus 55 31 N America 
 Colletia 17 4 S America 
 Discaria 10 5 S America, Australia, New Zealand 
 Kentrothamnus 2 2 S America 
 Talguenea 1 1 S America 
  Trevoa 6 2 S America 

Rosaceae Cercocarpus 20 4 Mexico, S-W United States 
 Chamaebatia 2 1 Sierra Nevada Mtns. 
 Cowania 25 1 Mexico, S-W United States 
 Dryas 3 1 Arctic 

  Purshia 4 2 W-N America 

 

Table 2 | Taxonomy and geographical distribution of actinorhizal plants. 

From Dawson et al. 2008 

 

 

 

 

 
 

Figure 14 | Examples of actinorhizal nodules. 

(a) Dryas drummondii multilobed nodule (B. Billault-Penneteau) (b) Discaria trinervis multilobed nodule 

(From Chaia et al. 2010) (c) Alnus rubra nodule (R. Griffith) (d) Casuarina equisetifolia root nodules (e-f) 

Aeial nodule on trunk of Casuarina cunninghamiana (From Prin et al. 1991)   
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Pioneer species par excellence because of their role in the evolution of the parent rock to 

a true soil, actinorhizal plants grow in disturbed or low nitrogen soils: mining soils, sand dunes, 

arctic tundra, glacial moraines, and deposits volcanic (Moiroud 1996; Bargali 2011). Some 

actinorhizal plants species can even grow under a range of environmental stresses such as high 

salinity and heavy metal (Dawson 1990). This facility for adaptation has drawn great interest to 

actinorhizal plants, particularly to several species of Casuarinaceae such as Casuarina glauca 

(Figure 14), a tropical tree native of the east coast of Australia. It has been largely spread in several 

tropical and sub-tropical countries like China, India, Egypt and Senegal and can be used for costal 

area protection, agroforestry, and land reclamation in the tropics and subtropics. 

Casuarina has appeared to be one of the most suitable actinorhizal plants for molecular 

analyses because in the past few years several molecular tools were developed including (i) genetic 

transformation procedures based on A. tumefaciens (Franche et al. 1997) and A. rhizogenes (Diouf 

et al. 1995) (ii) functional analysis of symbiotic genes based on RNA interference (Gherbi et al. 

2008). Furthermore, various molecular resources are available (ESTs database, microarrays, BAC 

library and cDNA library (Hocher et al. 2006; Hocher et al. 2011)). Other actinorhizal plants have 

seen to be the object of projects that made them also model to studies Frankia symbiosis such as 

Datisca glomerata (Persson et al. 2011; Demina et al. 2013) and Alnus spp. (Périnet and Lalonde 

1983; Swanson et al. 2015; Normand et al. 2018). 

1.1.3.2.2. Frankia 

The bacteria responsible for the formation of actinorhizae have been classified in the 

phylum actinobacteria, which represents one of the largest taxonomic units in the field of 

prokaryotes (Garrity et al. 2004). Frankia is an actinomycete genus of the family Frankiaceae, of 

the order Actinomycetales, suborder Frankineae, and subclass Actinobacterideae (Normand et al. 

1996). It is a filamentous, branching, gram-positive actinomycete. In general, Frankia strains are 

much more promiscuous than rhizobia. So far no Frankia strain specific to a single host plant 

species has been described (Pawlowski and Sprent 2007; Perrine-Walker et al. 2011). However, 

host specificity is present at different levels and a broad correspondence can be defined between 

the phylogenies of Frankia strains and actinorhizal plants (Figure 13). Frankia has been 

characterized at the taxonomic level by a comparative analysis of the sequences of the nifH genes 

encoding the nitrogenase reductase, glnII which encodes glutamine synthetase II (Cournoyer and 

Lavire 1999; Hahn 2007; Nouioui et al. 2011) and the gene 16S ribosomal RNA (16S rRNA) 

(Normand et al. 1996). The results of these taxonomic studies have made it possible to distribute 

the different strains of Frankia in 4 different groups or "clusters" (Figure 13): 
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(i) Strains belonging to cluster I (Alnus cluster) were isolated from plants belonging to the 

Fagales clade and show a high level of host specificity, as they are only able to interact 

with plants belonging to this clade (Betulaceae, Myricaceae and Casuarinaceae). A 

subgroup within this cluster, the Casuarina strains (CcI3), appears to have evolved 

even higher levels of specificity as members of this subgroup are only able to nodulate 

two Casuarinaceae genera, Casuarina and Allocasuarina in natural conditions (Torrey 

and Racette 1989).  

(ii) Strains belonging to cluster III (Elaeagnus cluster) have a broader host spectrum and 

can interact with plants belonging to two distant plant clades, the Rosales and the 

Fagales, more precisely with five plant families (Myriacaceae, Rhamnaceae, 

Elaeagnaceae, Gymnostoma and Casuarinaceae). 

(iii) The third group of Frankia (cluster II or uncultured) has not yet been isolated in pure 

culture, but cross-inoculation experiments performed with crushed nodules also 

suggest a broad host range for members of this cluster that nodulate plants belonging 

to 4 families within the Rosales and Cucurbitales clades (Coriariaceae, Datiscaceae, 

Rosaceae and Rhamnaceae). 

(iv) Cluster IV groups atypical Frankia strains (non-infective and/or non-nitrogen-fixing) 

isolated from the nodules of several actinorhizal plants such as Coriaria, Datisca and 

Purshia. Ramírez-Saad et al. (1998) demonstrated that root nodules of Ceanothus 

caeruleus contain, in addition to typical Frankia, actinobacteria that are 

phylogenetically linked but non-nitrogen-fixing and incapable of nodulation. 

 

On the plant side, most actinorhizal species are nodulated by few Frankia strains belonging 

to the same cluster but a few genera like Myrica (Myricaceae), Ceanothus (Rhamnaceae) and 

Gymnostoma (Casuarinaceae) are highly promiscuous and accept a wide variety of Frankia strains 

from distinct clusters (Pawlowski and Sprent 2007). 

Frankia is a heterotrophic, chemoorganotrophic, microaerophilic, mesophilic and 

neutrophilic microorganism (Lechevalier 1994). Unlike rhizobia (gram-negative bacteria), 

Frankia is a gram-positive, filamentous bacterium that is able to fix nitrogen freely within 

specialized vesicles, or in a symbiotic manner (Pawlowski and Bisseling 1996). Frankia isolates 

can be grown in a liquid medium, but very few strains are able to grow in solid media. They then 

form starfish-like colonies, or diffuse colonies with a loose network of hyphae, or compact 

colonies with hyphae growing profusely on the periphery. Due to their radial growth, bacteria of 

the genus Frankia have long been considered as fungi. In vivo as in vitro, actinomycete has three 

types of structures (Normand et al. 1996): 
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- The branched hyphae (or filaments) which constitute the vegetative form and form a 

mycelium. 

- Diazovesicles, which are spherical cells in which the process of biological nitrogen 

fixation is carried out. They are differentiated in a nitrogen deficiency condition and 

observed in the terminal position of the hyphae. The presence of lipid layers of 

hopanoids around the vesicles ensures the protection of the nitrogenase complex 

against inactivation by oxygen (Tisa and Ensign 1987; Silvester et al. 2007). 

- Multilocular sporangia are formed under conditions of depletion of the culture medium 

and in old nodules. They constitute a reproductive and resistance form of the 

microorganism (Schwintzer 1990). 

 

The Frankia genome is characterized by a high content of Guanine + Cytosine (GC), more 

than 70% (Benson and Silvester 1993; Normand et al. 1996). Up to now, analysis of the four 

Frankia genomes sequenced have indicated a circular chromosome that ranges from 5.3 to 

8.89 Mbp (Normand et al. 2007; Persson et al. 2011). A correlation between genome size, host 

range, and persistence in soils is suggested (Normand et al. 2007). The smaller genome comes 

from the cluster II Datisca glomerata Candidatus Frankia Datiscae (Persson et al. 2011). The nif 

genes are central to the symbiosis and their order is highly conserved among. Homologs of 

rhizobial nod genes are found only sporadically in Frankia spp. genomes and with low similarity 

to those found in rhizobia. nodB homologs are found in all strains and are generally annotated as 

polysaccharide deacetylases and present only around 35 and 45% of homology. Homologous 

sequences (with 25-42% of homology) were observed for nodC encoding N-acetylglucosamine 

transferase. These results suggest that Frankia's signal molecules may be of a different nature from 

rhizobial Nod factors. 

1.1.3.2.3. Nodule formation 

1.1.3.2.3.1. Signal exchange 

In actinorhizal plants, although the involvement of flavonoids in symbiosis is poorly 

understood, some evidence of chemo-attraction and proliferation of Frankia has also been reported 

in the rhizosphere of several species (Vessey et al. 2005). 

As mentioned before, Frankia does not use a Nod-like signal molecules in early 

communication with their host plants. It has been previously shown that Frankia alni (ACN14a) 

produces RH deforming factor in culture supernatant that reacts with Alnus glutinosa RH inducing 

branching and curling of these cells (Cérémonie et al. 1999). This factor was shown to have a 

molecular weight below 3 000 Da, to be heat-stable (similar to rhizobial Nod factor) but also to be 
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Figure 15 | Description of the two modes of infection of actinorhizal plants. 

(a) During intracellular infection, root hairs become deformed in response to Frankia signals. Trapped Frankia hyphae 

penetrate and grow basipetally inside the root hair while being encapsulated by the host-derived membrane and a thin 

cell wall. Frankia remains intracellular while it progresses in the root cortex and invades first some prenodule and 

then nodule cells. (b) During intercellular infection, root hairs do not deform or branch, a prenodule is not formed and 

growth of Frankia in infected roots is through intercellular spaces. Frankia hyphae become intracellular when they 

invade the young nodule primordium. 

From Perrine-Walker et al 2011 

 

 
Figure 16 | Casuarina glauca nodule formation. 

(A) Signal exchanges between the actinorhizal plant and Frankia lead to root hair infection. (B) Frankia penetrates a 

deformed root hair and triggers cortical cell divisions. (C) Dividing cortical cells are infected by Frankia hyphae and 

thus leading to the formation of a prenodule. At the same time, pericycle cell divisions occur in front of a xylem pole 

to form a nodule primordium. (D) Frankia hyphae coming from the prenodule invade the cortex of the nodule 

primordium. (E) mature nodules. 

From Péret et al. 2007  
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hydrophilic and to resist to chitinases (contrary to rhizobial Nod factor). It has also been found 

that Frankia alni RH deforming factor was sensitive to pronase, an unpurified preparation from 

Streptomyces griseus. So far, the chemical structure of RH deforming factor is unknown. 

1.1.3.2.3.2. Infection 

Two types of Frankia infection can be found in actinorhizal plants by Frankia: intercellular 

and intracellular infection (Figure 15) and the type of infection depends on the host plant (Berry 

and A. Sunell 1990). The intracellular infection (Figure 15 a) (example of Casuarina) starts with 

RH curling induced by a Frankia signal after about 24 to 48 hours from inoculation (Figure 16). 

Depending on the species, all RH (e.g. Casuarina (Torrey 1976) or only some of them 

(e.g. Comptonia (Callaham et al. 1979) curl. Frankia penetrates the curled RH and infection 

proceeds intracellularly in the root cortex (Figure 16 b). At the same time, limited cells divisions 

occur in the cortex, leading to the formation of a small external protuberance called the prenodule 

(Figure 16 c). Most of prenodule cells are infected with Frankia. But actinorhizal prenodules do 

not evolve in nodules. Concomitant with prenodule development, mitotic activity occurs in 

pericycle cells opposite to a protoxylem pole, giving rise to an actinorhizal lobe primordium 

(Figure 16 c&d). The mature actinorhizal nodule consists of multiple lobes, each of which is a 

modified lateral root. A central vascular bundle is present in each lope, and Frankia is restricted 

to the cortical cells (Figure 16 e). 

During intercellular infection (Figure 15 b), Frankia hyphae enter the root between 

epidermal cells, and colonize the root cortex intercellularly (Miller and Baker 1986; Racette and 

Torrey 1989). In contrast to rhizobia, Frankia does not depend on gaps in the root epidermis for 

entering the root. During cortex colonization , the root cortical cells secrete an electron-dense 

pectin and protein rich material into the intercellular spaces, and the formation of a nodule 

primordium is induced in the root pericycle (Liu and Berry 1991; Valverde and Wall 1999). 

Through an intense branching of hyphae, simultaneous with a continuous invagination of the plant 

plasma membrane, the primordium cells from the apoplast are infected by Frankia hyphae. 

Intercellular infection takes place in host plants of the Rhamnaceae, Elaeagnaceae and Rosaceae 

families. Frankia induce the formation of multiple lobed root nodules composed of modified 

lateral roots without root caps, a superficial periderm, a central vascular system (in contrast to the 

peripheral vasculature of legume nodules), and infected cells in the expanded cortex. 
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1.1.3.2.3.3. Nodule development 

In both intracellular and intercellular modes of infection, nodule development starts with 

the induction of mitotic activity in pericycle cells as a fashion of lateral roots, opposite or at an 

angle of 45 degrees from the xylem pole (Torrey 1976). The number of root primordia initiated 

was shown to vary according to plant family: usually one or two in Casuarina (Torrey 1976), up 

to 14 in Comptonia (Callaham and Torrey 1977). In C. cunninghamiana (Torrey 1976), the root 

primordia traverse the cortical tissue in the midst of infected prenodule cells, whereas in 

A. glutinosa (Carmona 1974) and in C. glauca the root primordia develop outside the infected 

tissue. The meristematic cells of the primordia always remain free of Frankia by an unknown 

mechanism. While the nodule primordium develops, Frankia hyphae infect young cortical cells 

and start invading the nodule cortex acropetally. 

1.1.3.2.3.4. Structure of actinorhizal nodules 

In actinorhizal plants, the formation of the nodule primordia takes place in the root 

pericycle and the nodule consists of multiple lobes, each representing a modified lateral root 

without a root cap and with infected cells present in the cortex. Actinorhizal nodules conserve the 

structure of a lateral root with a central vascular bundle and peripheral infected cortical tissue 

(Bogusz et al. 1996; Pawlowski and Bisseling 1996). Four zones were characterized in actinorhizal 

nodules (Figure 17): 

 

 

 
 

Figure 17 | Casuarina glauca nodule structure. 

Nodule zones are indicated: I, meristem zone; II, infection 

zone; III, nitrogen fixation zone; IV, senescence zone 

From Obertello et al. 2003 

 

  



 
 

41 

- The meristem zone (I) at the apex of nodule, this zone is responsible for indeterminate 

growth of nodule and always free from Frankia 

- The infection zone (II) is adjacent to the apical meristem, the hyphae infect some of 

the new cells derived from meristem activity that subsequently enlarge. 

- The fixation zone (III) is composed of infected and uninfected cells. Within this zone, 

infected host cells are hypertrophied. Frankia hyphae and vesicles are present, Frankia 

nif genes, coding for the nitrogenase complex, are expressed (Pawlowski et al. 1995), 

and the nitrogenase protein is detected (Huss-Danell and Bergman 1990). Therefore, in 

this zone, active nitrogen fixation takes place and the uninfected cells are smaller than 

infected cells. 

- The senescence zone (IV) in older nodule lobes where host cytoplasm and endophyte 

degeneration is observed (Newcomb and Wood 1987), nifH expression is switched off, 

and nitrogenase activity is lost in legume and actinorhizal nodules (Vikman et al. 1990; 

Swaraj et al. 1993). 

1.1.4. Brief overview of the endosymbiotic genetic 

1.1.4.1. CSG: Common Symbioses Genes 

Because root endosymbioses are energy-consuming processes, symbiotic establishment is 

tightly controlled by the plant. The development and functioning of endosymbioses (AM or RNS) 

rely on the orchestration of complex processes in both partners, such as induction of infection and 

organogenesis programmes, facilitation of the microsymbiont in planta survival in the presence of 

plant defence responses and increased capacity of nutrient flows. The underlying molecular 

mechanisms involve close coordination of the regulation of gene expression in both partners. To 

initiate a symbiosis, the two partners must first recognize each other. It is therefore an exchange 

of signals between the host plant and its future symbiont. Thus, flavonoids or strigolactones (SL) 

present in root exudates induce the expression of bacterial or fungal genes responsible for the 

synthesis and export of LCO compounds: the Nod or Myc factors respectively. These factors are 

then recognized by specific plant receptors. The symbiotic factor signal is then transmitted to the 

target tissues of the plant through a signalling pathway. This signal transmission leads to the 

activation of many genes allowing the establishment and control of symbiosis. These signals are 

perceived and integrated through an increasingly characterized signal path, which involves CSG 

shared between both types of root endosymbioses (Figure 6) and assumed to be co-opted from the 

ancestral AM by the evolutionary more recent RNS (Figure 18; (Singh and Parniske 2012; Genre 

and Russo 2016). The characterization of this pathway is largely based on work on the L. japonicus 

and M. truncatula legumes models. However, in the past few years, global 
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Figure 18 | Evolution of plant root endosymbioses. 

Molecular clock data suggest the diversification of arbuscular mycorrhizal fungi occurred ~460 million years ago 

(MYA), concomitantly with the colonization of land by plants. The only known intracellular symbioses between plants 

and bacteria are the root nodule symbioses and the endosymbiosis formed between Gunnera spp. (Gunnerales) and 

strains of Nostoc (cyanobacteria). Root nodule symbioses are restricted to a clade within the Eurosid I, consisting of 

Fabales, Fagales, Cucurbitales and Rosales (Fa Fa Cu Ro). The oldest fossil nodule-like structures, possibly legume 

nodules, originate from the late Cretaceous (65 MYA). Nodulation has multiple origins within the Fa Fa Cu Ro clade. 

From Kistner and Parniske 2002 

 

 

 
Legume symbioses Actinorhizal symbioses 

Gene name 

Lotus/Medicago 

Expression in 

nodule vs root 
Mutant phenotype Species 

Expression in nodule 

vs root 

NFR1/LYK3 root nod-/inf- (for lyk3) Ag, Cg*, Dt*, Dg similar 

NFR5/NFP similar nod- Cg*, Dt*, Dg similar 

SymRK/DMI2 similar nod-/myc- Ag, Cg*, Dg* similar 

CASTOR/POLLUX/DMI1 nod nod-/myc- Cg/Dg nod/nd 

NUP133 root nod-/myc- Cg/Dg similar/nd 

CCamK/DMI3 nod nod-/myc- Ag, Cg*, Dt* / Dg similar/nd 

CYCLOPS/IPD3 nod nod- (S) /myc- Cg / Dg similar/nd 

CRE1/HK1 similar nod- Cg / Dg root/nd 

NSP1 nod nod-/myc- Ag / Dg similar/nd 

NSP2 nod nod-/myc- Dg nd 

ERN1 similar inf- Cg* / Dg similar/nd 

ERF1 root  Ag similar 

NIN nod nod- (IT, NP)- Cg*, Dg nod 

NF-Y Complex nod  Ag, Cg / Dg similar/nd 

SYMREM1 nod inf- Ag, Cg, Dg nod 

CERBERUS/LIN nod inf-/myc- Cg / Dg nod/similar 

RIT/NAP1 similar inf- Dg similar 

PIR1 similar inf- Dg nd 

VAPYRIN nod inf-/myc- Cg, Dg nod 

RPG nod inf- Ag nod 

PUB1 nod  Cg, Dg root 

HMGR1 root  Ag, Cg / Dg nod/nd 

LATD/NIP similar nod- Ag, Cg similar 

 

Table 3 | Actinorhizal putative orthologues of legume genes encoding proteins involved in Legume root nodule 

symbiosis. 

–: defective; nod: nodule enhanced; myc–: defective in mycorrhiza; inf: infection; S: symbiosome; IT: infection 

thread; NP: nodule primordium; nd: not determined; Ag: Alnus; Cg: Casuarina glauca; Dg: Datisca glomerata; Dt: 

Discaria trinervis. *: functional characterisation available or in progress. 

From Svistoonoff et al. 2014  
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approaches allowed the generation of huge amounts of data about the genes involved in 

actinorhizal symbioses and have highlighted common element shared between legume-rhizobia 

and actinorhizal symbioses (Table 3; (Svistoonoff et al. 2013; Hocher et al. 2019). The symbiotic 

signalling pathway transmits the symbiotic signal from the plasma membrane to the nucleus 

(Figure 6), leading to nuclear calcium oscillations, which are decoded into downstream symbiosis-

associated gene expression (Singh and Parniske 2012). To trigger this pathway, Myc-LCOs 

released by AM fungi are thought to be perceived by specific Lysin motif domain-containing 

receptor-like kinases (LysM-RLKs, also named LYK), like the Nod factors which are perceived 

by MtNFP/LjNFR5 (Nod Factor Perception / Receptor) and MtLYK3/LjNFR1 (Amor et al. 2003; 

Radutoiu et al. 2007; Smit et al. 2007; Genre et al. 2013; Zhang et al. 2015). Interestingly Zhang 

et al. (2015) found in M. truncatula, L. japonicum and O. sativa that MtLYK3/LjNFR1/OsCERK1 

(Chitin Elicitor Receptor Kinase) were required for AM colonization and perhaps encode proteins 

necessary for Myc-LCO perception. Downstream of these receptors, several other transduction 

pathway proteins have been characterized: MtDMI2/LjSYMRK (Does not Make Infection / 

Symbiosis Receptor Kinase) are other plasma membrane LRR (leucine-rich-repeat) receptor 

kinase (Endre et al. 2002; Stracke et al. 2002), MtDMI1/LjCASTOR/LjPOLLUX are components 

of a cationic channel located at the nuclear envelope (Ané et al. 2004; Imaizumi-Anraku et al. 

2005; Peiter et al. 2007; Riely et al. 2007), NUP85, NUP133 and NENA, are three nucleoporins 

characterized in L. japonicus (Kanamori et al. 2006; Saito et al. 2007; Groth et al. 2010). All these 

proteins contribute to the production of a calcium signal in the form of characteristic oscillations: 

the calcium spiking in root cells (mainly epidermal), a typical feature of both endosymbiosis 

signalling pathways (Oldroyd and Downie 2006; Maillet et al. 2011; Sun et al. 2015). In addition 

this calcium oscillation is generated by a two-component calcium transport, one responsible for 

calcium import into the nucleus (MtMCA8) (Capoen et al. 2011), and the other one for the calcium 

release comprising CNGC15 a,b&c (Cyclic Nucleotide Gated Channel; (Charpentier et al. 2016). 

Then come proteins that decode and participate in the transduction of this calcium signal: 

MtDMI3/LjCCaMK, a nuclear-localized calcium-calmodulin-dependent kinase (Lévy et al. 2004; 

Mitra et al. 2004; Tirichine et al. 2006) and the transcription factor MtIPD3/LjCYCLOPS that 

interact together in the nucleus (Messinese et al. 2007; Chen et al. 2008; Yano et al. 2008; Horváth 

et al. 2011). Finally, two transcription factors of the GRAS family, NSP1 and NSP2 (Nodulation 

Signalling Pathway), occur downstream of this pathway (Kaló et al. 2005; Smit et al. 2005). Most 

mutants corresponding to these genes have a strong mycorrhizal and RNS phenotype, which 

inhibits both root penetration and subsequent stages of intraracinaric development, including 

arbuscular and/or nodular formation. 
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1.1.4.2. Transcriptional regulation during root symbioses 

The endosymbiosis pathways trigger the activation of several transcription factors which 

then switch on the specific genetic program leading the establishment of the symbiosis. In the past 

decades, via forward and reverse genetic studies as also transcriptomic analysis, important key 

genes were identified. Downstream of these symbiotic pathways, the calcium oscillation decoding 

switches on specific genes for AM or RNS symbiosis. The precise mechanisms that lead to specific 

responses to AM fungi and rhizobia are still under studies. This might be explained in several 

ways: (i) as yet unknown patterns (e.g. phosphorylation pattern of CYCLOPS) are generated 

within the shared common parts of both symbiosis pathways (Singh and Parniske 2012; Limpens 

and Bisseling 2014) and/or (ii) independent supplementary pathways provide additional specificity 

modules that circumvent the shared pathways or involve unknown partners (Bonfante and 

Requena 2011; Genre and Russo 2016; Pimprikar et al. 2016). 

It was found that CCaMK and CYCLOPS induce the expression of several symbiosis 

related transcriptional regulators belonging to the RWP-RK domain, GRAS domain, CAAT-box 

(i.e. Nuclear Factor-Y, NF-Y) and ethylene response factor (ERF) family (Schauser et al. 1999; 

Kaló et al. 2005; Smit et al. 2005; Combier et al. 2006; Andriankaja et al. 2007; Marsh et al. 2007; 

Middleton et al. 2007; Vernié et al. 2008; Gobbato et al. 2012; Schaarschmidt et al. 2013; Soyano 

et al. 2013; Cerri et al. 2016; Pimprikar et al. 2016; Cerri et al. 2017). While NIN (nodule 

inception), encoding an RWP-RK domain containing transcription factor, is considered nodulation 

specific, GRAS proteins, ERFs and NF-Y act in both symbioses. 

The GRAS domain proteins NSP1 and NSP2 were initially placed on the nodulation 

specific pathway, but refined analysis also implicates a role in AM and, under asymbiotic 

conditions, in the SL biosynthesis pathway (Smit et al. 2005; Kaló et al. 2005; Maillet et al. 2011; 

Liu et al. 2011; Lauressergues et al. 2012; Delaux et al. 2013b). Downstream of CCaMK, nsp1 

and nsp2 mutants in addition to reduced RH deformation, are impaired in rhizobial infection and 

root nodule formation (Mitra et al. 2004; Kaló et al. 2005; Smit et al. 2005; Heckmann et al. 2006). 

NSP1 and NSP2 form together a heterocomplex which has been shown to bind promoters of Nod 

factor-inducible genes, such as ENOD11, ERN1 and NIN (Hirsch et al. 2009; Cerri et al. 2012). 

Further, nsp1 and nsp2 mutants show reduced AM fungal colonization (Delaux et al. 2013b; 

Maillet et al. 2011). These two GRAS transcription factor have been shown to be involved in 

activation of SL biosynthesis genes which may explain the delayed AM colonization phenotype 

(Liu et al. 2011). 

DELLA, another GRAS domain protein was identified as important regulator during root 

nodule and AM symbiotic development (Floss et al. 2013; Yu et al. 2014; Fonouni-Farde et al. 

2016; Jin et al. 2016; Pimprikar et al. 2016). della mutants were reduced in rhizobial colonization 
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and ERN1 and ENOD11 expression (Jin et al. 2016) and severely impaired in arbuscule formation 

(Floss et al. 2013). DELLA proteins inhibit gibberellic acid (GA) signalling which upon treatment 

of plant roots represses AM development, nodulation and rhizobial infection (Floss et al. 2013; 

Takeda et al. 2015; Jin et al. 2016; Pimprikar et al. 2016). Arbuscule development in presence of 

GA and spontaneous induction of ENOD11 expression are observed whit ectopic expression of a 

dominant GA insensitive version of DELLA (Floss et al. 2013; Fonouni-Farde et al. 2016). 

Additionally, two mycorrhiza specific GRAS proteins involved in AM signalling are 

RAM1 (Reduced Arbuscular Mycorrhization) and DIP1 (DELLA Interacting Protein). Both ram1 

and dip1 mutants are impaired in arbuscules formation or branching (Floss et al. 2013; Yu et al. 

2014; Fonouni-Farde et al. 2016; Pimprikar et al. 2016). RAM1 overexpression is sufficient to 

activate genes critical for arbuscule development in absence of symbiont. RAM1 activates genes 

involved in fatty acid biosynthesis such as STR and RAM2. STR encodes an ABC transporter that 

most probably is involved in the transfer of fatty acids to the fungus. RAM2, a glycerol-3-

phosphate acyltransferase, is involved in lipid metabolism (Keymer et al. 2017) and required for 

hyphopodia formation during the pre-infection stage (Gobbato et al. 2013; Wang et al. 2012). 

Furthermore, RAM1 can induce the AM-specific phosphate transporter PT4 required for 

phosphate uptake at the arbuscules (Harrison et al. 2002; Breuillin-Sessoms et al. 2015; Volpe et 

al. 2016). 

NIN, a nodulation specific RWP-RK domain containing transcription factor, is rapidly 

upregulated in response to Nod factor in a dependent manner of CYCLOPS (Yano et al. 2008; 

Horváth et al. 2011). NIN plays an important role for both nodule organogenesis and rhizobial 

infection (Schauser et al. 1999; Fournier et al. 2015). Expression of many infection-related genes 

are dependent on NIN (Haney and Long 2010; Qiu et al. 2015). NIN has been shown to bind the 

promoter of some NF-Y subunit (Soyano et al. 2013) (presented below), EPR3 (ExoPolysaccharide 

Receptor; (Kawaharada et al. 2017) and NPL1 (Nodulation Pectate Lyase (Xie et al. 2012)). NPL 

activity is required for the localized degradation of PCW pectin during IT formation in RH. Beside 

its role as positive regulator of RNS, NIN creates a negative long-distance feedback loop though 

direct targeting of CLE-RS1 and CLE-RS2, which induces expression of small root derived 

peptides that are perceived in the shoot to activate the autoregulation of nodulation pathway and 

restrict the number of nodules (Soyano et al. 2014). 

The subunits of the heteromeric CAAT-box binding protein complex, NF-YA1 and NF-

YB1 control different steps of nodulation, including rhizobial infection in the epidermis and the 

persistence of nodule meristems (Mantovani 1999; Combier et al. 2006; Laloum et al. 2013; 

Soyano et al. 2013; Laporte et al. 2013). They play roles during the Nod factor signalling cascade, 

acting downstream of NIN and upstream of ERN1 (Laloum et al. 2014).The nf-ya1-1 mutant 
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displays abnormal bulbous IT causing their frequent early arrest and formation and functioning of 

the nodule meristem is blocked (Laporte et al. 2013). Several transcriptome analyses have revealed 

NF-Y subunit-encoding genes that are upregulated during mycorrhization in different plant species 

(Gomez et al. 2009; Czaja et al. 2012; Gaude et al. 2012). For a more complete overview of the 

NF-Y see Zanetti et al. (2017). 

ERN1 promoter is directly targeted by NSP1, NSP2 and NF-YA1 (Hirsch et al. 2009; 

Laloum et al. 2014) and rhizobia-induced expression of ERN1 in the epidermis is dependent on 

CYCLOPS (Cerri et al. 2017). ERN1 has a nodulation specific function and is predominantly 

associated with infection initiation and progression. It activates the ENOD11 promoter via the Nod 

factor-box in a separate region than NSP1/NSP2 (Cerri et al. 2012; Cerri et al. 2016) and directly 

binds to and transactivates the EPR3 promoter during epidermal infection (Kawaharada et al. 

2017). ern1 mutants are impaired in nodule organogenesis, while its closest homolog ern2 mutants 

develop infected, but less colonized and prematurely senescent nodules (Cerri et al. 2016). In 

contrast, the double mutant is completely blocked in rhizobial infection and nodule organogenesis, 

demonstrating functional redundancy between both transcriptional regulators (Cerri et al. 2016). 

Interestingly, ERN2 expression is upregulated in AM infected cells (Cerri et al. 2012). 

1.1.4.3. Few words on genome-wide studies between host and nonhost species 

Genes involved in AM or RNS symbiosis have been first identified by forward genetics 

through mutant screens. Then reverse genetics done on genes based on their expression pattern 

have allowed the identification of others important symbiotic genes. However, these approaches 

do not allow the identification of genes which could be members of functionally redundant gene 

families or genes that have vital function. Regarding these points and also in order to investigate 

more broad symbiotic evolution aspects among land plant, several phylogenomic studies were 

performed. Delaux et al. (2014), Favre et al. (2014) and Bravo et al. (2016) have done genome-

wide comparisons on several plant species containing AM host and non-host plant (from monocot 

to dicot species). By postulating that non-host plants have lost orthologs of putative symbiotic 

genes, these genome-wide comparison studies identified numerous candidate genes (known and 

yet unknown) with potential roles in AM symbiosis. Only 14 genes overlap in these three lists, 

however the rest of the lists remains interesting data in order to identified new important AM 

genes. Phylogenomic analysis resulted in 166 genes from Delaux et al. (2014), 1 632 from Favre 

et al. (2014) and 138 from Bravo et al. (2016). Similar approaches were performed in order to 

investigate on the evolutionary hypothesis about a predisposition event and/or about the different 

gain or loss of RNS (Griesmann et al. 2018; van Velzen et al. 2018). These two studies have 

highlighted multiple independent loss of symbiosis and the importance of NIN and RPG 
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(Rhizobium-directed Polar Growth) genes in RNS evolution. These genome-wide comparisons 

methods are opening a new avenue for research with the potential to unravel the genetic constraints 

that drive the evolution of symbioses and the discovery of uncharacterized molecular mechanisms 

important for root symbioses. 

 

Even through the genome-wide studies presented above, symbiotic pathways are well study 

in AM on model plants like Zea mays, O. sativa, Petunia x hybrida., M. truncatula and 

L. japonicus. While RNS studies are mainly focus on rhizobia symbiosis. Actinorhizal plants, that 

include plants from Fagales, Cucurbitales and Rosales, are less studied due to the fact that they are 

mainly woody plants with long life cycle and lack genomic data and/or established method for 

transformation (stable or not) for example. The actinorhizal model are more gathered in the plant 

family which interact with Frankia cluster I and III which could be cultured, in opposition of the 

cluster II that seems to be obligate symbionts. In this last group of plants, Datisca is the only 

herbaceous actinorhizal plant so used as model. However, the Rosaceae performing RNS are 

poorly studied. Among which there is the genus Dryas which was the genus used during this thesis 

and will be presented in the next sections. 

1.2. Dryas: basal actinorhizal genus of Rosaceae 

1.2.1. The Rosaceae 

Among the Rosales, Rosaceae is a fairly large angiosperm family in the order Rosales, with 

about 3 000 species, 3 subfamilies, 16 tribes, and 88–100 genera (Figure 19) (Hummer and Janick 

2009; Phipps 2014). The family has a global distribution, in particular in Northern Hemisphere 

temperate forests. The Rosaceae encompasse many well-known and economically important 

species, such as edible fruits from temperate zones (Janick 2005) as well as ornamental plants, but 

also some forestry and medicinal or neutriceutical cultures. Indeed, it has many species of fruit 

trees and shrubs such as apple (Malus domestica), pear (Pyrus communis), or raspberry (Rubus 

idaeus), as well as perennial fruit species, strawberry (Fragaria spp.), ornamental species such as 

rose (Rosa spp.), photinia (Photinia spp.), Maule's quince (Chaenomeles japonica), or cinquefoil 

(Potentilla spp.) or forest species, cherry (Prunus avium) (Figure 19). Based on FAO statistics, the 

total world production of the edible rosaceous fruits in 2005 was about 113 million tonnes, with 

an estimation of $45 billion. Rosaceous plants would have been worth at least $180 billion in 2005 

when the global value of almonds, cut roses, rose plants, and other products is added. In 2012, 

48% of all the fruit and nut crops produced in the USA were rosaceous plants and their production 

value exceeded $12.56 billion (Jung et al. 2013). 
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Figure 19 | A summary of Rosaceae phylogeny and Rosaceae fruit morphologies. 

On the left is a summary tree with results from five coalescence analyses of 882, 571, 444, 256, and 

113 gene sets, respectively, and a concatenation analysis using the 113-gene supermatrix. Topologies 

consistent in all six trees are drawn in black lines. Grey lines show uncertain relationships, with some 

trees support the topology. Asterisks (*) indicate 100% supports in all six trees. Diamonds indicate 

more than 90% supports in at least five trees and more than 85% supports in all six trees. Squares 

indicate more than 80% supports in at least three trees and more than 40% supports in all six trees. 

Plant photographs on the right show the diversity of Rosaceae fruits. The left row (from the top) 

includes Malus pumila (apple), Eriobotrya japonica (loquat), Kerria japonica, Prunus armeniaca 

(almond), Prunus sp. (cherry), Spiraea thunbergii, Duchesnea indica, Potentilla supina, Rosa 

laevigata, Rubus sp. (raspberry), and Dryas octopetala. The right row (from the top) includes Pyrus 

bretschneideri (pear), Crataegus pinnatifida, Exochorda racemosa, Prunus salicina (plum), Prunus 

persica (peach), Agrimonia pilosa, Fragaria x ananassa (strawberry), Geum aleppicum, Rosa sp., and 

Rubus fruticosus (blackberry).  

From Xiang et al. 2016  
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Rosaceae are characterized by alternate leaves, which vary from simple to trifoliate, 

palmate, or pinnate. As secondary recognition criterion for Rosaceae, their whole leaves or smaller 

leaflets have often a more or less oval aspect with serrated edges. Flowers are typically composed 

of 5 (rarely 3 to 10) separate sepals and a comparable amount of petals. Stamens are at least five, 

but often much more, usually in multiples of five. Many Rosaceae flowers, especially those of the 

Rosoideae subfamily, have several to many simple pistils, or a single one composed with 

numerous styles resulting from the union of the pistils at their base, with the separate styles. Either 

way, the result is a distinctive, fuzzy-looking centre surrounded by lots of stamens. Flowers are 

almost always perfect with radial symmetry. Many very distinctive kinds of fruit are produced by 

Rosaceae species (Figure 19) (Potter et al. 2007; Phipps 2014). Indeed, they can be fleshy fruits 

(e.g. apple or pear which have a relatively soft core and several seeds), drupes (with a single seed 

in a hard central shell: peach, plum, cherry), and dry achenes (with a single seed surrounded by a 

thin wall: Dryas Figure 23 a, Cercocarpus). Furthermore, some species produce aggregate fruits 

such as drupetum (a group of tiny drupelets loosely attached to a central structure, as in raspberry), 

achenetum (multiple achenes from a single flower), sometimes with a fleshy enlarged receptacle 

(strawberry) or an enveloping hypanthium (fused lower portions of the sepals, petals and stamens, 

as in rose), and follicetum (several pod-like structures each with one or more seeds, from a single 

flower). 

Previously, largely according to fruit and other morphological characteristics, four main 

subfamilies in the Rosaceae family used to be considered: Rosoideae s.l. (with aggregate fruits, 

rose and strawberry), Maloideae (with over 30 genera including apple and pear), Prunoideae (or 

Amygdaloideae s.s., with drupes: cherry, plum, peach), and Spiraeaoideae (Potter et al. 2002). 

However, recent molecular studies have suggested three subfamilies in this family, with two large 

ones, Rosoideae s.s. and Amygdaloideae s.l., having 2 000 and 1 000 species, respectively, and a 

small one, Dryadoideae, with fewer than 30 species (Morgan et al. 1994; Potter et al. 2007; Chin 

et al. 2014; Phipps 2014; Xiang et al. 2016). The last evolutionary trees trace the ancestor of 

Rosaceae separated from other families as far back as 120 Mya. Around the boundary between the 

Early and Late Cretaceous, almost 20 My after the beginning of the Rosaceae family, the 

Dryadoideae shrub subfamily split from the other rosaceous plants, immediately followed by a 

divergence of the two largest subfamilies (Xiang et al. 2016). The number of chromosomes is 

variable: x = 7 for the Rosoideae subfamily, 9 for the Dryadoideae subfamily, and for the 

Spiraeoideae subfamily, it is variable according to the genus (8 for the genus Prunus, 9 for the 

genera Kerria and Spiraea, 17 for the genera Malus and Pyrus (Xiang et al. 2016). Importantly, 

the species richness of Rosaceae could be partly related to polyploidization and species radiation 

in the family history, with evidence for polyploidy events in the two larger subfamilies (Talent 
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and Dickinson 2005; Dickinson et al. 2007; Lo et al. 2010; Considine et al. 2012; Fougère-Danezan 

et al. 2014). 

In recent years there has been a general interest to sequence different genomes of the 

botanical family Rosaceae. On the Genome Database of Rosaceae website, actually there are 14 

species genomes sequenced representing 7 genera. Among those genomes we can quote apple 

(Velasco et al. 2010), strawberry (Shulaev et al. 2011) and peach (Verde et al. 2013). Each of these 

species is a specific genome model for the subfamilies Malaideae, Rosoideae and Amygdeloideae, 

respectively, which allows more precise understanding of the biochemical and physiological 

processes which occur in each of these taxa (Shulaev et al. 2008) and provide an excellent system 

to conduct comparative and evolutionary studies of fruits and Rosaceae family. Unfortunately, 

there is no reference genomes for the most basal clade of the Rosaceae, indeed no Dryadoideae 

species were sequenced until the beginning of this thesis. 

1.2.2. Dryas drummondii and Dryas octopetala description 

Dryas were shown to be the most basal genus of the Rosaceae (Potter et al. 2007; Xiang et 

al. 2016) (Figure 19), with a separation of the Dryadoideae clade to the two other Rosaceae 

subfamily estimated about 101.6 Mya (Xiang et al. 2016). In terms of biomass, the genus Dryas 

is among the most important of all artic plant genera, together with Carex (sedges) and Salix 

(willows) (Grau et al. 2014). It is also an important constituent of the alpine heats of calcareous 

temperate mountains in Europe, in Asia south to Japan and in western North America (Hultén and 

Fries 1986). 

During glaciations, continuous distribution areas were fragmented into isolated subunits in 

which plants potentially evolved apart. After glaciation, formerly isolated populations dispersed 

and often met again (McGraw 1995). By this secondary contact, hybridization often occurred 

followed by polyploidization or introgression (Stebbins 1984). These processes have been 

important for the development of the arctic flora (Murray 1997). the Dryas octopetala–integrifolia 

complex (Elkington 1965) is one of the known example of hybridization at the diploid level 

without polyploidization in Greenland. Due to the isolation during glaciations with the potential 

hybridization of the closely related species, Dryas taxonomy is controversial, with estimates of 

species/subspecies numbers ranging from 3 to 23 (Hultén 1959; Elkington 1965; Hultén and Fries 

1986; Yurtsev 1997; Elven et al. 2003). The three main recognized species are: D. drummondii, 

D. integrifolia and D. octopetala.  

In this thesis, we focused on D. drummondii and D. octopetala for their polymorphic RNS 

trait, and omitted D. integrifolia because of its high similarity with D. octopetala (Skrede et al. 

2006), the latter being more accessible and better researched. 
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1.2.2.1. Dryas natural habitat 

Dryas are pioneer plants, found all over the Eurasian and American arctic tundra, north to 

the border of the ‘Polar Desert’ and it is also an important constituent of the alpine heaths of 

temperate mountains in Europe, in Asia south to Japan, Altai and Caucasus, and in western North 

America south to southern Rocky Mountains. D. octopetala has nearly circumpolar arctic and 

alpine range, it predominantly grows in Eurasia but also extends across Beringia and into the 

Rocky Mountains (Hultén and Fries 1986) (Figure 20 b). The species is absent from the Canadian 

Arctic and western Greenland. Whereas, the range of D. drummondii is limited to gravelly 

riverbeds at scattered sites below the tree line in North America (Figure 20 a). 

Artic and alpine tundra are characterized by extreme conditions which are challenging for 

plant growth due to factors such as low moisture, low mean temperature, UV stress, extreme 

variation in radiation and seasonality, during the growing season. These conditions help to create 

an ecosystem with low nutrient supply, low average biomass productivity and impose strong 

selection pressures on plants. Dryas follow the retreat of the glaciers. They stay predominant in 

the landscape until the development of bigger shrubs or trees. Whether in Alpine or in arctic biome, 

this genus present a predilection for calcareous soil with few organic matter (less than 10 cm of 

depth (Jorgenson et al. 2009) and for alkaline soil. Dryas are present in soil having a pH range 

from 5.5 to 8 (Jorgenson et al. 2009), however they are growing most luxuriantly within a pH 

range of 7.8-8.5 (Lawrence et al. 1967). Chemical changes under Dryas vegetation are more 

marked than physical changes. These include increasing soil acidity, organic carbon, nitrogen and 

calcium carbonate. For example, at Glacier Bay in Southeast Alaska, D. drummondii grow on 

lands which are proportionately quite high in limestones and marbles, giving a pH at 8.0-8.4, for 

the fine soil fraction. The degree of acidification is slight, reaching 7.7 after 20 years, under a 

Dryas mat. Acidification is accompanied by a moderate leaching of calcium carbonate (CaCO3). 

Indeed under Dryas, the proportion of CaCO3 in the five first soil centimetres is around 3.5% 

compared to the 8% on area bare of ice for 20 years (Lawrence et al. 1967). And based on data of 

Crocker and Major (1955), there is in 25 years an increase of 1 030 kg.ha-1 of organic carbon in 

the top five centimetres of soil, compared to initially, under Dryas (and so without taking count of 

the Dryas mat itself). 
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Figure 20 | Characteristics of Dryas drummondii and 

Dryas octopetala. 

(a&b) Geographical repartition of D. drummondii (a) and 

D. octopetala (b) based on Central Yukon Species Inventory 

Project and Aarnes et al. 2012. (c&d) Dryas spp. growing under 

natural conditions. (e&f) Flower in full bloom and in fructification 

of D. drummondii (e) and D. octopetala (f). (g&h) Petiolated leaf 

morphology in Dryas spp. (g) obovate with dentate margins 

D. drummondii leaves; (h) ovate with dentate to sinuate margins 

D. octopetala leaves. Scale bars = 1cm.  

Pictures B. Billault-Penneteau; (e&f) From Billault-Penneteau et 

al. 2019  
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1.2.2.2. Dryas spp. morphology and reproduction 

Dryas consists of long-lived shrubs and it is one of the hardiest of all woody plant groups 

and forms the vegetation carpet in dry and damp gravelly sites all over the arctic tundra 

(Figure 20 c&d). 

The petiolated Dryas leaves are leathery, tardily deciduous or evergreen, with stipules 

rising from leaf axils, linear-lanceolate in shape, tomentose (Figure 20 g&h). However, 

D. octopetala leaves (Figure 20 h) are narrower with generally ovate or elliptic shape with dentate 

or sinuate margins, while D. drummondii leaves (Figure 20 g) are larger and longer with dark 

green colour, rugose adaxial surface, densely tomentose abaxial surface, oblong shape and with 

dentate but less marked margins. 

The entire genus is diploid (2n=18) (Potter et al. 2007), and the plants are mainly 

outcrossers (McGraw and Antonovics 1983) without any special adaptation to vegetative 

reproduction, even though clonal proliferation occurs (Wookey et al. 1995). It is a perennial plant, 

which in some studies was described to attain its reproductive maturity in the fifth year (Lawrence 

et al. 1967), suggesting that a long time is needed to complete a life cycle from seeds to seeds. 

Clonal growth in Dryas enables individuals to persist and grow in extreme environments where 

sexual proliferation is often unsuccessful (Wookey et al. 1995). Individual clones of D. octopetala 

can live more than 100 years (Kihlman 1890; Crawford 1989). 

In the wild, Dryas flower primordia are formed during the summer. This precedes far in 

advance the flowering, which occurs shortly after snowmelt with most individuals flowering 

within a month. Dryas flowers have a positive heliotropism movement to maximize the amount of 

sunlight reflected on the petals and on the mass of pistils at the centre of the flower (Kevan 1975; 

Kjellberg et al. 1982; Krannitz 1996). It was shown that flowers that track the sun are warmer, 

have pistils that develop faster and produce heavier seeds(Kevan 1975). Pollination in Dryas is 

assumed to be insect-dependent, with only a low level of wind pollination (Kevan 1975; Roslin et 

al. 2013; Tiusanen et al. 2016). The flowers (Figure 20 e&f) are perfect (hermaphrodites), with 

regular symmetry, solitary, and scapose (on naked stalks borne above a dense rosette of leaves). 

Dryas flowers do not fit to the general Rosaceae floral formula (✶K5C5An*5G∞), as they present 

height sepals and height petals with numerous stamens and pistils; and give the following floral 

formula: ✶K8C8A∞G∞. The most obvious differences between the two species are in the shape 

and colour of the flower in full bloom. Indeed, D. octopetala flowers (Figure 20 f) are 

characterized by a relatively large size, around 2 cm, fully open with white petals and a yellow 

centre, whereas D. drummondii flowers (Figure 20 e) are nodded, never fully open and completely 

yellow. 
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The fruit of Dryas (Figure 23 a) is an achene, bearing long, silky-feathery white 

hygroscopic hairs which contract and twist upon wetting, but expand and straighten in drying 

(Lawrence et al. 1967) forming a plumed fruit. These hairs are modified from the persistent styles 

and help spread the attached seed via light winds. Observations in the wild suggest that the 

mortality rate is high in the wild in the first few years and relatively few of the delicate seedlings 

survive (McGraw and Antonovics 1983). 

 

 
 

Figure 21 | Dryas drummondii nodule structures. 

(a&b) Longitudinal section through a root nodule lobe of D. drummondii from Lawrence et al. 1967 (a) and from a 

nodule found in the botanical garden of Munich stained with trypan blue (unpublished, B. Billault-Penneteau) (c) 

Cortex cells filled with the endophyte showing vesicles and hyphae. x 1300. (d) Light microscopy showing infected 

and uninfected (UI) cells. The uninfected cells contain a large central vacuole (V), numerous amyloplasts (A) with 

large round starch granules, and phenolic inclusions (arrows). Both types of infected cells are shown: cells containing 

only hyphae (H) and one cell containing both endophytic hyphae and vesicles (Ve). x 600. 

From Newcomb 1981 
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1.2.3. Dryas spp. and root nodule symbioses 

1.2.3.1. D. drummondii and Frankia symbiosis 

Among almost 100 Rosaceae genera only four of them are described as nodulating plants: 

Cercocarpus, Chamaebatia, Dryas, and Purshia. They are all gathered and forming the 

Dryadoideae subfamily. In 1952, Lawrence discovered that D. drummondii at Glacier Bay, Alaska, 

possessed root nodules (Lawrence et al. 1967). In 1963, Allen et al. (1964) found brownish 

aggregation of nodules on the roots of D. drummondii from another region of Alaska. Nodulated 

plants have been found on the flood plain gravels of the St Lawrence River by Schoenike and on 

shingle flats at Mount Robson, Canada, by Tisdale et al. (1966), so their occurrence is not restricted 

to Alaska. These nodules consisting of typical metamorphosed roots which, on the basis of light 

microscopic observations, were similar to Alnus spp. nodules both in nodule and endophyte 

morphology. The nodules are red orange in colour and have a coralloid appearance due to the 

presence of many nodule lobes (Figure 14 a, Figure 21 b). The nodules ranged between 1 and 3 cm 

in diameter. The main differences between the situations in Alnus spp. and Dryas sp. seemed to be 

the difference in depth at which the nodules were located. Instead of being superficial, often 

immediately below the surface or even partly above the surface as in alder, they were usually found 

15 cm or more beneath the surface. At Glacier Bay they were found on young plants at or near the 

ends of tiny feeder rootlets, 30-50 cm away from the base of the stem. Some nodules could have 

a flattened appearance because they grow pressed close against the rocks. In Lawrence et al. 

(1967), it is suggested that perhaps the rocks provide some required mineral nutrient, or perhaps 

the scarifying effect of rock is needed to allow entrance of the nodulating microorganism. 

Numerous attempts of other workers to confirm the presence of nodules on D. drummondii have 

failed. One of the explanations is the point that nodules were easily torn away from the roots. 

Indeed, they are found at or near the ends of tiny feeder rootlets growing between and around 

rocks. Moreover, Frankia strain interacting with Dryas sp. is obligate symbiont. Several efforts 

were made to induce nodulation of D. drummondii however only one publication has achieved this 

goal, Kohls et al. (1994). In this publication D. drummondii nodules are in the same number that 

on other Rosaceae but less than in other actinorhizal plants. Kohls et al. (1994) alluded to the fact 

that rosaceous plants are slow to nodulate. 

Studies of soil under D. drummondii mat show an increase in N (Crocker and Major 1955; 

Viereck 1966; Lawrence et al. 1967). For example Lawrence et al. (1967) have shown that in 25 y 

under Dryas sp. the top 5 cm of soil there was an increasing of around 60 kg.ha-1. They have also 

demonstrated with 15N test that D. drummondii nodules were capable of fixing atmospheric N. 

Fresh sections of D. drummondii nodules reveal a cream-coloured interior. Light microscopic 

studies demonstrated an organization similar to that of other actinorhizal root nodules. Each nodule 
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lobe is surrounded by a brownish layer of rather small phelloderm-like cells. They consist of a 

thick cylinder of cortex surrounding a central well-developed vascular bundle. A poorly defined 

meristem is situated at the distal end of the vascular cylinder. The infected cells are restricted to 

the outer half of the cortical cylinder but are not present in the outermost cortical cell layers. The 

infected ones are immediately conspicuous because of their darkly stained contents and by their 

shape. Indeed, they have a larger diameter (up to 40 µm in width, up to 80 µm in length) than the 

neighbouring uninfected cortical cells. The inner cortical cells which remain uninfected tend to be 

elongated. They usually contain large amyloplasts with several starch granules. The uninfected 

cells often have phenolic deposits in the large central vacuole (Figure 21) 

1.2.3.2. Doubts on the nodulation of the other Dryas spp. 

It is currently assumed that within Dryas genus only D. drummondii is nodulating and the 

other species are considered as non-host. In some publications it was assumed that D. octopetala 

or D. integrifolia can be nodulated, but these affirmations were contested. The assertion that 

D. integrifolia or D. octopetala are symbiotic nitrogen fixers has worked its way into the literature. 

This was resulting from a “domino effect”. Indeed as Markham (2009) explained, the first time 

that these two species were reported as nodulating, was in Lawrence et al. (1967). They reported 

that observations by Sprague in 1952 revealed that the roots of D. octopetala and D. integrifolia 

also have root structures similar to nitrogen fixing nodules. However, the authors did not report 

any microscopic examination of nodules or measurement of nitrogen fixation in this species. Then 

in summarizing the results of International Biological Program surveys, Bond (1976, 1983) listed 

D. integrifolia and D. octopetala as actinorhizal species based on the work of Lawrence et al. 

(1967), even though additional searches for nodules were reported as unsuccessful. Afterwards 

others referring directly to the Lawrence et al. (1967) paper (Svoboda and Henry 1987); Bond’s 

1976 paper (Torrey 1978; Lechevalier 1983); citing papers that cite Lawrence et al. (1967) (Okitsu 

et al. 2004), citing papers that cite Bond’s 1976 paper (Melville et al. 1987); using no citation at 

all (Sondheim and Standish 1983); or citing Sondheim and Standish (1983) (Kohls et al. 1994). 

But no evidence was found or added. Moreover, in studies at both Glacier Bay (Kohls et al. 2003) 

and the Rocky Mountains of Alberta (Kohls et al. 1994), analysis of stable isotopes suggested that 

D. integrifolia does not fix nitrogen in the field, nor were any nodules observed when they were 

searched for at this site. Also, Deslippe and Egger (2006) were not able to find Frankia-related 

genes in roots or soil from around eight D. integrifolia plants from Ellesmere Island. 
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1.3. Thesis objectives 

The research team of Martin Parniske has focused for several years on studying the 

molecular processes that lead to the cellular reprogramming and redifferentiation associated with 

interactions between plants and symbiotic microorganisms. Likewise, it is explored natural 

diversity and ecological approaches to identify allelic variation governing symbiotic important 

traits. One group of closely related plants evolved to become independent of nitrogen from the soil 

by engaging in root nodule symbiosis. Considering either the multiple gains hypothesis or the 

single gain hypothesis, nodulation evolved exclusively in four related orders, the Fabales, Fagales, 

Cucurbitales and Rosales (FaFaCuRo). The European Research Council (ERC) funded project 

“Molecular inventions underlying the evolution of the nitrogen-fixing root nodule symbiosis 

(Evolving Nodules)”, in which my thesis was integrated, builds on the underlying idea that the 

root nodule symbiosis evolved by co-opting AM pre-existing developmental program. Using a 

combination of phylogenomic, transcriptomic and genetic approaches, the team would like to 

systematically investigate and compare the prewired connections between signalling pathways and 

developmental modules present in non-host and host relative plants, to identify components 

acquired by nodulating plant species. To investigate evolutionary hypotheses related to nodulation, 

Rosaceae is a particularly appealing family of plants. Most genera of the Rosaceae including 

economically valuable targets such as apple and strawberry are non-nodulating. Four of the 

hundred Rosaceae genera form ancestral, lateral root-related actinorhiza nodules with Frankia 

actinobacteria. These nodulating Rosaceae are gathered in the basal subfamily Dryadoideae. Thus, 

a major step towards independent cultivation of nitrogen fertilizers for sustainable agriculture 

could be achieved by retracing the evolutionary steps within this plant family.. 

However, there are no established reference species within the Dryadoideae. Nevertheless, 

Dryas genus stands out due to the presence of two closely related species with a divergent ability 

to nodulate: D. drummondii and D. octopetala. My thesis project focused mainly on the study of 

these genera and therefore proposed to investigate their genetic divergences related to root 

symbiosis. With this aim in mind, various approaches and collaborations have been developed, 

grouped into three main parts: (i) the establishment of Dryas as a model genus, (ii) the study and 

establishment of Dryas spp. root endosymbioses and finally (iii) a genetic comparison of both 

Dryas spp. in order to study the genetic evolution that leads to the endosymbiosis polymorphism 

within this plant genus. 
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1.4. Structure of thesis results and allocations of collaborators' results 

All my works along with the one from my collaborators are presented in the following 

sections of the Results chapter: section 2.1 gathers the different methods and protocols developed 

to introduce Dryas spp. in a laboratory context and to allow genetic and molecular analyses while 

sections 2.2 and 2.3 are they devoted to comparative studies between both Dryas spp. at the root 

symbiosis (2.2) and genetic (2.3) levels. 

The results presented in section 2.1 have been published in Frontiers in Plant Science 

(Billault-Penneteau et al. 2019) and the D. drummondii genome (section 2.1.7) was used in 

Griesmann et al. (2018) published in Science. The results presented in sections 2.2 and 2.3 will be 

part of a second future publication. 

 

In section 2.1.2, the growth tests presented in Figure 24 were performed together by me 

and in collaboration with Leon Van Ess during his Bachelor trainee under my supervision. The 

Figure 27, in section 2.1.4, comes from Billault-Penneteau et al. (2019) and was carried out by 

Aline Sandré. All genome sequencing and annotation were done by the Dr. Shifeng Cheng’s team 

from the BGI. D. drummondii genome quality analysis (Figure 31, Table 5 and 6, Supplemental 

S2 in section 2.1.7) are issue from Maximilian Griesmann’s work (Griesmann et al. 2018). In 

section 2.2.3, the ectomycorrhizal visualization on D. octopetala roots (Figure 33) and the PCR 

done on D. octopetala roots from Switzerland Alps (Figure 34) were done by Prof. Didier 

Reinhardt. The genomic comparisons presented in section 2.3 use as a first step the OrthoFinder 

files generated by Maximilian Griesmann. These data files, based on the first version of the 

annotated Dryas spp. genomes, search for the orthologous genes of M. truncatula in each Dryas 

spp. independently. The Figure 36 d from section 2.3.2 is issue from a collaboration with Aline 

Sandré. Indeed she cloned the Dryas spp. RAM1 genes and performed the L. japonicus root 

transformation and I carried out all the AM inoculations and observations. 
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2. Results 

2.1. Adaptation of Dryas spp. in a laboratory context 

2.1.1. Seed sterilization et germination 

Fungal contamination of Dryas spp. seeds was often observed, whether they were collected 

in the field or obtained from professional seed producers. Indeed, white fungal hyphae growing 

out from the seeds on agar plates (independently of the agar source) always led to seedling death 

at an early stage. Dryas spp. seeds were quite sensitive to different surface sterilization procedures 

(Figure 22): any traces of ethanol would completely inhibit germination, while the size and 

thinness of the seed coat rendered the use of sulphuric acid risky. Furthermore, contaminating 

fungi were more resistant to bleaching than other sterilizing agents tested. (Figure 22) However, 

after stratification of Dryas spp. seeds at 4˚C, most efficient sterilization and highest germination 

rates were observed by using concentrated hydrogen peroxide. Indeed approximately 100% of 

D. octopetala seeds and between 95 and 100% of D. drummondii seeds were free of contamination 

after the procedure. For D. drummondii, the maximal germination level (85%) was obtained 8 days 

post sterilization (Figure 23 c), whereas the maximum germination rate of D. octopetala, ca. 40%, 

was only reached 12 days post sterilization (Figure 23 c). 

 

 

Figure 22 | Influence of sterilization solutions on 

Dryas drummondii seeds. 

Percentage of germination (in grey) and of 

contamination (in red) of D. drummondii seeds after a 

treatment with H2O2 (30% hydrogen peroxide), or with 

Bleach (1.2% of NaClO in 0.1 % of SDS) or with 

EtOH (0.05% of Tween80 in 70% Ethanol). Displayed 

are means (n = 3 biological replicates with at least 100 

seeds per replicate) and standard errors. 

(data unpublished) 

 

 

 

 

 

 

Figure 23 | Dryas spp. from seeds to seedlings. 

(a) Isolated anemochorous silky-feathery achenes 

from Dryas drummondii. (b) 10-day-old seedlings of 

D. drummondii. Scale bars denote 1cm. (c) Time 

course of Dryas spp. germination after seed surface 

sterilization. Displayed are means (n = 4 biological 

replicates with at least 100 seeds per replicate) and 

standard errors. 

From Billault-Penneteau et al. 2019 
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2.1.2. Growth systems 

Once germinated and grown on agar plates with classical plant medium like B5 or MS 

(Gamborg et al. 1968; Murashige and Skoog 1962) (Duchefa, Haarlem, The Netherlands) or 

Fåhraeus medium (Fåhraeus 1957), Dryas spp. seedlings turned reddish, likely due to anthocyanin 

production, a response typically interpreted as stress- or defence-related. This anthocyanin 

production was less pronounced when the seedlings were grown on 0.4% Gelrite agar with 

¼ strength Hoagland medium (Figure 23 b). Moreover, after two weeks on plates, Dryas spp. 

plantlets grown on ¼ strength Hoagland medium showed darker green cotyledons and further 

developed root systems than on B5 medium. In addition, compared to plants grown on “FAB” 

medium (medium developed especially for Fabaceae plants and used as routine in our lab for 

Lotus japonicus) both Dryas spp. present longer principal root length on ¼ Hoagland and 

D. drummondii present also more lateral roots (Figure 24). 

Upon germination on plates, Dryas spp. plantlets were transferred to a hydroponic system 

(Figure 25 a) with ¼ strength Hoagland solution. In this system Dryas spp. plants grew and 

developed healthily (Figure 25 b); they formed well-developed primary and lateral roots 

(Figure 25 b). Altogether, Dryas spp. plants adapted very well to the hydroponic system tested. 

The absence of gel and soil substrates makes this system particularly well suited for root system 

analyses as it offers the opportunity to perform non-invasive observations of the roots. 

 

Figure 24 | Dryas spp. root growth on different 

agar sources and medium. 

D. drummondii (left) and D. octopetala (right) root 

length in mm (a&b) and lateral root number (c&d) 

after 6 weeks of growth on plate containing either 

0.4% gelrite or 1% Kalys agar with FAB or 

¼ Hoagland 1mM KNO3. (4 replicates with at least 20 

plantlets per replicate). 

In collaboration with Leon Van Ess during his 

Bachelor trainee under my supervision. (data 

unpublished) 

 
 

Figure 25 | Hydroponic system for 

Dryas spp. 

(a) Overview of the hydroponic 

system: assembled (left) and split up 

(right). (b) Hydroponic culture of 

Dryas drummondii after 7 weeks in the 

hydroponic system; the white rectangle 

shows a close-up view of the plant 

labelled with a white arrow. Scale bars 

denote 1cm. 

From Billault-Penneteau et al. 2019 
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2.1.3. Propagation 

For clonal propagation by cuttings, 2-3 cm of Dryas spp. stems containing one node were 

transferred into moist soil (Figure 26 b&c) in a small growth container with a transparent plastic 

lid for conservation of high humidity levels. Once the shoots had successfully rooted, the plants 

were transferred into single pots and grew normally in standard greenhouse conditions. In a first 

trial, three series of ca. 20 cuttings per species were grown in a greenhouse at different times of 

the year. Under these conditions, 65% to 95% of the Dryas spp. cuttings developed roots within 

three weeks in the absence of hormonal treatments (Figure 26 c). A second test was performed 

with classical horticultural propagating substrate and with peat pellet (Jiffy®, Denmark), and for 

32 explants per Dryas spp. (D. drummondii, D. octopetala and the hybrid D. x suendermannii) and 

per substrate. During this assay all Dryas spp. presented 100% of growing cuttings in propagating 

substrate contrary to the ones in peat pellet (81,25% for D. x suendermannii, 75% for 

D. drummondii and 56.25% for D. octopetala; Table 4). 

In this study, flower and seed production did not occur when plants were grown at a 

distance of 2 m from standard high-pressure mercury vapour lamps (providing 90 µmol.m-2.s-1 at 

the plant level) used in initial trials. However, when the plants were placed at a distance of 2 m 

under high-pressure sodium vapour lamps (150 µmol.m-2.s-1) for 16 h per day, flowering was 

induced (Figure 26 a) and seeds were produced (Figure 23 a) within less than a year after 

germination, whether the plants originated from cuttings or from sexual propagation. This is 

shorter than the five years required for D. drummondii according to Lawrence et al. (1967). 

 
Figure 26 | Sexual and vegetative propagation of Dryas spp. 

(a) 1-year-old D. drummondii plant flowering (white arrows indicate flowers). (b&c) Cuttings of 

D. drummondii at day 0 (e) and after 22 days of growth (f). Scale bars denote 1 cm. 

From Billault-Penneteau et al. 2019 

  
starting 

explants 

Rooting after 3 weeks on 

  propagating substrate peat pellet 

  number percentage number percentage 

D. drummondii 32 32 100 24 75 

D. octopetala 32 32 100 18 56,25 

D. x suendermannii 32 32 100 26 81,25 

Table 4 | Percentage of rooting of Dryas spp. cuttings on different substrates. 

(data unpublished)  
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Figure 27 | Agrobacterium rhizogenes-mediated transformation of Dryas spp. 

(a) Success rates of hairy root transformation of D. drummondii and D. octopetala depended on the bacteria density. 

Percentages of dead (white boxes), surviving untransformed (grey boxes) and transformed (black boxes) plants were 

determined five weeks after transformation on plants grown in Petri dishes. Transformation was determined based on 

mCherry fluorescence. (b) Visualization of the mCherry transformation marker of D. drummondii hairy roots after 

seven weeks of growth in sand:vermiculite (left panel) vs. growth in the hydroponic system (right panel). Red arrows 

point at lignified part of the roots. BF = bright field; mCherry = mCherry fluorescence. Scale bars denote 1cm. 

From Billault-Penneteau et al. 2019  
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2.1.4. Agrobacterium rhizogenes transformation 

We established a protocol for hairy root transformation in Dryas spp. by combining and 

adapting Medicago truncatula and L. japonicus protocols. The Agrobacterium rhizogenes strain 

AR1193 (Stougaard et al. 1987) was used because it was shown, for some species such as pea, to 

be more efficient than other strains (Clemow et al. 2011) and for practical reasons (being the strain 

routinely used in our lab for L. japonicus transformation). For protocol optimization, we 

transformed Dryas spp. using A. rhizogenes suspensions at different cell densities. Five weeks 

after transformation, the composite plants on plate were evaluated. For D. drummondii, a 

transformation efficiency of 55 to 70% was obtained under all conditions tested, while 

D. octopetala plants died more frequently in response to infection with A. rhizogenes. The use of 

higher bacterial densities had a negative effect on plant survival, while lower bacterial densities 

reduced transformation efficiency. Here, the best compromise between low mortality and 

transformation rate for D. octopetala was observed when the A. rhizogenes suspension was 

adjusted to an optical density (OD600) of 1. However, the transformation efficiency was still low 

with only 30% (Figure 27 a). The experiment was repeated three times using an A. rhizogenes 

suspension adjusted to an OD600 of 1 on ca. 70 seedlings per species. In all cases, the results were 

the same: 55 to 70% transformation for D. drummondii, maximally 30% transformation for 

D. octopetala. 

Up to seven weeks after transfer to pots or to the hydroponic system, transgenic roots 

showed healthy growth and expressed the transformation marker mCherry driven by the ubiquitin 

promoter (Figure 27 b). However, roots growing in solid substrates (such as sand:vermiculite) 

developed sections with increased lignification, hence more autofluorescence and opacity. This 

led to the quenching of the mCherry signal as highlighted by the red arrows in Figure 27 b. In 

contrast, when plants were grown in the hydroponic system, lignification was less pronounced. 

Thus, the hydroponic system is well suitable for the observation of fluorescent proteins in 

Dryas spp. hairy roots. 
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Figure 28 | Nucleic acid extractions from Dryas spp. 

(a,b) Ratios of UV absorbance at 260 nm vs. 280 or 230 nm, from DNA samples isolated from Dryas drummondii 

and Dryas octopetala using three different methods: the classical CTAB method = “CTAB”; an adapted CTAB 

method for difficult plants = “PVP/NaCl” and a method involving a Caesium chloride gradient centrifugation = 

“CsCl”. Theoretically, a 260/280 ratio (a) for nucleic acids vs. protein of at least 1.8 (dashed line) is generally accepted 

as denoting “pure DNA”. 260/230 (b) values for nucleic acids vs. polysaccharides should be higher than 2.0 (dashed 

line). All DNA isolations were performed on 30 biological replicates per method. (c) Agilent Bioanalyzer 

electropherogram analysis of RNA isolated from D. octopetala, showing RNA integrity as determined by an RNA 

Integrity Number (RIN) of 8.9 

From Billault-Penneteau et al. 2019  
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2.1.5. Nucleic acid extraction 

For molecular biological studies, DNA and RNA have to be isolated with high purity, 

integrity and yield to be used for sequencing or reverse transcription, respectively. This was 

particularly challenging since the woody nature of Dryas and the composition of the leaves adapted 

to harsh environmental conditions lead to the presence of contaminants interfering with nucleic 

acid extraction protocols.  

We tested different DNA extraction protocols on D. drummondii and D. octopetala, 

performing at least 30 extractions per method. DNA isolated from Dryas spp. with classical CTAB 

extraction protocols had an UV absorbance ratio at 260/280 of ca. 1.8, but the 260/230 ratio was 

always below 1.8, indicating polysaccharide contamination (Figure 28 a&b). Several established 

DNA extraction methods were tested, but none of them led to a yield and purity sufficient for 

robust PCRs and de novo whole genome sequencing. However, a CTAB protocol adapted for 

recalcitrant plant material (Khanuja et al. 1999) (“PVP/NaCl”) by addition of 

polyvinylpyrrolidone (PVP), followed by a high salt lysis buffer and extraction with 

chloroform:isoamyl alcohol (24:1, v/v), resulted in good quality DNA suitable for PCRs with 

reproducible results (Figure 28 b). Yet, the DNA yield and quality required for genome sequencing 

was so far only achieved using a modified Dellaporta et al. (1983) lysis protocol followed by a 

caesium chloride (CsCl) gradient centrifugation as described by Ribeiro et al. (1995). The DNA 

extracted using this last method was used for de novo whole genome sequencing performed as a 

part of an international consortium (EVONOD) in collaboration with the BGI (Beijing Genomics 

Institute, China). The first version of the D. drummondii genome was used in a phylogenomic 

comparison study by Griesmann et al. (2018). The first version of D. octopetala genome was also 

obtained but still not published. 

The SpectrumTM Plant Total RNA Kit (Sigma-Aldrich) was used in order to extract RNA 

from different organs of Dryas spp. When Polyclar AT was added during the grinding step for 

recalcitrant samples (e.g. mature leaves and lignified roots), this method resulted in RNA of 

suitable integrity and purity for the performance of reverse transcription-quantitative PCR as 

indicated by the RNA integrity number (Figure 28 c). 
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Figure 29 | PCR of housekeeping genes in 

Dryas spp. 

(a) PCR products were amplified from different 

marker genes (GADPH, EF1-a, 26S rRNA and ITS) 

using gDNA from Dryas octopetala ecotypes 

(“DA460” and “E548”) and Dryas drummondii 

ecotypes (“DA462”, “MBG”, “Alas.” and “Albe.”) 

extracted with the PVP/NaCl method (DA460* 

represents gDNA of D. octopetala ecotype DA460 

extracted with the CTAB method). (b) Nucleotide 

alignment of the fragments from D. drummondii 

ecotype DA462 and D. octopetala ecotype DA460. 

Matching residues are marked as dots and differences 

are highlighted in red. Green arrows highlight the 

primers used. 

From Billault-Penneteau et al. 2019 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 | Species specific deletion / insertion 

polymorphisms in two symbiotic genes 

[CASTOR (a) and RAM1 (b)]. 

Upper panel: alignment of the gene region between 

D. drummondii and D. octopetala; matching residues 

marked as dots and differences highlighted in coloured 

background. Lower panel: PCR of the DIPs region in 

4 different genotypes of D. octopetala and 

D. drummondii and 3 different D. x suendermannii 

hybrids. Dryas octopetala genotypes used: ecotype 

“DA460” from the seed producer Jelitto©, “Scha.” 

from German Alps in Schachen, and “E548” from 

Italian Alps. Dryas drummondii ecotypes used: 

“DA462” from the seed producer Jelitto©, “Able.” 

from Alberta, “Alas” from Alaska (both obtained in 

the Millennium seed bank of the KEW) and “BMG” 

from the botanical garden of Munich. 

(unpublished data) 
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2.1.6. Robust PCR amplification 

PCRs and subsequent sequencing of the amplified products was performed to test the 

quality of the isolated DNA samples. Primers were designed based on the first version of the 

D. drummondii genome. First, the targets were regions in the internal transcribed spacer (ITS) of 

nuclear ribosomal DNA, 26S ribosomal RNA (26S rRNA), glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) and the elongation factor 1-alpha (EF1-a). Using D. octopetala gDNA 

as template, fragments were amplified and sequenced as well. The high sequence conservation in 

these regions highlights the similarity between D. drummondii and D. octopetala. Indeed, the size 

of amplicons of both species were similar and their sequences presented few single nucleotide 

polymorphisms (Figure 29). 

Second, primers were designed based on both genomes, in order to target coding regions 

of genes encoding proteins involved in root symbioses. Sequencing of the amplified products 

enabled us to confirm or improve some gene annotations (see part 2.3). PCR fragment sequences 

revealed deletion/insertion polymorphisms (DIPs) between the two species in the CASTOR and 

RAM1 genes. Compared to D. drummondii in D. octopetala, the CASTOR gene has a 42 bp 

deletion at the beginning of the coding region (Figure 30 a). The RAM1 gene contains a 42 bp 

insertion in the region coding for the variable part of the protein (Figure 30 b and 38). These 

patterns were confirmed to be species-specific by testing several different ecotypes of both 

Dryas spp. All D. drummondii and D. octopetala genotypes analysed contained consistent 

homozygous allelic versions of RAM1 and CASTOR (Figure 30). PCR performed with these 

primers and on hybrids of D. x suendermannii showed different levels of hybridization as some 

were heterozygous for these regions and others were homozygous. For both genes, the third bands 

observed in heterozygous hybrids have been confirmed as the result of PCR artefacts. Indeed, by 

mixing D. drummondii and D. octopetala gDNA these third bands also appeared (data not 

presented). 
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Figure 31 | 17-kmer frequency distribution of Dryas 

drummondii sequenced genome. 

From Griesmann et al. 2018 
 

 

 
Statistics of genome assembly 

# of DNA 
libraries 

Predicted 
size 

Main 
Assembler 

8 253 Mb Soapdenovo 

Gapfilled scaffold 

Total length 

(bp) 
N50 (bp) 

Assembly 

Percentage 

233Mb 979 416 92,11% 

Gapfilled scafitg 

Total length 

(bp) 
N50 (bp) 

Assembly 

Percentage 

229Mb 35 876 90,55% 

Evaluation of genome assembly completeness using BUSCO 

Complete Single Duplicate Fragment Missing 

90,80% 86,40% 4,40% 3,90% 5,30% 

 

Table 5 | Statistics and evaluation of 

Dryas drummondii genome. 

From Griesmann et al. 2018 
 

 

 
Statistic of annotated genes. 

Total 

Gene number 25 030 

exon number 130 647 

intron number 105 617 

intron length (bp) 46 502 539 

Average 

mRNA length (bp) 3 208,54 

cds length (bp) 1 350,66 

exon number 5,22 

exon length (bp) 258,77 

intron length (bp) 440,29 

Evaluation of gene models using BUSCO. 

Complete Single Duplicate Fragment Missing 

90,30% 87,90% 2,40% 1,90% 7,80% 

 

Table 6 | Statistics and evaluation of 

Dryas drummondii annotated genes. 

From Griesmann et al. 2018  
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2.1.7. First Dryas sp. genome version (D. drummondii in Griesmann et al. 2018) 

Eight DNA libraries for de novo whole genome sequencing were constructed with Dryas sp 

(one of 170bp, 250bp, 350bp, 500bp, 800bp, 2kb, 6kb, and 10kb). DNA extracted by CsCl gradient 

method. RNA extracted from leaves and seedlings were used by the BGI in order to assist gene 

prediction. The transcripts were mapped to the protein-coding gene models, identified using the 

MAKER-P pipeline (version 2.31) (Campbell et al. 2014), in order to obtain gene characteristics 

(size and number of exons/introns per gene, distribution of genes, features of splicing sites, etc.). 

The first D. drummondii genome version was presented and used in Griesmann et al. 

(2018). The genome size was estimated at 253 Mbp. A total length of 233 Mbp were sequenced. 

It is estimated to be assembled at 92.11% (Table 5). This genome was been assembled at the 

scaffold level, with 62 N50 scaffolds at 979 kbp of length (Table 5). The graphic representing the 

17-kmer frequency distribution (Figure 31) of D. drummondii genome presents only one clear 

peak without intermediate peak or shoulder. This indicates a low heterozygosity rate. 

25 030 genes models were predicted and 86.64% of them are annotated (Table 6 and 

Supplemental S2). Those predicted genes have an average of 5.22 exons with an average length 

of 258.77 b. The mean of the intron length is estimated at 440.29 b (Table 6). Transposable 

elements (TEs) represent around 29% of the genome, with 13.33% of the genome which are retro-

TEs and 16.18% which are DNA-TEs (Supplemental S2). 

The same analysis for D. octopetala genome could not be presented in this thesis (see 

section 3.1.3) but it is on going. 
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Figure 32 | Detection of Arbuscular mycorrhizal fungi within Dryas drummondii and Dryas octopetala. 

(a-h) Microscopy analysis of D. drummondii and D. octopetala AM inoculation. Roots of D. drummondii (a to d) and 

D. octopetala (e to h) 45 days post inoculation either with Rhizophagus irregularis (a, b & e) or Gigaspora rosea (c, 

d, f-h). AM structures are visualized either with black ink (a, c, e & f) or with WGA-Alexa- Fluor488 (b, d, g & h) 

staining. Note that all D. drummondii roots present internalization of fungi and Arum-type arbuscules fully filling the 

host cells (b&d) whereas D. octopetala only carries external hyphae, as it is highlighted by the WGA-Alexa- Fluor488 

fluorescence picture (g) with the bright-field (h). (i) Time-course of Dryas spp. AM quantification. Percentage of root 

length colonisation was carried out at 25-, 35- and 45-days post-inoculation. The hyphae, the arbuscules and the 

vesicles were counted in D. drummondii and the external hyphae for D. octopetala. 

(data unpublished)  
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2.2. Endosymbioses within Dryas spp. 

2.2.1. Attempt of D. drummondii nodulation 

A first assay to nodulate D. drummondii plants was conducted on 12 weeks-old plants 

growing in pot containing soil sample from Alaska. This soil was collected close to wild 

D. drummondii and was containing few dry nodule sections. A second test was done by using one 

D. drummondii crushed nodule, found in the botanical garden of Munich. Both inoculum starting 

material have allowed each the inoculation of only pot. Two D. drummondii plants were present 

per pot. The root systems were carefully observed under a binocular microscope, 24 weeks post-

inoculation. Both attempts to obtained D. drummondii nodulated plants have failed. 

2.2.2. Arbuscular mycorrhiza symbiosis formation within Dryas spp. 

Even though D. octopetala does not perform root nodule symbiosis (RNS), formation of 

ectomycorrhizal (ECT) symbiosis was reported with more than 50 fungi species. However, 

interaction with arbuscular mycorrhizal (AM) fungi has never been described. So in order to 

complete the overview of root symbioses in Dryas genus, both Dryas spp. were grown in chive 

(Allium schoenoprasum) nurse pots containing either Rhizophagus irregularis or Gigaspora rosea 

fungi. Under these conditions of high inoculation pressure, all D. drummondii root systems 

contained intra-radical fungi structures. Roots inoculated with either of the two fungi, stained with 

black ink after 45-days post inoculation show all characteristics AM-symbiosis structures, such as 

internal hyphae, vesicles and arbuscules (Figure 32 a-d). Confocal microscopy pictures of 

colonized roots stained with fluorescent wheat germ agglutinin (WGA-Alexa- Fluor488) allow to 

visualize arbuscules that completely fill the plant cells. In all colonized roots of D. drummondii, 

the arbuscules were of the Arum-type, regardless of which of the two fungal species used. 

(Figure 32 b&d) On the other hand, no fungal colonization was observed on the roots of 

D. octopetala, even though external hyphae surrounding the roots were present. (Figure 32 e-h) 

In a second experiment, a time course analysis of colonization was conducted. Dryas spp. 

plants grown in sterile substrate were inoculated with 300 spores of R. irregularis per plant, which 

corresponds to an intermediate inoculation pressure. Root length colonization (determined by 

presence/absence of fungal hyphae, arbuscules and vesicles) was measured at 25-, 35- and 45-days 

post inoculation.  

At the last timepoint analysed, 50% of D. drummondii root length was colonised, whereas 

in D. octopetala, only extraradical hyphae could have been observed on 7% of the root length 

(Figure 32 i). In all inoculation configurations that was from spores or from nurse plants, with or 

without cocultivation with D. drummondii, internalisation of fungi inside D. octopetala roots was 

never observed.  
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Figure 33 | Microscopic analysis of mycorrhizal Dryas octopetala roots. 

(a) D. octopetala root system exhibiting extraradical mycelium, and the typical ectomycorrhizal rounded root tips 

(arrows). Inset: A non-mycorrhizal root. (b) Semithin cross-section of a non-colonized root; Note the cell wall 

thickenings of the endodermal cells (arrows). (c) Electron micrograph of a section as in (b). (d) Semithin section of a 

colonized root tip with extraradical colonization forming a mantle around the root (arrows). Note the dense highly 

cytoplasmic root cells. (e) Semithin section of a colonized root behind the root tip. Fungal hyphae proliferate between 

highly vacuolated cells, forming a Hartig net (arrows). (f) Electron micrograph with a close-up of a colonized root as 

in (e). Note the hyphal mantle (yellow bracket). Host cells (marked with asterisks) are surrounded by the Hartig net. 

(g) Close up of the Hartig net. Size bars: 100µm in (a), 50µm in (b), 20µm in (c)-(e), 10µm in (f), and 5µm in (g). 

From Prof. Didier Reinhardt (data unpublished) 

 

 
Figure 34 | Identification of fungal identities in Dryas octopetala roots. 

Genomic DNA of colonized roots of D. octopetala were analysed by PCR with primers designed to preferentially 

amplify ribosomal genes of plant (Plant), ascomycetes (Asco), basidiomycetes (Basi), or Glomeromycetes (Glom). B, 

A, and G represent genomic DNA from a basidio- asco-, and glomeromycete, respectively, as positive controls 

(Agaricus bisporus, Penicillium roqueforti, Rhizophagus irregularis). Several individuals from D. octopetala, Oxalis 

corniculatus, and Muscari armeniacum were sampled from the same location. 

From Prof. Didier Reinhardt (data unpublished)  
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2.2.3. Absence of Glomeromycota in the D. octopetala roots fungi community 

(From Prof. Didier Reinhardt). 

In order to eliminate the hypothesis that the lack of AM symbiosis with D. octopetala roots 

in sterile substrate could be due to these gnotobiotic system or to the fact that only two AM fungi 

species were tested, in situ observations were carried out by Prof. Didier Reinhardt. 

Root systems of D. octopetala, collected in the Switzerland Alps, were characterized by 

the presence of an abundant extra-radical mycelium and rounded root tips, which are typical 

structures of ECT roots (Figure 33). Cross-sections of the roots highlighted the extensive extra-

radical mycelium in the colonized root tips forming a dense hyphae mantle, and also the fungi 

hyphae growing between the host cortical cells forming the Hartig net (Figure 33). In order to 

complete the overview of the fungi community found to be associated with D. octopetala roots, 

together with those of the neighbouring plants, presence of fungi from three different phyla was 

investigated (Figure 34). To do so, PCRs with primers specific of Ascomycota, Basidiomycota or 

Glomeromycota ribosomal region were performed on DNA extracted from roots. As expected, 

Ascomycota and Basidiomycota fungi DNA could be amplified from D. octopetala roots, but no 

Glomeromycota fungi DNA was found in those samples. However, fungi belonging to this last 

phylum were present in the soil close to Dryas sp., as amplicons were obtained in total DNA 

extracted from neighbouring growing mono and dicotyledonous plants (Muscari armeniacum and 

Oxalis corniculata). 

By these results, we confirm the observation of Fitter and Parsons (1987) that 

D. drummondii interacts with AM fungi. Furthermore, we describe for the first time an unexpected 

rare case of AM-symbiosis polymorphic trait within the same plant genus. 
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Figure 35 | Screening of AM symbiosis in hybrid D. x suendermannii. 

(a) Diagram of the D. x suendermannii root systems analysed for AM symbiosis. (b to f) Pictures of representative 

hybrid roots after black ink staining. 166 hybrids plants were analysed 45 days post inoculation. In grey, all roots 

without any external hyphae (b) were excluded to avoid false-negative non-symbiotic plants. (c&d) Root systems 

exhibiting external hyphae but without intraradicular fungi structures are considering as symbiosis incompetent and 

represent 83% (in red). Note in c the external hyphae that progress along the root but never penetrate it like those 

progressing from a germinating spore in d. (e&f) 17% of the D. x suendermannii roots systems with external hyphae 

are colonized (in green). Note in e the presence of vesicles inside the root and arbuscules in f. Scale bars denote 50µm. 

(data unpublished)  
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2.2.4. Screening of endomycorrhizal symbiosis in hybrid Dryas x suendermannii 

Seeds of D. x suendermannii, hybrid species between D. drummondii and D. octopetala, 

were obtained from the botanical garden of Vienna. AM inoculation of these hybrid plants were 

carried out, in order to study a genetically dominant or recessive trait of the symbiosis. This should 

help in the near future to narrow down and/or to determine which loci are important for the 

endosymbiosis polymorphic trait between Dryas spp. 

A first roots screening was done on 166 D. x suendermannii plants. These plants were 

cultivated in chive nurse pots or with a minimum of 500 spores per plants to assure a high 

inoculation pressure. Each pot contained at least three plants. Based on the AM quantification time 

course done previously, the observations were carried out after 45 days post inoculation. In order 

to limit the risk of false negative regarding non-AM-symbiosis competent plants, the analysis only 

considered plants with at least the presence of external hyphae associated to the roots. After this 

filter a total of 108 plants were kept. Among these plants, 83% of the hybrids were considered as 

non-AM competent. The other root systems (17%) had internal structures characteristic of the AM 

symbiosis, as shown on Figure 35. 

For this first screening only a sample of all root systems were observed in order to keep 

the plants alive for future analysis. Indeed, these plants are currently the object of vegetative 

propagation for a second AM screening and DNA extractions. In the Discussion section 

(part 3.2.3) the reasons why it is difficult to conclude on the dominant or recessive nature of the 

AM symbiosis in Dryas species are presented. 
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2.3. Genomic investigation on symbiotic genes 

In order to identify the causative factors of the endosymbiotic polymorphic trait, 

preliminary genomic studies were performed. During these genetic comparisons, among the 

different reference genomes of model plants in the endosymbiosis field, M. truncatula was chosen 

as starting point. This choice is due to its genome quality in term of sequencing, annotation and 

compilation. On the basis of the M. truncatula genome, investigations were carried out on the 

presence or absence of orthologous genes in both Dryas spp. 

 

 

 

Gene name 

Mt ID Dd ID Do ID CDS alignment 

 in genome v4.0 in genome v1.0 in genome v1.0 gap 
%ident

ity 

1 CASTOR Medtr7g117580 Drydr411S21715* Dryoc57S26677* 48 97,7 

2 DMI1 / POLLUX Medtr2g005870 Drydr34S20655 Dryoc124360S19988 9 98,8 

3 CNGC15a Medtr1g064240 

Drydr51S22868 Dryoc370S24899 0 99,6 4 CNGC15b Medtr4g058730 

5 CNGC15c Medtr2g094860 

6 RAM1 Medtr7g027190 Drydr690S13573 Dryoc1788S22993 42 96,9 

7 RAD1 Medtr4g104020 Drydr295S10168 Dryoc3491S13853 0 98,9 

8 SEC13 Medtr3g054090 Drydr344S03618 Dryoc1259S11032 0 99,1 

9 ELYS Medtr5g012940 Drydr16S16592 Dryoc217S23390 0 99,1 

10 NENA / SEH1 Medtr6g072020 scaffold86_380101_383274*** scaffold1123_8809_12224*** 0 99,6 

11 NUP133 Medtr5g097260 Drydr987S14816 Dryoc124459S10279 0 98,7 

12 NUP85 Medtr1g006690 scaffold146_2300723_2306964*** scaffold124437_332063_338305*** 0 99,4 

13 IPD3 / CYCLOPS Medtr5g026850 Drydr202S08474 Dryoc138S22273 30 98,1 

14 DMI3 / CCaMK Medtr8g043970 Drydr32S20242 Dryoc124299S01333 0 99,5 

15 NSP1 Medtr8g020840 Drydr490S04636 scaffold4202_cov310_586076_587730*** 0 98,8 

16 NSP2 Medtr3g072710 Drydr40S04007 scaffold124289_483573_485114*** 27 96,1 

17 RAM2 Medtr1g040500 Drydr94S24667 Dryoc9385S07187 0 98,6 

18 STR1 Medtr8g107450 Drydr192S07836 Dryoc138S22210 0 99,0 

19 STR2 Medtr5g030910 Drydr87S24490 Dryoc756S06838 3 98,9 

20 PT4 Medtr1g028600 Drydr2S08009 Dryoc124371S02116 15 97,8 

21 VAPYRIN Medtr6g027840 Drydr46S04331 Dryoc745S06808 6 97,8 

22 CCD7 Medtr7g045370 Drydr41S21629 Dryoc1414S22435 0 99,0 

23 CCD8 Medtr3g109610 Drydr146S16037 Dryoc124437S10120 0 98,7 

24 MAX2 Medtr4g080020 Drydr229S02232 Dryoc1462S03615 21 97,6 

25 DELLA1 Medtr3g065980 Drydr153S07143 Dryoc1731S03822 21 97,9 

26 D14 Medtr1g018320 Drydr146S15906 Dryoc1272S21620 0 99,6 

27 D14L Medtr5g016150 Drydr284S02892 Dryoc3458S24773 0 98,5 

28 NIN Medtr5g099060.1 Drydr380S11191 Dryoc1938S12434 69 96,8 

29 RPG Medtr1g090807 Drydr103S00110 Dryoc317S13600 201 93,4 

30 PUB1 Medtr5g083030  Drydr2S08284 
scaffold124369_cov327_1986538_1988622*

** 
15 98,0 

31 LIN / CERBERUS Medtr1g090320 Drydr276S09581 Dryoc122805S17489* 15 98,5 

32 NUP96 Medtr5g097890 Drydr219S18017* Dryoc1653S03770* 0 99,7 

33 NUP107 Medtr8g022010 Drydr490S22714 Dryoc1269S21585 0 99,7 

34 NUP160 Medtr1g063180 Drydr338S20595* Dryoc570S26469* 0 99,4 

36 NFP / NFR5 Medtr5g019040 Drydr368S03767  Dryoc124277S01099/Dryoc124277S01098** 0 98,6 

37 DMI2 / SYMRK Medtr5g030920 Drydr303S03268 Scaffold46413_cov288_532480_542645*** 0 98,7 
 * -> Dryas gene annotation redone with FGENESH+      

 ** -> 2 Dryas gene annotations corresponding to one gene in the other Dryas     

 *** -> Dryas gene annotation done with FGENESH+      

 

Table 7 | Comparison of important endosymbiosis genes orthologous between both Dryas spp. 

Determination of the orthologous genes in Dryas spp. of the Medicago truncatula ones. Pairwise 

comparison of the predicted Dryas spp. CDS was done based on MUSCLE alignment.  

(data unpublished)  
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2.3.1. Presence / absence of genes 

As a first step, based on the symbiotic toolkit described by Delaux et al. (2013a) and in 

combination with the symbiotic genes used in routine by our team, a list of the 37 important known 

genes for root endosymbioses (AM and also RNS) in M. truncatula was established (Table 7). 

This list covers the genes of the common parts within the symbiosis signalling pathways and some 

specific ones for nodulation or AM symbiosis. In collaboration with Griesmann and based on the 

first Dryas spp. genomes version, orthologous genes of this list were obtained with OrthoFinder 

then confirmed by synteny for both Dryas spp. In some cases, the Dryas spp. gene annotations 

needed to be redefined. Indeed, some Dryas spp. gene predictions were presenting supernumerary 

introns between both Dryas spp. or compared to M. truncatula or L. japonicus orthologous ones. 

Sometimes two predicted genes in Dryas sp. were corresponding to two exons in the other 

Dryas sp. or in M. truncatula. So in these suspicious situations, the nucleotide sequence was 

submitted to a bioinformatic gene prediction tool: FGENESH+ (Solovyev 2007). This was done 

in order to confirm or invalidate the original gene prediction. Sometimes, the orthologous gene 

has only been found in one of the Dryas spp. or even not at all. In these particular cases more 

careful investigations were done by blasting the M. truncatula gene and/or protein on the full 

Dryas spp. genomes. And in parallel the M. truncatula gene was used as query in order to find 

syntelogous region in Dryas spp. And when one Dryas sp. gene was annotated it was also used as 

query in order to compare and confirm the syntelogous gene found previously. When best blast hit 

and syntelogous region were corresponding, the Dryas sp. genome regions were submitted to 

FGENESH+ in order to predict a gene annotation. (See the example of NSP1 gene which was 

unannotated in D. octopetala genome on Supplemental S3&4). After confirmation to have the 

Dryas spp. orthologous genes, alignment of them side by side between D. drummondii and 

D. octopetala was performed. 

The table 7 shows the gene identification of the M. truncatula gene in correlation with the 

orthologous ones in Dryas spp. As it could be seen in this table, none of the genes in this list are 

missing or fragmented in Dryas spp. genomes. Moreover, looking closer to the predicted coding 

sequence (CDS) sequences only few SNPs (single nucleotide polymorphism) are found between 

both Dryas spp. Some genes are showing gaps, called DIPs such as RAM1, CASTOR, CYCLOPS 

or PT4. However, all these DIPs in the coding parts are a multiple of 3, this doesn’t bring frame 

shift. Investigations were done on one of these genes with a DIP: RAM1 (presented below in part 

2.3.2). 
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a 
 

Mt gene 

name 

Mt ID 
Lj gene name 

Lj ID Dd ID Do ID CDS alignment 
 in genome v4.0 in genome v3.0 in genome v1.0 in genome v1.0 gap %identity 

1 MtLYR10 Medtr7g029650 LjLYS16 Lj1g3v3834250 Drydr361S03721* Dryoc1436S22612* 18 97,7 

2 
MtLYR8 Medtr5g042440 

 - Lj0g3v0102179 
DrydrC1210588S14895 scaffold2870_cov282_247003_250754*** 0 99,7 

3  - Lj0g3v0124999 

4 
LYK11 Medtr8g014500 

LjLYS5 Lj3g3v2318170 
Drydr344S20828 Dryoc1259S21404 0 99,5 

5 LjLYS4 Lj3g3v0290100 

6 LYK10 Medtr5g033490 LjLYS3/EPR3 Lj2g3v1415410 scaffold13_1394870_1398848*** Dryoc1254S21264* 3 98,4 

7 
 - Medtr1g094730 

 - Lj5g3v1811460 
scaffold105_258915_260153*** Dryoc679S15237 0 99,2 

8  - Lj0g3v0106309 

9 
 - Medtr2g095180  - Lj3g3v1101700 

Drydr51S04719* Dryoc370S05289 12 98,1 

10 Drydr51S12899 Dryoc370S05288 0 98,2 

11 MtLYR3 Medtr5g019050 LjLYS12 Lj2g3v1828320 Drydr368S03773 Dryoc3475S05200 6 98,1 

12 MtLYR2 Medtr1g021845  - Lj0g3v0145339 Drydr368S03769 Dryoc3475S24779 

premature STOP 

codon in 

D. octopetala 

13 MtLYR4 Medtr5g085790 LjLYS13 Lj2g3v2899910 
Drydr60S04994 Dryoc3780S05443 48 97,4 

14 MtLYR7 Medtr3g080170 LjLYS14 Lj2g3v2899900 

15 

LYK8 Medtr2g024290 

LjLYS7 Lj6g3v1812110 

Drydr64S23432 scaffold3035_cov254_60194_55004*** 

N sequence in the 

middle of 

D. octopetala 
16  - Lj6g3v1812100 

17 LYK9 Medtr3g080050 LjLYS6 Lj6g3v1055580  -  -  -  - 

18 LYK3 Medtr5g086130 
LjNFR1 Lj2g3v2904690 

scaffold316_408621_413861*** Dryoc2271S23481* 0 99,4 

19 LYK2 Medtr5g086330 

20 LYK7 Medtr5g086030 
LjLYS1 Lj2g3v2904610 

21 LYK6 Medtr5g086040 

22  - Medtr5g086080  -  - 

23 LYK5 Medtr5g086090 

LjLYS2 Lj2g3v2904640 24 LYK4 Medtr5g086120 

25 LYK1 Medtr5g086540 

26 MtNFP Medtr5g019040 LjNFR5 Lj2g3v1828350 
Drydr368S03767 Dryoc124277S01099/Dryoc124277S01098** 0 98,6 

27 MtLYR1 Medtr8g078300 LjLYS11 Lj4g3v0912440 

b 
 OthoFinder tree n° Mt ID Lj ID Dd ID Do ID CDS alignment 

Remarks  (S3 part. 4) in genome v4.0 in genome v3.0 in genome v1.0 in genome v1.0 gap % identity 

1 

1 

Medtr1g009270 Lj0g3v0133349 

Drydr146S16082 Dryoc124516S20838 30 97,2 

gap in the kinase domain of D. 

octopetala (confirmed by PCR-

sequencing) 
2 Medtr8g087420 Lj1g3v1991630 

3 Medtr8g101260  / 
Drydr232S08845 Dryoc124437S10104 0 98,4   

4 Medtr6g093050 Lj5g3v0196811 

5 Medtr2g105900 Lj0g3v0094389 Drydr490S04685 scaffolf124556_cov322_468519_465940*** 30 97,1   

6 

2 

Medtr5g075630  / 
Drydr285S09810 Dryoc136S21976 21 97,2 gap in D. drummondii 

7 Medtr3g062500 Lj0g3v0115709 

8 Medtr7g073710 Lj1g3v2536060 Drydr291S19673 Dryoc124346S19689 0 99,6   

9 Medtr5g068210 Lj2g3v2173020 
Drydr2S08214 scaffold124369_cov327_1413875_1415942*** 0 99,4   

10 Medtr3g093710 Lj1g3v1113880 

11 

3 

Medtr2g030380 Lj0g3v0361919 Drydr328S03463* Dryoc1123S00266 0 99,4   

12 Medtr5g087780 Lj2g3v2984880 Drydr241S02441 Dryoc124348S01977 0 98,9   

13 Medtr3g094710 Lj1g3v1207870 Drydr22S18037 Dryoc124390S20279 0 98,9   

14 

4 

Medtr6g470960 
Lj0g3v0019189 

Drydr192S07840 Dryoc138S22207 6 99,0 gap in D. drummondii 15 Lj0g3v0019209 

16 Medtr8g107470 Lj0g3v0328989 

17 Medtr5g078080 Lj0g3v0161519 Drydr27S09379 Dryoc1938S12468 0 99,0   

18 

5 

Medtr5g009660 Lj2g3v2087830 
scaffold615_122873_119733*** Dryoc124325S19332* 0 99,0   

19 Medtr8g099195 Lj4g3v3002540 

20 Medtr3g090660 
Lj1g3v0934380 

Drydr2S08026 Dryoc124371S02112 0 98,9   21 Medtr3g090665 

22 Medtr1g028890 Lj0g3v0308309 

23 

6 

Medtr4g014070 Lj0g3v0356809 Drydr238S18604 Dryoc11743S07757 0 99,6   

24 
Medtr5g083480 

Lj0g3v0055039 
Drydr2S08262 scaffold124369_cov327_1816345_1818990*** 0 99,1   

25 Lj2g3v2843040 

26 

7 

Medtr8g021350  / Drydr490S04627 Dryoc2378S04362 24 98,1 gap in D. drummondii 

27 Medtr2g042710  / 
Drydr45S12376* Dryoc2953S13472* 0 98,6   

28 Medtr4g124990 Lj5g3v1749280 

29 8 Medtr4g113100 Lj0g3v0346099 Drydr443S12157 Dryoc4986S26064 0 98,7   

30 
9 

Medtr1g107460 Lj5g3v2113420 Drydr459S12667 Dryoc939S27999 0 98,8   

31 Medtr4g094958  / Drydr284S19423 Dryoc124303S18811 0 98,9   

32 
10 

Medtr4g094885 Lj6g3v2158590 Drydr284S19431 Dryoc124303S18798* 15 98,4 gap in D. drummondii 

33 Medtr3g102180 Lj1g3v1686670 Drydr146S15940 scaffold842_cov316_609846_612519*** 0 98,8   

34 

11 

Medtr3g078250 Lj1g3v0415090 
Drydr295S10075 Dryoc1290S11294 0 99,5   

35  / Lj4g3v1535150 

36 Medtr2g023150 Lj0g3v0043799 Drydr226S18342 Dryoc1228S17759# 39 97,1 
no gap (sequencing error 

found by PCR-sequencing) 

37 

12 

 /  / Drydr146S00962 Dryoc124399S09791 9 98,0 gap in D. octopetala 

38 Medtr5g055470  / 
Drydr94S24708 Dryoc124421S20489 0 99,5   

39 Medtr1g110280 Lj5g3v2182520 

40 

13 

 /  / Drydr94S06024 Dryoc124421S20488 0 99,2   

41 
Medtr1g109580 

Lj5g3v2179880 

Drydr458S22222 Dryoc3488S13827 0 99,3   42 Lj5g3v2179770 

43  / Lj0g3v0291629 

44 
14 

Medtr7g070200 Lj1g3v2377960 
Drydr13S15552 Dryoc1047S16865 0 99,0   

45 Medtr4g014350 Lj3g3v1381520 

46 

15 

Medtr7g103440 Lj1g3v4693100 

Drydr270S09399 Dryoc5949S26711 0 99,0   47 
Medtr1g061590 

Lj0g3v0154969 

48 Lj5g3v0705400 

49 
16 Medtr8g046290 

Lj0g3v0073209 
Drydr2S01726* scaffold124369_cov327_1081750_1070041*** 0 99,5   

50 Lj0g3v0073219 

51 17 Medtr4g074080 Lj3g3v3500180 Drydr96S14706 Dryoc124252S18122 18 98,3 gap in D. drummondii 

52 18 Medtr1g052425 Lj0g3v0328559 Drydr49S22603 Dryoc5307S14592 0 99,5   

53 19 Medtr7g059225 Lj1g3v3464950 Drydr380S11325 Dryoc7545S15634 0 99,6   

54 20 Medtr6g069030 Lj2g3v0561100 Drydr192S07906 Dryoc124309S18845* 0 99,7   

55 21 Medtr2g008740  / Drydr265S09332 Dryoc124300S18768/Dryoc124300S01356** 66 94,6 Fragmented gene 

56 22 Medtr5g094380 Lj2g3v3234610 Drydr64S23384 Dryoc124371S09594* 3 98,6 gap in D. drummondii 
 * -> Dryas gene annotation redone with FGENESH+      

 ** -> 2 Dryas gene annotations corresponding to one gene in the other Dryas      

 *** -> Dryas gene annotation done with FGENESH+      

Table 8 | Comparison of LYMS-RLK and LRRIII-RLK genes orthologous between both Dryas spp. 

Determination of the orthologous genes in Lotus japonicus and Dryas spp. of the Medicago truncatula LYSM-RLK 

(a) or LRRIII-RLK (b). List from the iTAK database. Pairwise comparison of the predicted Dryas spp. In the column 

“Remarks” when it is notified “gap in D. drummondii” it means that there is a gap in D. drummondii sequence 

compared to D. octopetala and the D. octopetala one is similar to the other Rosaceae. The L. japonicus genes affected 

in a LORE 1 insertion line used in part 2.3.3 are highlighted in red. (data unpublished)  
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With the fact that AM fungi never enter inside the D. octopetala roots, a second set of 

genes investigations were performed in the upstream part of both symbiosis signalling pathways. 

Indeed, genetic comparison was carried out focusing on three families of receptor-like kinase 

(RLK) which contained important symbiosis genes. These families are the LYSM-RLK (Lysin 

motif domain-containing RLK; including the nod-factor receptor or perception genes: NFP and 

NFR), and two LRR-RLK (leucine-rich-repeat RLK): the subfamilies LRR-III (LjALB1; aberrant 

localization of bacteria inside nodule1) and LRR-I-1 (also named ShRKs because contained all the 

SYMRK homolog receptor kinases). As previously, the same process was carried out on the 

22 LYSM, 34 LRR-I-1 and 47 LRR-III of M. truncatula, extracted from the iTAK database 

(Zheng et al. 2016). 

The LRR-I-1 is a huge gene family which is derived from several series of gene 

duplications and translocated on the same chromosome. Indeed in M. truncatula there are 65% of 

these genes on the chromosome 8. This made the fine determination of each orthologous gene 

quite difficult (Supplemental S5 part 5). However, orthologs of all D. drummondii LRR-I-1 were 

found in D. octopetala (data not shown). 

For the two other investigated RLK families, we could easily find and distinguish all genes. 

There is no absence of orthologous genes between both Dryas spp. In some cases, for one gene in 

M. truncatula several orthologous ones could be found in both Dryas spp. and vice versa. For 

example, in the first list, there are three versions of CNGC15 in M. truncatula and only one in both 

Dryas spp. (Table 7 lines 3-5); just like, it is found one gene in both Dryas spp. for seven 

homologous ones in M. truncatula (from LYK1 to LYK7) or three in L. japonicus (NFR1, LYS1 

and LYS2); Table 7 lines 18-25). And in another instance, MtLYR8 has two homologous genes in 

Dryas spp. (Table 8 a lines 15,16). This highlights some specific duplications during the evolution 

of the green lineage that separates the Fabaceae from the Rosaceae. As for the first list of genes 

when nucleotide sequences were aligned few SNPs were found. Also, several gene predictions 

were submitted to FGENESH+ in order to confirm or redefine the annotations; afterwards some 

sequence regions were amplified by PCR and resequenced. Some rare SNPs were invalided, this 

is the case for example for the Dryoc1228S17759 (Table 8 b line 11). 

Globally the orthologous investigation and comparison on the 37 genes of the first list 

(Table 7) and on these three RLK families (Table 8 a&b) have not highlighted an absence of gene 

between both Dryas spp. Focusing on the LYSM and LRR-III families, only few of them (one 

LYSM and two LRR-III) are presenting polymorphism that could be resulting in a difference of 

phenotype or protein functionality. One LRRIII present a gap in the kinase domain of 

D. octopetala (Table 8 b line 1) and another one is fragmented (due to 375bp insertion in 

D. octopetala, Table 8 b line 55). Whereas one LYSM present a frame shift bringing a premature  
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Figure 36 | Analysis of the deletion/insertion polymorphism in Dryas spp. RAM1. 

(a) Alignment of the gene structure of Dryas spp. RAM1 with locations of the D. octopetala insertion 

(red box) and of the primers used bellow (green boxes). Black boxes indicate exons separated by 

introns (grey lines) and gaps are represented in blank. (b) Nucleotide alignment of the fragments 

from D. drummondii ecotype DA462 and D. octopetala ecotype DA460. Matching residues are 

marked as dots and differences are highlighted in red. Green arrows highlight the primers used. (c) 

Alignment of the full RAM1 protein from different Rosaceae (D. octopetala, D. drummondii, 

Prunus persica, Prunus mume, Rosa chinensis and Fragaria vesca) and from Lotus japonicus, 

Medicago truncatula and Vitis vinifera (non Rosaceae plants are with grey background). 

D. octopetala specific insertion is highlighted with the red box. Bleu arrows show the separation 

between both exons. (d) Laser scanning confocal images of L. japonicus hairy roots colonized by 

Rhizophagus irregularis. ram1-3 mutant transformed with an empty vector control (EV), ram1-3 

transformed with a genomic fragment containing the L. japonicus, D. drummondii or D. octopetala 

RAM1 gene, and a 1,861 bp LjRAM1 promoter fragment upstream of the transcriptional start site at 

5 weeks post-inoculation are shown. Scale bars denote 50µm. The fungus is stained with WGA-

Alexa- Fluor488. 

In collaboration with Aline Sandré who cloned the Dryas RAM1 genes and performed the root 

transformation (data unpublished)  
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STOP codon in the middle of the gene (Table 8 a line 12) and a second one could not be defined 

due to the presence of an ambiguous residues sequence (Table 8 a lines 15-16). Preliminary 

investigations on two of these putative candidates are presented in a next part (part 2.3.3). 

2.3.2. RAM1: a deletion/insertion polymorphism case study 

As presented during the first targeted genetic comparison performed, all symbiotic genes 

were present in D. octopetala, but some important ones have striking DIPs. This is the case for the 

RAM1 gene which has an insertion of 42bp in D. octopetala. This insertion is located at the end of 

the first exon (Figure 30 and 37 a&b), which is considered as the variable part of this gene family. 

This DIP was consistently confirmed by PCR done on several ecotypes and genotypes of both 

Dryas spp. Moreover, those PCR have highlighted the homozygous status of each Dryas spp. 

independently of the genotype or ecotype. In addition, the alignment of RAM1 from diverse AM 

plants (M. truncatula, L. japonicus, Vitis vinifera and Rosaceae, such as Prunus persica, Prunus 

mume, Rosa chinensis and Fragaria vesca) highlights that this insertion is specific to D. octopetala 

(Figure 36 c). 

This insertion of a multiple of three does not bring a frame shift but adds 14 amino acids 

to the protein. In order to verify if this insertion leads to a functional protein or to a loss of function, 

interspecies complementation tests were done. Dryas spp. RAM1 genes from both species have 

been cloned (from the START codon to the STOP codon including the intron) then introduced in 

the L. japonicus ram1-3 mutant. A mutation on LjRAM1 gene does not lead to a non-AM 

phenotype. However, this mutant is characterized by the formation of aborted arbuscules 

(Pimprikar et al. 2016); Figure 36 d). After hairy root transformation of ram1-3 mutants with either 

native L. japonicus or Dryas spp. RAM1 under control of LjRAM1 promoter, plants were 

inoculated with R. irregularis prior laser confocal observations of the arbuscules. A transformation 

with a dummy sequence at the place of the gene of interest (empty vector, EV) was used as negative 

control (Figure 36 d). As presented in Pimprikar et al. (2016) the complementation of this mutant 

with the native LjRAM1 allows to restore the wild type arbuscules phenotype (Figure 36 d). 

L. japonicus ram1-3 mutants transformed with D. drummondii RAM1 exhibit wild type 

arbuscules, filling totally the host cells. This shows that the D. drummondii RAM1 protein is 

functional and that the interspecies cross complementation works (Figure 36 d). Surprisingly this 

cross complementation is also working with the D. octopetala gene version. Indeed, arbuscules in 

the ram1-3 mutant transformed with the RAM1 gene containing the 42 nucleotides of the 

D. octopetala insertion, are filling fully the host cells, as the wild type (Figure 36 d). 
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Figure 37 | Phenotyping of Lotus japonicus LORE 1 insertion lines. 

(a&b) Determination of the primary root length (in cm; a) and of the nodule number 

per root system (b) in wild type L. japonicus (GIFU), in two LORE 1 insertion lines 

affecting a LYSM gene (Lj0g3v0145339; lysm_1 and lysm_2) and in three LORE 1 

insertion line affecting a LRRIII gene (Lj1g3v1991630; lrrIII_1, lrrIII_2 and lrrIII_3). 

(c) Visualisation of representative symbiotic structures in the different lines used in a. 

Mesorhizobium loti expressing DsRED highlight the infection threads shape (upper 

panel) and the colonization of nodules (lower panel). Roots were analysed 5 weeks 

after inoculation. 2 replicates with an average of 14 plantlets per genotypes for each 

replicate. Lines reference and seed bags number are listed in Supplemental S6. Scale 

bars denote 50µm 

(data unpublished) 
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2.3.3. LORE1 analyses of the LYSM and LRR-III candidates 

From the second genes comparison done on the receptor kinase families (Table 8 a&b) 

some genes were presenting striking differences, that could lead to distinct phenotypes. Indeed, as 

mentioned in part 2.3.1, one LYSM and two LRR-III present between both Dryas spp. premature 

STOP codon and/or frame shift. These genes were either not described in L. japonicus or 

M. truncatula or not investigated for symbiosis. In front of the lack of available mutants in 

Dryas spp., the mutant version of the orthologous genes in L. japonicus were obtained in the 

LORE 1 Lotus mutant bank (Małolepszy et al. 2016). However, on these three Dryas spp. genes, 

one of the LRR-III does not have ortholog in L. japonicus (Table 8 b line 55 and 

Supplemental S6). In order to limit the risk of misleading observations due to background 

mutations, several lines with exonic insertion into the gene of interest and as few other insertions 

as possible were selected (Supplemental S6). Two and three mutant lines were respectively 

ordered for the remaining LYSM and LRR-III candidates. When homozygote status was 

confirmed for the gene of interest in the LORE 1 lines, phenotyping assays of both symbioses were 

carried out. These assays were done on plants from two different seed bags for each LORE 1 lines, 

with an average of 14 plants per seed bags. All the mutant lines were presenting root system 

development similar to the wild type (Figure 37 a). All mutants were colonized with R. irregularis 

and presenting normal developed arbuscules (data not shown). After inoculation with DsRed 

rhizobia, all mutants were showing nodule number and development similar to the wild type as for 

their infection threads (Figure 37 b&c). 
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3. Discussion 

Holmer et al. (2017) concluded that the combination of next generation sequencing and the 

emergence of new model species are important steps towards advancing the understanding of the 

evolution of the nitrogen-fixing root nodule symbiosis. With regard to the aim of engineering 

nitrogen-fixing root nodule symbiosis in non-legumes it is crucial to understand which genes 

distinguish nodulators and non-nodulators. Within the Rosaceae, the genus Dryas contains very 

closely related nodulating and non-nodulating species, allowing full genome comparisons. Due to 

its basal phylogenetic position within the Rosaceae, Dryas represents a key genus for evolutionary 

studies. Based on this, my thesis attempts to develop this plant genus in a laboratory context as a 

model, while focusing on root endosymbioses. 

To establish Dryas as a new model genus in the Rosaceae family, the first step was to 

develop and adapt protocols to introduce Dryas spp. into the laboratory. Secondly, an investigation 

into arbuscular mycorrhizal (AM) symbiosis was needed. Indeed, to date, no published study has 

been conducted on this symbiosis within this genus. Then finally, a first effort at genomic 

investigation and comparison has been carried out. 

3.1. Dryas a new genus model 

3.1.1. Introduction of Dryas spp. in a laboratory context 

Dryas spp. had never been used routinely in laboratories. Before the setting up of any 

molecular or genetic study protocols, the development of cultivation methods under controlled and 

sterile conditions was necessary. I have tested several seed surface sterilization procedures. The 

most efficient one (between high germination rates while eliminating contaminations) was 

obtained with the use of concentrate hydrogen peroxide. An interval of four days to reach 

maximum germination is observed between D. drummondii and D. octopetala. This interval seems 

due to plant species. Indeed, this is consistent for all cultivars examined, not only for seeds 

produced in the greenhouse or botanical garden during the same month, but also for commercial 

seeds. However, given that D. octopetala has a very wide distribution, it is well possible that the 

four lineages examined do not encompass the entire variability of this species. 

Once optimal sterilization and germination rates had been established, I have carried out 

different growth protocols from conventional pots to plates, to hydroponic system and jars. These 

distinct growth systems combine diverse advantages for research such as sterile culture, conditions 

for root system observations and for inoculation with the microsymbiont. Frankia strains able to 

nodulate D. drummondii have not yet been successfully cultured (Pawlowski and Demchenko 

2012), necessitating infection with crushed nodules. Because these nodules carry a rich fungal and 
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bacterial microbiome on the surface, inoculation of Dryas spp. with these nodules while 

maintaining a gnotobiotic system is challenging. On the other hand, plants grown in pots do not 

represent the most suitable system for root analyses. The process of cleaning the soil from the 

roots with water (deionized or not) could interfere with experiments due to putative osmotic shock; 

furthermore, either brushing the soil or harvesting root systems entails the risk of breaking thin 

and fragile lateral roots and root hairs. To circumvent this issue, plants can be grown in Petri 

dishes. For Dryas spp. this system was suited for early stages of development; for longer 

experiments exceeding five weeks, root and shoot growth required more space. Furthermore, 

shielding of plates never totally protected the roots from light, and a long exposure of roots to light 

tends to interfere with the analysis of root responses to any treatment. Exposure of roots to direct 

light modifies their transcriptome (Hemm et al. 2004) and often leads to stress responses, which 

can perturb the analyses and cause misleading effects. Hydroponic systems offer the possibility to 

observe the roots in a non-invasive way while also shielding them from light. They can be used 

with or without an inert substrate that mimics physical soil contact. The fact that Dryas spp. can 

grow in well-aerated soil but can also tolerate flood periods (West et al. 1993), suggested the use 

of hydroponics as a method of choice. Moreover, this system leads to healthy, lignin-poor plants 

that are suitable for a variety of experiments. 

As mentioned in introduction, Dryas are woody shrubs showing predilection for calcareous 

soil. Among the different growth medium tested ¼ Hoagland was retained. Indeed, besides the 

fact that Hoagland was originally developed for woody plants, it is the medium that contains the 

most calcium compared to the other tested media. And, it gives the healthiest growing plants. 

As soon as Dryas spp. could be grown under a controlled environment, vegetative and 

sexual propagation was investigated. In the wild, the clonal growth of Dryas spp. enables 

individuals to persist and grow in extreme environments where sexual proliferation is often 

unsuccessful (Wookey et al. 1995), and where individual clones of D. octopetala commonly live 

for more than 100 years (Kihlman 1890; Crawford 1989). The growth of cuttings was obtained in 

three weeks without the use of hormone cocktail and with a high success rate (over 65%). This 

easy protocol for the vegetative propagation of Dryas spp. by cuttings is an important tool for 

performing experiments on a high number of plants that have the same genotype, and it obviates 

the requirement for seeds. 

Dryas is a perennial plant genus with bisexual flowers. D. drummondii has been described 

to flower in its fifth year (Lawrence et al. 1967), indicating a long generation time. Nodulation, 

plant growth and flowering processes in Dryas spp. seem to be extremely dependent on the 

environment and on light quality and intensity. Kohls et al. (1994) succeeded to obtain 

D. drummondii nodules after growing them at a light intensity of 700 µmol.m-2.s-1. Sexual 
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reproduction of Dryas spp. was feasible in a laboratory context when sufficient light intensity of 

a suitable spectrum was provided (high-pressure sodium lamps provide light with a richer emission 

in yellow-orange and a red/far red ratio shifted to the far red compared to standard high-pressure 

mercury vapour lamps and fluorescent lamps). Compared to the fifth year previously suggested by 

Lawrence et al. (1967), under high-pressure sodium lamps flowers and seeds of Dryas spp. were 

obtained in less than a year after seed sterilization or vegetative propagation. In the field, Dryas 

flower primordia are formed during the summer, i.e., far in advance of flowering, which occurs in 

the next year shortly after snowmelt, with most individuals flowering within a month (Lawrence 

et al. 1967). This behaviour suggests that the development of floral primordia and blooming 

depends on photoperiod or vernalization (or both). Therefore, changes of light period and 

temperature might further speed up the induction of flowering and shorten the generation time. 

In their natural habitat, Dryas depend mainly on insects for pollination (Kevan 1975; 

Roslin et al. 2013; Tiusanen et al. 2016). While the large and open flowers of D. octopetala 

(Figure 20 f) made manual pollination possible, D. drummondii flowers were never completely 

open during full bloom (Figure 20 e) which made manual pollination difficult. Nevertheless, 

pollen could be easily collected. Hybrids are often used in genomic studies for genome 

comparison, but the structure of Dryas flowers with more than 50 stamens makes the emasculation 

of these flowers difficult. However, hybridization between Dryas spp. occurs naturally in the wild, 

and is the main reasons why the taxonomy of the Dryas genus is so controversial. In areas where 

different Dryas spp. cohabit, natural hybrids were described between D. integrifolia and 

D. octopetala (Philipp and Siegismund 2003), or between D. drummondii and D. integrifolia 

(known as D. x lewinii). The German botanist Franz Sündermann also created D. x suendermannii 

by crossing D. drummondii with D. octopetala (Packer 1994), now part of the collections of the 

botanical gardens of Vienna and Lindau where the hybrids are maintained by clonal propagation. 

Seeds from hybrids growing in these botanical gardens occur, but it is not possible to determine 

whether they are backcrossed with other Dryas spp. or with D. x suendermannii itself. Although 

the level of hybridization is unknown, these plants might still represent an interesting tool for 

genomic and phenotypic analyses. 

3.1.2. Standard protocols adapted to Dryas spp. 

Once, I have adapted in the laboratory growth of Dryas spp. under controlled conditions, 

several conventional protocols were used and optimized for this plant genus. Such essential 

protocols are ranging from transient root transformation to the extraction of nucleic acids (for 

genome sequencing and PCR analyses). 
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For a model plant, a protocol for genetic modification is important in order to analyse the 

expression of marker gene promoter-reporter gene fusions, or to perform reverse genetics. Hairy 

root transformation mediated by Agrobacterium rhizogenes is the most commonly used technique 

to introduce chimeric constructs into plant roots. The fact that this method does not transform the 

shoot is no hindrance to the study of root symbioses; A. rhizogenes-mediated hairy root 

transformation is routinely used not only in the model legumes Lotus corniculatus var. japonicus 

(Díaz et al. 2005) and Medicago truncatula (Boisson-Dernier et al. 2001) but also for actinorhizal 

plants like Datisca glomerata (Markmann et al. 2008), Casuarina glauca and Discaria trinervis 

(Svistoonoff et al. 2011) and non-FaFaCuRo plants like tomato (Ron et al. 2014). After a first 

optimization of the transformation protocol (depending of the bacterial optical density), a 

transformation of 55 to 70% for D. drummondii and a maximum of 30% for D. octopetala was 

obtained on a routine basis (Figure 27). Previous studies have shown that hairy roots induced by 

different bacterial strains can vary in morphology and production of secondary metabolites (Thwe 

et al. 2016); it was also shown that plant defence reactions, phytohormone signalling and 

secondary metabolism could be affected by high expression levels of the agrobacterial rolB gene 

(Bulgakov et al. 2018). Thus, the difference in the reactions of two closely related species to the 

same A. rhizogenes strain is interesting. At any rate, since only one A. rhizogenes strain was used 

in this study, the use of other strains might leave room for further optimization of hairy root 

transformation of D. octopetala. 

To establish an organism as a model, it is essential to have access to its nucleic acids 

routinely and easily. The woody nature of Dryas and the composition of their leaves made the 

DNA and RNA extractions challenging. A first goal was to obtain enough DNA of high quality 

and yield, in order to perform de novo whole genome sequencing. The best method found to carry 

this aim out was resorted to caesium chloride (CsCl) gradient technic. It is a procedure taking 

several days and requiring several hazardous chemicals (such as CsCl, ethidium bromide, 

trichloromethane...). However, the DNA extractions obtained have allowed the genomes of both 

Dryas spp. to be sequenced in depth and D. drummondii one is already publicly available. In a 

second hand, I have tested several methods in order to obtain easily and quickly DNA extractions 

allowing robust PCRs. A one day protocol, based on Khanuja et al. (1999), was retained. The 

230/260 and 280/260 ratio attesting of the DNA quality were the less variable and the closest to 

the expected theoretical values (Figure 28). Reproducible and robust PCRs were performed on 

extracted DNA with this method and this on several different Dryas spp., ecotypes and genotypes 

(Figure 29&30). 

Through the Dryas spp. genome access and the reproducible PCRs, the ability to clone 

Dryas spp. genes is henceforth achievable (Figure 36 d). This combined with the capacity to 
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introduce chimeric constructs into root systems (Figure 27) opens the possibility to study Dryas 

genetics in depth, allowing cross-species complementation, as well as transient expression, protein 

localization, and reverse genetics using CRISPR/Cas or RNAi methods. 

3.1.3. First Dryas spp. genomic data 

Dryas are diploid with an estimated genome size of 250 Mbp (Griesmann et al. 2018) 

distributed over 9 chromosomes (Potter et al. 2007), less than Malus x domestica (apple) which is 

diploid or triploid with 750 Mbp, or Rosa spp. which are tetraploid or triploid with 600 Mbp (Jung 

et al. 2013). The first D. drummondii genome version is publicly available. All data related to this 

genome have been deposited in GigaDB (Griesmann et al. 2018). It is estimated to be assembled 

at 92.11% and 86.64% of the predicted gene models are annotated (Table 5 and Supplemental S2). 

The D. octopetala genome is also sequenced. Its genome quality has not been analysed, because 

D. octopetala was not included in Griesmann et al. (2018) and the sequencing raw data were not 

available during the writing of this thesis (they were hold back at the BGI centre). The analysis of 

D. octopetala genome quality is ongoing at the Helmhotz Zentrum München and after 

optimization will be a part of a future publication. So it will be also publicly available. The first 

genome size estimation of D. octopetala genome is 253 Mbp. These small genomes, combined 

with a generation time of less than a year, makes Dryas suitable as model genus for the Rosaceae 

family. Moreover, the first Dryas spp. genome versions show low heterozygosity and relatively 

good assembly that allow reliable genomic investigations. 

I have performed a first genetic comparison on housekeeping genes, internal transcribed 

spacer (ITS) regions and some genes involved in symbiotic pathways by looking on the genomes 

in combination with PCR amplification and subsequencing. The high sequence conservation in 

those regions highlighted the similarities between D. drummondii and D. octopetala 

(Figure 29&30). However, some genes (such as RAM1 and CASTOR) show the existence of 

deletion/insertion polymorphism (DIPs; Figure 30 and Table 7-9). When found in coding regions, 

these DIPs usually consist of a multiple of three, preserving the reading frame of the encoded 

protein. When PCRs were performed on several genotypes and ecotypes of both Dryas spp., all 

investigated plants were homozygotes for these regions in RAM1 and CASTOR genes (Figure 30). 

Moreover, these DIPs are species-specific. These differences can therefore be used as markers to 

distinguish D. drummondii from D. octopetala but also due to their homozygotic status in the 

parental plants, they could be used on hybrids. 

On the other hand, despite a relatively correct assembly quality for a first genome version, 

in genetic comparisons (presented in part 2.3.1) several sequencing and gene prediction errors 

have been highlighted. Indeed, when looking for orthologues, several genes did not present 



 
 

89 

annotation in one or both Dryas spp. The gene prediction and annotation were performed using a 

computational tool and supplemented by two transcriptomes. However, the latter were obtained 

from seedlings or leaves resulting in a lack of root genes representativity. RNA extraction from 

more tissues will improve annotation quality and coverage. Moreover, additional genomic DNA 

extraction allowing the construction of larger and more libraries would allow in the future a finer 

genome assembly to a chromosomes level. 

Together with their small sequenced genomes, the basic but indispensable procedures and 

protocols for cultivation, vegetative and sexual propagation, hairy root transformation and nucleic 

acid isolation described above, Dryas emerges as a new model genus to study important traits 

associated with survival in arctic conditions, including the formation of root symbioses with 

bacteria (Frankia with D. drummondii) and ectomycorrhizal (ECT) fungi (D. octopetala and 

D. integrifolia). 

3.2. Endosymbiosis polymorphic trait 

3.2.1. Lack of Frankia inoculum for Dryas drummondii  

Dryadoideae subfamily is gathering all described nodulating genera of the Rosaceae 

(Cercocarpus, Chamaebatia, Dryas and Purshia). All these four genera enter into symbiosis with 

Cluster II Frankia bacteria. This cluster of Frankia have not yet been successfully cultured 

(Pawlowski and Demchenko 2012). Until now in published studies, only Kohls et al. (1994) have 

succeeded to obtain D. drummondii nodules in laboratory. They started from D. drummondii 

crushed nodules and soil collected close to nodulated Dryas sp. These inoculums were able to 

induce nodulation not only with D. drummondii plants but also with other Dryadoideae and non-

rosaceous actinorhizal plants (such as Alnus glutinosa, Elaeagnus angustifolia and Myrica 

cerifera). However, all attempts to nodulate Dryas spp. with crushed nodules or isolated Frankia 

from other Rosaceae failed to produce effective symbiosis. This might suggest that Dryas sp. is 

more selective than other rosaceous plants in terms of its bacterial partner. In their publication, 

Kohls et al. (1994) obtained only few nodules on D. drummondii, after 12 weeks. As suggested by 

Dalton and Zobel (1977) rosaceous plants are slow to nodulate. Kohls et al. (1994) concluded that 

this was maybe due to the slow growing character of these plants. In addition, their assays were 

conducted under high light intensity (700 µmol.m-2.s-1 which is significantly over the 

125 µmol.m-2.s-1 being the maximum light intensity used for different professional plant 

productions). During this thesis, I conducted two D. drummondii inoculation assays in our 

greenhouse: a first one with some soil from Alaska and a second one with D. drummondii crushed 

nodule. However, for both assays, the starting material for inoculation was in quantity enough for 

only one pot. Apart from the fact that only two attempts were possible, the failure to obtain 
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nodulated D. drummondii is most probably due to few points: the starting material and the growth 

conditions. Indeed, the provided soil sample was too much dry (almost dehydrated) and the 

D. drummondii nodule, obtained in the botanical garden of Munich in early spring, was old and 

most probably not yet in developmental process. Either inside this nodule or the dry soil, the living 

bacteria might have not been enough vigorous and numerous to be able to inoculate new plants. 

Another limiting point for these tests is the fact that the university facilities have lamps providing 

only a light intensity of 150 µmol.m-2.s-1 (far below the 700 µmol.m-2.s-1 used by Kohls et al. 

(1994). For future Frankia inoculations, we should first be able to have better growth conditions 

(especially regarding light conditions) and obtain freshly collected D. drummondii nodules during 

their developmental process. 

3.2.2. Arbuscular mycorrhiza within Dryas genus 

Dryas spp. ECT and actinorhizal symbioses have been the object of several observations 

and analyses in the scientific literature (Lawrence et al. 1967; Debaud et al. 1981; Newcomb 

1981a; Fitter and Parsons 1987; Melville et al. 1987; Melville et al. 1988; Harrington and Mitchell 

2002; Markham 2009; Ryberg et al. 2009; Bjorbækmo et al. 2010). Nevertheless, there is an 

obvious lack of data on AM symbiosis within this genus. 

To fill this gap, investigations were carried out on this symbiosis with both Dryas spp. One 

of them was an in-situ analysis of fungus phyla associated with D. octopetala roots. Indeed, 

D. octopetala were collected in the Switzerland Alps (as well as neighbouring plants) by 

Prof. Didier Reinhardt. Ascomycota, Basidiomycota and Gloromycota fungi associations with 

roots were looked for by PCRs. D. octopetala roots were found to be associated with the two first 

phyla but never with Glomeromycota. However, the detection of this last fungal phylum in gDNA 

extracted from the neighbouring plant roots ensure its presence into the soil (Figure 34). In a 

second hand, I have inoculated D. drummondii and D. octopetala plantlets with two different 

species of AM fungi. During root system survey after inoculation, D. drummondii harboured AM 

fungal hyphae, vesicles, and well-developed arbuscules. However, it was never the case of 

D. octopetala (Figure 32). Taken together this constitutes strong evidence of an AM symbiosis 

loss within Dryas genus. It is one of the first observation of endosymbiosis polymorphic trait 

within the same plant genus and moreover inside the FaFaCuRo clade. 

As mentioned by Cosme et al. (2018) non-host plant are defined by the evidence of 

colonization absence, which can lead to misclassification because of insufficient investigation. 

However, D. octopetala roots were inoculated with two different AM fungi species, with spores 

and/or with chive nurse pot system. Some assays were also done by combining in the same pot 

both Dryas spp. Roots were analysed at several different time point post inoculation and all 



 
 

91 

developmental sections of the root system were observed (from lignified part to root meristem of 

primary and lateral roots). In all of these conditions AM fungal hyphae were never observed 

penetrating D. octopetala roots. These different conditions and observations allow to minimize the 

risk of misclassification of D. octopetala as non-host plant. However, in order to dispel any doubts 

on the fact that D. octopetala is a real non-host plant, in the future, it could be investigated roots 

with more varieties of AM fungi and during several stages of plant development (such as during 

flowering time or after vernalization period and on older plants). 

Since we have at our disposal seeds of a hybrid between D. drummondii and D. octopetala, 

root screening was carried out after inoculation in nurse pot with Rhizophagus irregularis. The 

preliminary root screening of these hybrids has given a ratio of 83% uncolonized plants versus 

17% of AM competent plants (Figure 35). If these hybrids were F1 generation, their use could 

have allowed to test the dominant or recessive trait of the AM symbiosis. However, the level of 

hybridization of the D. x suendermannii seeds is unknown. Indeed, these seeds were collected 

from hybrid plants growing outdoors in the botanic garden of Vienna. Due also to the presence of 

the parental species D. drummondii and D. octopetala in the botanic garden, it is not possible to 

determine whether they are backcrossed with other Dryas spp. or with D. x suendermannii itself. 

The variation level of hybridization was confirmed by the difference in the allelic composition of 

some tested genes (as presented in Figure 30 for RAM1 and CASTOR in 3 different 

D. x suendermannii plants). So, from this analysis, it is not possible to determine if the AM 

symbiosis is a dominant or recessive trait and/or if this polymorphic trait is depending of a single 

important affected gene or several ones. Although the level of hybridization is unknown, these 

plants might still represent an interesting tool for genomic and phenotypic analyses. Moreover, it 

is still possible to find back the mother plants in the botanical garden in order to check by PCR or 

sequencing their hybridization level. The hybrids already screened are currently the object of 

vegetative propagation for a second AM screening and DNA extractions. The screening of more 

plants with genetic analysis on them should help in the near future to narrow down and/or to 

determine which loci are important for the endosymbiosis polymorphic trait between Dryas spp. 

3.3. Genomic investigation on symbiotic genes 

Mechanisms of AM incompatibility had been mostly discussed at the plant physiological 

level. Several phylogenomic studies (Delaux et al. 2014; Favre et al. 2014; Bravo et al. 2016) 

provided steps towards an evolutionary genetics explanation by using non-host plants as tool to 

shed light on symbiotic processes. These genome-wide comparison studies between AM host and 

non-host plant species identified numerous candidate genes with potential roles in AM symbiosis. 

Moreover, they have confirmed the current hypothesis that independent non-host plant lineages 
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lost their symbiotic capacity due to convergent deletions of the orthologs of important symbiotic 

genes. In order to identify the causative factors of the Dryas spp. endosymbiotic polymorphic trait, 

I have carried out a targeted genomic comparison. To do this, M. truncatula was used as genome 

of reference. This choice was led by the fact it was at the time of the analysis probably the best 

annotated model legume genome available and served as the common used in the phylogenomic 

comparisons of Delaux et al. (2014), Favre et al. (2014) and Bravo et al. (2016).  

The first step was to determine the orthologous genes in Dryas spp. In collaboration with 

Maximilian Griesmann the first Dryas spp. genome versions were included with 37 other genomes 

(Supplemental S5 part 1) in OrthoFinder. The fact that 5 other Rosaceae genomes were included 

has allowed to confirm the difference of orthologous genes number between M. truncatula and 

Dryas spp. Indeed for example one Dryas spp. gene could correspond up to 8 genes in 

M. truncatula (Table 8 a lines 18-25; Supplemental S5 part 3 tree n°1) or in the other direction one 

M. truncatula gene has two Dryas spp. orthologs (e.g. Table 8 a line 9,10; Supplemental S5 part 3 

tree n°3). In all of these cases, there is the same number of orthologous genes in the other 

Rosaceae. That highlights some specific duplication in Fabales or in Rosaceae. Dryas spp. 

genomes are in their first version, so they are not yet at their optimal quality level regarding the 

gene annotations and sequence. Indeed during the genomic comparison, side by side between both 

Dryas spp., it has been highlighted few regions containing series of ambiguous nucleotides (e.g. 

in scaffold3035_cov254_60194_55004, Table 8 a lines 15,16) or with few sequencing errors (e.g. 

Dryoc1228S17759, Table 8 b line 36, where PCR sequencing has invalidated the gap in the 

sequence between D. drummondii and D. octopetala). Moreover, several genes were not annotated 

(see part 2.3.1 and 3.1.3). Nevertheless, a gene prediction was found for all non-annotated genes 

(corresponding simultaneously to a synthetic region and to the best blast hit) via FGENESH+ tool. 

First, a list of 37 genes was established based on the symbiotic “tool kit” described by 

Delaux et al. (2013a) and on important characterized symbiotic genes. Secondly, efforts were 

made on receptor like kinase (RLK) families, containing important known genes (LYSM: e.g. 

NFP, EPR3; LRRI-1: e.g. SYMRK; LRRIII: e.g. ALB1). This was led by the fact that fungi never 

enter into D. octopetala roots so it was hypothesized that the symbiosis should be blocked at the 

upstream part of both symbiosis signalling pathways. From these lists pairwise comparisons were 

carried out between Dryas spp. orthologous genes. Some genes are presenting DIPs between both 

Dryas spp., however all of them in CDS are characterized by a multiple of three and do not lead 

to frame shifts or premature STOP codons. This is the case of the RAM1 gene which present a 

specific insertion of 42 bp in D. octopetala compared to D. drummondii and other Rosaceae. In 

part 2.3.2 investigations were carried out through cross complementation of the L. japonicus ram1-

3 mutant with both Dryas spp. RAM1 gene. The restoration of the arbuscular wild type phenotype 
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with both Dryas spp. gene versions has shown that this kind of DIP does not bring a loss of function 

in the protein (at least in this particular case). Obviously more careful investigations should be 

done on all DIPs in order to be sure that the addition of few amino acids in the protein does not 

affect the symbiosis phenotypes (such as RPG, NIN in RNS genes and in CASTOR, CYCLOPS in 

the common symbiosis genes). 

The pairwise comparison of the LRRIII-RLK and LYSM-RLK orthologous genes has 

highlighted particular polymorphisms between both Dryas spp. in three genes (e.g. a premature 

STOP codon in Dryoc3475S24779 ortholog of MtLYR2, a gap in the kinase domain of 

Dryoc124516S20838 and the D. octopetala orthologue of Drydr265S09332 which is fragmented). 

Because of the lack of an available Dryas spp. mutant library, we decided to investigate the 

phenotype of L. japonicus insertion mutant lines available for these candidates. However, one of 

them does not have an ortholog in L. japonicus. For the two remaining candidates, one of them 

has two orthologs in L. japonicus, one on the chromosome 1 and the second on the virtual 

chromosome 0. But among the L. japonicus LORE 1 insertion mutant lines only the gene on the 

chromosome 1 is affected by a transposon insertion. Thus, two and three insertion lines were 

subject to rhizobia and AM inoculations in order to check if the mutation in the remaining LYSM 

and LRRIII orthologous candidates (respectively) lead to a loss of symbiosis. The use of two 

separate seed bags per mutant lines and at least two different insertion lines per gene allow to 

reduce to risk of background mutations repercussions. The phenotyping of these L. japonicus 

mutants for both endosymbioses did not show any difference compared to the wild type. So, the 

mutation in the candidate genes could not explain the loss of symbiosis. However, because Dryas 

and Lotus belong to two distinct plant families with different redundancy gene level, it is not 

possible to fully exclude that the mutation in the D. octopetala or L. japonicus gene would result 

in a different phenotype. In future, creation of Dryas spp. mutants (e.g. on specific genes by RNAi 

or CRISPR) and “cross complementation” (by introducing D. drummondii genes in D. octopetala) 

will present attractive tools. Indeed, this will avoid working in a different plant system and so 

redundancy effect which could be Fabaceae specific. 

Upon the 106 M. truncatula genes from the “tool kit” list and the two RLK families 

investigated, no gene absence was found neither in D. drummondii nor in D. octopetala orthologs. 

In addition, for all LRRI-1 genes in D. drummondii an orthologous one was found in 

D. octopetala. This does not follow the current hypothesis above-mentioned of the evolutionary 

pattern of symbiotic genes between host and non-host plants. Indeed, Delaux et al. (2014), Favre 

et al. (2014) and Bravo et al. (2016) phylogenomic studies have highlighted an erosion of a core 

set of symbiotic genes in non-host plant lineages. In Xiang et al. (2016), it is shown that 

D. octopetala separated from other Dryadoideae 38 Mya. Therefore, the loss of endosymbiosis in 
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D. octopetala could be too recent to allow time for the expected gene erosion to occur. A more 

detailed and broad analysis of Dryas spp. genomes regarding this endosymbiotic polymorphic trait 

at both gene presence/absence and genetic regulation level could be a major tool for studying plant 

evolution and more specifically for the evolution of symbiotic genes. 
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4. Conclusion 

One aim of the host team is to study the evolution of root symbioses and to investigate and 

compare the connections between signalling pathways and developmental modules present in non-

host and host relative plants. Among plant families with an important agronomic and economic 

interest, Rosaceae represent a particularly attractive family to test evolutionary hypotheses related 

to nodulation. However, no nodulating Rosaceae were established and developed as model. So, 

this thesis has the goal to develop Dryas genus as a new model for root symbioses studies among 

the Rosaceae. Here I provide the pioneer step towards the development of Dryas spp. in a 

laboratory context for genetic and molecular studies. Indeed, we have shown through the setting 

up of various methods (from seed sterilization to vegetative propagation via several growth 

systems) that this plant genus can be adapted in a laboratory environment. Although some 

optimizations are still possible, with a generation time of less than a year, easy DNA extraction 

procedure allowing robust PCRs, established A. rhizogenes transformation and a small diploid 

genome (ca. 250 Mbp), Dryas emerges as a new model genus. 

This genus was selected because it contains closely related non nodulating and nodulating 

species. Even if until now the right Frankia strain which can nodulate D. drummondii is not 

available in our laboratory as well as most probably the ideal growth conditions for root nodule 

symbiosis (RNS) establishment, the investigations done on the arbuscular mycorrhiza (AM) 

symbiosis have highlighted a loss of symbiosis in D. octopetala. This constitutes a rare and 

unexpected case of endosymbiotic polymorphic trait within the same plant genus, as well as an 

indication of the non-nodulating status of D. octopetala. 

The de novo whole genome sequencing was carried out on both Dryas spp. D. drummondii 

genome is already publicly available and the D. octopetala one will be also released after 

optimization. The close relation between these two species allows convenient genetic 

comparisons. During the first targeted gene comparison done in order to discover the causative 

genetic of the loss of AM symbiosis, no symbiotic gene erosion in D. octopetala has emerged. 

This could highlight a loss of endosymbiosis too recent within Dryas spp. to allow time to weaken 

symbiotic genes.  

More broad genomic comparison between both Dryas spp. should determine important 

genes or genetic regulatory mechanisms which could be the initial step of symbiosis loss. In 

addition, genetic analyses with other Rosaceae would be also an important tool for evolutionary 

studies (regarding floral and fruit evolution and agronomical adaptation to diverse biotopes, within 

this plant family). Due to the natural distribution of Dryas spp., its development as a model genus 

will be an asset for the study of important traits associated with survival in arctic and alpine 
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conditions (related to climate change, as well as ecological studies of plant-microorganism and 

plant-pollinator relationships). By combining the A. rhizogenes transformation and genetic 

comparison finding, complementation of D. octopetala with D. drummondii symbiotic gene(s) in 

order to restore endosymbioses to this plant would provide decisive step to further understand and 

determine symbiotic evolution. Moreover, it will contribute to the development of 

biotechnological solutions to implement RNS in major crop plants. 
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5. Material and Methods 

5.1. Material 

5.1.1. Plants 

• Dryas spp. seeds 

Seeds of D. drummondii “DA462” and D. octopetala “DA460” were purchased from the 

seed producer Jelitto (Schwarmstedt, Germany). Samples of seeds and plants from the same seed 

bags used for the de novo whole genome sequencing are registered in the collection of the 

herbarium of the Botanische Staatssammlung München under the number M-0290345 and M-

0290346 respectively. 

The Nymphenburg Botanical Garden of Munich supplied seeds for D. drummondii 

“BGM”. D. drummondii ecotypes “Albe.” (origin Clearwater County, Alberta, Canada, collected 

in 2000); and “Alas.” (origin Alaska, USA, collected in 2002) were found in and supplied by the 

Kew Millennium Seed Bank (Royal Botanic Gardens, Kew, London, UK). Respectively they are 

identified in their database under the serial number 147165 and 178408. 

D. octopetala ecotypes “E548” and “Scha.” were harvested in the wild in the Italian Alps 

(approximate GPS coordinates: 46°24'36.7"N 11°37'48.2"E) and German Alps (approximate GPS 

coordinates: 47°25'44.5"N 11°07'45.4"E), respectively.  

D. x suendermannii seeds were supplied by the botanical garden of the university of 

Vienna. They correspond to the IPEN number XX-0-WU-0008729. 

• Lotus japonicus seeds 

L. japonicus LORE1 insertion lines were obtained from the mutant bank of Aarhus 

University (Małolepszy et al. 2016). They were propagated in our greenhouse and based on the 

instruction of the Lotus LORE1 database homozygote plants for the mutation of interest were 

selected. L. japonicus seed bag numbers used in this thesis are listed in Supplemental S6 c. 

5.1.2. Bacteria 

For rhizobia inoculation of L. japonicus roots, it was used Mesorhizobium loti 

MAFF303099 carrying DsRed as marker (Maekawa et al. 2008). For Frankia inoculation of 

Dryas sp. two different inoculum sources were used: a nodule from D. drummondii (collected at 

the botanical garden of Munich in March 2015) and Alaskan dried soil (collected by a 

Prof. Katharina Pawlowski’s collaborator, stored in a plastic bag, and sent by post under normal 

conditions). 

Transgenic hairy roots were induced by Agrobacterium rhizogenes strain AR1193 

(Offringa et al. 1986) as described in Díaz et al. (2005).  

M. loti and A. rhizogenes strains were stored in 20% glycerol at -80°C. 
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5.1.3. Fungi 

For arbuscular mycorrhiza (AM) symbiosis phenotyping, Rhizophagus irregularis DAOM 

197198 (Agronutrition, Toulouse France) and Gigaspora rosea DAOM 194757 (provided by Prof. 

Christophe Roux from the LRSV-Toulouse) were used. 

5.1.4. Primer 

ITS (internal transcribed spacer) primers were designed based on Cheng et al. (2016); All 

other primers were designed based on the first annotated version of Dryas spp. genomes and listed 

in the Supplemental S7. 

5.2. Methods 

5.2.1. Seed sterilization 

• Dryas spp. 

Based on advice from seed producers and on results from Nichols (1934) who could show 

that without refrigeration, germination of several alpine species was considerably reduced, seeds 

of Dryas spp. might require cold stratification prior to germination. They were therefore stored at 

4°C. Several solutions for surface seeds sterilization were tested. Dryas spp. seeds were surface 

sterilized by immersion in sterilization solutions (10 min. for D. octopetala; 15 min. for 

D. drummondii and from 10 to 15 min. for D. x suendermannii depending of the seed set) and 

washed three times with sterile H2O. As a routine 30% of H2O2 is used as sterilization solution; 

the other solutions tested were 0.05% of Tween80 in 70% Ethanol (used in the lab for surface 

sterilization of Allium schoenoprasum), 1.2% of NaClO in 0.1 % of SDS (used in the lab as routine 

for L. japonicus seeds). 

• Lotus japonicus 

L. japonicus seeds were scarified either with sandpaper or immersed in liquid nitrogen (by 

four sessions of 15 sec. of submersion, followed by 15 sec. at room temperature). Then they were 

surface sterilized with 1.2% of NaClO in 0.1% of SDS for 10 min. and rinsed with sterile H2O 

followed by incubation in a spinning wheel in water for two hours. 

5.2.2. Plant growth 

• Dryas spp. 

Sterilized seeds were transferred on 1% agar-water plates and incubated in the dark at 22°C 

for 12 and 8 days for D. octopetala and D. drummondii, respectively. Several sources of agar were 

tested such as BactoTM agar (Becton Dickinson and company) and agar Kalys HP 696 (Kalys SA, 

Bernin, France) and Gelrite agar (Duchefa, Haarlem, The Netherlands). Based on Bliss (1958), in 

order to ensure optimal germination rates, the germination assays were set up in the dark. After 

germination, seedlings of Dryas spp. transferred on plates prior to be grown on plates, in a 

hydroponic system or in pots. 
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As routine, growth on plates was performed on ¼ Hoagland’s (using the protocol for N-

free medium (Hoagland and Arnon 1950) and adding 1 mM KNO3, pH 5.8) with 0.4% of Gelrite 

agar (Duchefa, Haarlem, The Netherlands), at 22°C, 55% of humidity with 16h-light/8h-dark 

cycles. After 1 week, plantlets were transferred either into pots (containing soil or a 2:1 mix of 

sand:vermiculite) or into a hydroponic system. 

The hydroponic system consisted of a box in two parts: the first one contained 250 ml of 

growth solution (¼ Hoagland, 1 mM KNO3, pH 5.8) and the second one was a floating part with 

24 holes in which the plantlets were inserted (Figure 25 a). In order to avoid that seedlings or 

young plantlets fell down in the solution compartment, plantlets were introduced through thin slits 

on adhesive tape, which plugged the holes. The solution was changed every 3.5 days. The 

hydroponic system was kept at 22°C, 55% humidity with 16 h-light/8 h-dark cycles for a 

maximum of 4 months. 

Plants in pots were transferred to the greenhouse (day temperature 21-24°C, night 

temperature 18-21°C, with additional lighting from 6:00 h to 10:00 h and from 15:00 h to 22:00 h). 

• Lotus japonicus 

After sterilization treatment the swollen seeds were put on 0.8% Bacto Agar (Difco) water 

plate and incubated for about 60 h in a growth chamber at 24°C in the dark for germination. Then 

the seedlings were removed from the dark and grown for a total of 17 days (24°C, 60% air 

humidity, 16 h-light / 8 h-dark). Afterwards, plantlets were used for hairy root transformation or 

transferred in growth pots or Weck-jars. They were transferred in growth chamber (24°C, 55% 

humidity with 16 h-light/8 h-dark cycles) or in the greenhouse. 

5.2.3. Dryas spp. vegetative propagation 

Young and soft shoots of Dryas spp. were cut after the third internode (2-5 cm) above the 

woody part of the shoot. These explants were directly transferred into moist soil, then kept under 

plastic cover in the greenhouse. High humidity was maintained under the cover by spraying with 

water every two days for two weeks, after which spraying was stopped and cuttings were kept with 

moist soil under the cover until new leaves had developed. 

5.2.4. Arbuscular mycorrhizal inoculation and observation 

AM assays were performed in 2:1 mix of sand:vermiculite with 4 to 6 seedlings per pot 

either with chive (Allium schoenoprasum) nurse pots containing R. irregularis or G. rosea as 

described in Kistner et al. (2005) or with R. irregularis spores. For AM quantification 300 spores 

per plant were applied and at least 500 spores per plant for AM screening on D. x suendermannii 

and for L japonicus transformed via A. rhizogenes. 

The plants were grown in a climate chamber at 24°C constant temperature, 60% air 

humidity and 16h light / 8h dark cycles. Pots were fertilized once per week with 20 ml of 
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¼ Hoagland (1.5 mM KNO3 and 100 µM KH2PO4 pH 5.8) and twice a week with 20 ml of sterile 

dH2O. 

AM fungi in colonized roots were stained with acid ink (Vierheilig et al. 1998). Root length 

colonization was quantified using a modified gridline intersect method (McGonigle et al. 1990) 

with 20X magnification at a light microscope (Leica, type 020-518500 DM/LS). 

For confocal laser scanning microscopy using a Leica SP5, fungal structures were stained 

with 1 μg.µl-1 WGA Alexa Fluor 488 (Molecular Probes, www.lifetechnologies.com) (Panchuk-

Voloshina et al. 1999). 

5.2.5. Root nodule symbiosis inoculations 

• Frankia inoculations 

Full D. drummondii nodule was surface sterilized with 30% H2O2 for 5 min., rinsed 5 times 

in sterile dH2O and mechanically homogenized with a mortar and pestle in a 1% NaCl in sterile 

dH2O. The crushed nodule suspension was applied to the surface of the substrate adjacent to the 

plants. 

Alaskan soil sample was mixed with some propagating substrate and used to fill 

horticultural pot. 

Two plants of D. drummondii were inoculated with either Dryas sp. nodule suspension or 

Alaskan soil. Plants were grown for 10-12 weeks prior inoculation, in the greenhouse. Pots were 

irrigated once per week with ¼ Hoagland nitrogen-free nutrient solution, pH 5.8-6.0, 

supplemented with 0.1 mM KNO3. Twice weekly, the pots were flushed with dH2O. 24 weeks 

after inoculation, root systems were excavated and observed with binocular microscope for 

presence of nodules. 

• Rhizobial inoculation 

To evaluate root nodule symbiosis status of L. japonicus mutants, germinated seedlings 

were grown in closed Weck jars in sand:vermiculite for 2 weeks. Then they were inoculated with 

a suspension of M. loti set to a final OD600 of 0.05. Inoculated plants were incubated for 5 weeks 

prior root observations. Nodule number was reported then microscopic observation of red 

fluorescent was performed with a fluorescence stereomicroscope (Leica MZt6 FA). 

5.2.6. gDNA extractions and PCR reactions 

The caesium chloride (CsCl) gradient DNA extraction method was performed according 

to Ribeiro et al. (1995) starting with 6 to 10 g of leaves (mix of young and old) ground by hand 

using pistil and mortar with 4 g of PolyclarAT in liquid nitrogen. For the others extraction 

methods, 2 young leaves with apical meristem were used as starting material. They were ground 

with a tissue lyser (2 times at 30 Hz during 30 sec) in 2 ml Eppendorf tubes containing 2 metal 

beads each, after being shock frozen in liquid nitrogen. The “classical CTAB" extraction method 
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is based on the procedure described in Doyle and Doyle (1987), whereas the “PVP/NaCl” 

extraction method is based on Khanuja et al. (1999). The latter consists of an adapted version of 

the CTAB protocol with modified extraction buffer (compared to the classical CTAB method it 

contains +25% of EDTA, +5.5% of NaCl, +25% of CTAB, -68% of β-mercaptoethanol, and with 

addition of 4% (w/v) of PVP) and followed by an isopropanol precipitation step in high salt 

solution before the RNAse A treatment.  

Invitrogen™ Quant-iT™ Qubit™ dsDNA Kit (Carlsbad, CA, USA) and Nanodrop™ 

(ThermoFisher, Germany) were used according to manufacturer’s instructions in order to 

respectively determined DNA concentration and to show the presence of contaminants in the DNA 

extractions. 

PCRs were performed on 1 µl of DNA (an average of 100 ng of DNA) using GoTaq® 

DNA polymerase (Promega, Madison, WI, USA), SYBR Green buffer and 0.2 µM of each primer. 

Amplifications were carried for 5 min at 95°C, followed by 35 cycles (30 sec at 95°C, 30 sec at 

60°C, and 40 sec at 72°C), and a final extension for 40 sec at 72°C. Electrophoresis were 

performed with 4 µl of PCR reaction on 3% agarose gel for 100 min at 130 V. DNA was visualized 

with UVP UVsolo touch from Analytik Jena© (Jena, Germany) after 10 min in an Ethidium 

bromide bath at 2 ng.ml-1. 

Some PCR were done with MyTaq™ Plant-PCR Kit (Bioline Reagents, London) according 

to manufacturer’s instructions, this Kit allows to perform PCR directly on tiny leave sample 

without DNA extraction step. 

To evaluate if L. japonicus LORE1 mutants were homozygous for the mutation of interest, 

gDNA was extracted with classical CTAB method prior PCRs performed with the adapted 

primers. PCR programs and primers sequences provided on the Lotus database website have been 

used. 

5.2.7. RNA isolation 

Leaves and seedlings were shock frozen in liquid nitrogen. RNA of ground material (with 

same procedure previously describe for DNA extraction) was extracted using Spectrum™ Plant 

Total RNA Kit (Sigma-Aldrich, CA, USA) without adaptation in the protocol except for older and 

thick leaves where polyclarAT was added. The RNA was treated with Invitrogen™ TURBO DNA-

free Kit (Carlsbad, CA, USA) and tested for purify and integrity with a Bioanalyzer RNA kit from 

Agilent (Agilent Technologies, Palo Alto, CA). 

5.2.8. Hairy root transformation 

A. rhizogenes AR1193 bacteria carrying a Golden Gate LIIIβ F A-B (Binder et al. 2014) 

plasmid containing the mCherry gene under control of the Ubiquitin promoter (AtUbi10pro) as 

transformation marker (Pimprikar et al. 2016), were grown in liquid culture (LB medium with 
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50 µg.ml-1 of rifampicin, carbenicillin and kanamycin) at 28°C overnight. Bacteria were collected 

via a centrifugation step (15 min at 4 369 x g) and resuspended in water to obtain the wanted OD600 

(0.01; 0.1; 1; 7.2). As routine procedure for Dryas spp. and L. japonicus OD600 was set up at 1. 

Cut hypocotyls of 10-12 days old Dryas spp. seedlings or 17 days old L. japonicus seedlings were 

dipped in the bacteria solution and placed on ¼ Hoagland (1 mM KNO3, pH 5.8) 0.4% Gelrite 

(Duchefa, Haarlem, The Netherlands) plates. The plates were kept for 4 days in the dark at 22°C, 

then under a 16h-light/8h-dark cycle with 55% of humidity. To prevent overgrowth of bacteria 

and dehydration, the plants were transferred onto new plates every 1.5 week. After 4 to 6 weeks 

post transformation, roots were screened using a Leica MZ16 FA stereomicroscope (Leica 

Microsystems GmbH, Wetzlar, Germany) with the N3 filter from Leica (BP 546/12;600/40). 

5.2.9. Bioinformatics 

All genome parts (sequencing, assembly, assembly evaluation, annotation, comparative 

genomic analysis) and transcriptome sequencing are described in Griesmann et al. (2018). 

Determination and visualisation of syntenic regions were performed via tools available on CoGe 

website (www.genomevolution.org; (Lyons and Freeling 2008). Blasts, alignments and pairwise 

comparison were performed with CLC Genomics Workbench 7.0 

(www.qiagenbioinformatics.com). All statistical analyses were performed in R-studio (version 

0.99.484; www.rstudio.com). All microscopic images were processed with ImageJ 

(http://rsb.info.nih.gov/ij/) software in order to integrate scale bars; and all figures were done with 

Inkscape (www.inkscape.org). 
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Supplemental S1 

 

 

Overview of important protocols and procedures tested in order to use 

Dryas spp. as a model genus in a laboratory context. 
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Aim 

tested 

protocol 

specificity 

remarks and conclusion 

Seed 

sterilization 

33 % H2O2
# 

* ca. 85 % and 40 % of germination for D. drummondii and D. octopetala, respectively 

* <3 % of contamination 

1.2 % NaClO 
*ca. 80 % and 40 % of germination for D. drummondii and D. octopetala,  respectively 

* ca. 20 % of contamination 

"EtOH" 
* 0 % of germination 

* <1 % of contamination 

Growth 

solution 

MS or B5 or 

FP * reddish seedlings (anthocyanin production) 

"FAB" 
* reddish seedlings (anthocyanin production; but less than on MS or B5) 

* darker green cotyledons than on B5 

1/4 

Hoagland# 

* reduction of the anthocyanin production 

* darker green cotyledons and leaves 

* longer primary root than on "FAB" 

* more of lateral root than on "FAB" 

Growth 

systems 

Agar plates 

* roots not protected from ligth 

* suitable for small plantlets (not more than 6 weeks old) 

* easy non-invasive root observations 

pot/solid 

substrate 

* roots protected from light 

* suitable for long experiments and propagation 

* "invasive" root observation (digging out and washing of the roots could easily break 

lateral roots and root hairs) 

* strong root lignification 

hydroponic 

* roots protected from light 

* suitable for long experiments 

* non-invasive root observations 

* delay of the root lignification process 

DNA 

extraction 

"CsCl" 

Ribeiro et al. 

(1995)# 

* good yield and good quality for de novo whole genome sequencing 

* 260/280 ratio around 1.9-2.0 

* 230/280 ratio >2.0 

* long protocol (≈4 days) 

"classical 

CTAB" Doyle 

and Doyle 

(1987) 

* low yield 

* 260/280 ration variable but around 1.8 

* 230/280 ratio <1.8 

* not usable for robust PCRs 

* 1/5 day protocol 

"PVP/NaCl" 

Khanuja et 

al. (1999)# 

* medium yield 

*260/280 ratio less variable ≈1.8 

*230/280 ration >1.8 

* usable for robust PCRs 

* 1 day protocol 

# most suitable protocols for Dryas spp. 

 

Overview of different protocols tested. 

Adapted from Billault-Penneteau et al. 2019 
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Supplemental S2 

 

 

Transposable elements in D. drummondii assembly and 

summary of D. drummondii genes with function description. 
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  Length (bp) % in genome 

Type I: Retro-TEs 

LTR/GYPSY 4 838 912 2,08 

LTR/Copia 1 992 692 0,86 

LTR/other 23 666 120 10,16 

LINE 492 460 0,21 

SINE 35 331 0,02 

Type II: DNA-TEs 

DNA/hAT 4 206 347 1,81 

DNA/Helitron 118 467 0,05 

DNA/Ginger 1 200 0,00 

DNA/Mu-like 1 726 334 0,74 

DNA/MITE 6 109 669 2,62 

Other DNA-TEs 4 851 839 2,08 

Simple_repeat 323 351 0,14 

Unknown 20 364 235 8,74 

Total TEs   27,96 

 

Transposable elements in D. drummondii assembly. 

From Griesmann et al. 2018 

 

 

 

 

 

 
Number Percent (%) 

Total 25 030   

InterPro 19 216 76,77 

GO 12 188 48,69 

KEGG 19 258 76,94 

Swissprot 18 610 74,35 

Annotated 21 687 86,64 

Unanotated 3 343 13,36 

 

Summary of D. drummondii genes with function description. 

From Griesmann et al. 2018 
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Supplemental S3 

 

 

Workflow of using FGENESH+ online tool in order to predict the annotation 

of an unannotated gene in Dryas octopetala: 

The example of NSP1. 

 

 

 

Part. 1 Use of FGENESH+ 

Part. 2 FGENESH+ result 
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Part. 1 Use of FGENESH+. 

By using MtNSP1 as query, tblastn and Syndfind (online tools from www.genomevolution.org) have highlited a 

region in D. octopetala genome which is not annotated. In a first step the full scaffold was extracted 

(scaffold4202_cov310 ; 768kb). Then a large nucleotide sequence was selected surounding the putative DoNSP1 

(8 471bp). This region was paste in the online tool FGENESH+ from www.softberry.com together with the protein 

sequence of the DdNSP1 protein. Using Fragaria vesca (the closest organism of Dryas in the sofberry database) for 

genome specific parameters, FGENESH+ determined the prediction of the mRNA if it is possible. 
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Part. 2 FGENESH+ result. 

FGENESH+ 2.6 Prediction of potential genes in Fragaria_vesca genomic DNA 

Seq name: test sequence 

Length of sequence: 8471 

Homology: test sequence 

Length of homolog: 552 

Number of predicted genes 1: in +chain 1, in -chain 0. 

Number of predicted exons 1: in +chain 1, in -chain 0. 

Positions of predicted genes and exons: Variant 1 from 1, Score:2166.105078 

 

Predicted protein(s): 

>FGENESH:[mRNA] 1 1 exon (s) 2237 - 3892 1656 bp, chain + 

ATGACCACCGGAGAACCAGAGCCAAACCCCAACTCAGATCACATCTTGGACTGGCTTGAAGATTCAGTCACCTTCTT

TCCATCTTTCTTGGATGATCCTTACAATTCAAGTGATATCAACGGCTATCAATGGTGGGATGAGAGTCAGGATCTGA

TTCATGCTAACACCACTTCTCTCAATAGCCCCACTAGCATTGCTATTGCTACCAACACAAGGCCTATAAACCCCACC

AATTCGAATCAGCAGTCGCCATCCAATTCATCCAAGAAACGAAAAGTCCCCGATGACCTGGATACCAAAACATCCCA

AAACCCCCACATTGACCTGGAGAATCCTGTTTGTCCGGCGACCAATCAGACTGCCAATGGGGAAGGAGGAGCTGAAG

AAGTAGTGCCAGTTAAGAAACCAAATGGGAACAAGAAAGGCACATCCAAGACTACAGGGAATAACTGTAATAACGGT

AATAGCAAGGAAGGAAGGTGGGCAGAGCAGTTGCTCAACCCTTGTGCACTAGCCATCACAGGTGGGAATCTGATACG

TGTACAACACCTCCTGTATGTTCTCCACGAGCTCGCCTCCCTCACCGGCGATGCCAACCACCGGCTGGTGGCTCATG

GCCTCCGAGCCCTGACTCACCACCTGTCCTCCTCTGCTCCCAATGGCTCTGCCTCAGCAGGACCTGTAACTTTTGCT

TCCACAGAACCAAGGTTTTTTCAAAAATCTCTGCTCAAATTCTATGAGGTCAGTCCATGGTTTGCTTTTCCAAATAA

CATTGCAAACTCTTCGATACTCCAACTTCTTGCTGAAGAACCTGATCGCACAAAAAACCTTCACATTCTTGATGTTG

GGGTTTCTCATGGTATGCAATGGCCAACTTTGCTTGAGGCCTTGACTCGCCGGCCAGGTGGCCCTCCCCCACTGGTC

CGAATCACAGTTATTGCTGCTGCTGCTGCCATTGAAAATGACCAAAACACAGAGACCCCATTTTCAATATGCCCTCC

TGGTTACAATTTCTCTAAACTTCTTGGTTTTGCCAAGTCCATGAACATCAATTTACAGATCAACCGCCTTGATAATC

AACCACTACAAACTCTAAATGCTCAAGCCATTGACACCTCCGGTGACGAAACACTGATTGTCTGCCTGCAATTTAGG

CTCCACCACCTGAACCACAACCTGCCGGATGAAAGAACTGAATTCTTGAAACTACTGAGAAACATGGAGGCAAAGGG

GGTGATTCTCAGTGAGAACAACATGGAATGCAGCTGCAGCAATTGTGGGGATTTCGCCACAGGGTTCTCGCGGCAAG

TAGAGTACTTGTGGAGGTTTCTGGACTCAACAAGCTCGGCGTTCAAAGGACGAGAGAGCGATGAGAGGAGAGTGATG

GAAGGAGAGGCTGCAAAGGCACTTACTAACCGGGGTGAGATGAATGAAGGGAAGGAGAAATGGTGCGAGAGAATGAA

GGGGGCAGGGTTCGTGGGGGAGACATTCGGAGAGGATGCCATTGATGGGGGTAGAGCCTTGTTGAGAAAGTATGATA

GCAATTGGGAGATGAGAGTGGATGAGAAAGATGGGTGTGCAGGGTTATGGTGGAAGGGGCAGCCTGTTTCTTTTTGT

TCATTGTGGAAGATGGATATGAAAGCAAGTGCCAAGTAA 

>FGENESH: 1 1 exon (s) 2237 - 3892 551 aa, chain + 

MTTGEPEPNPNSDHILDWLEDSVTFFPSFLDDPYNSSDINGYQWWDESQDLIHANTTSLNSPTSIAIATNTRPINPT

NSNQQSPSNSSKKRKVPDDLDTKTSQNPHIDLENPVCPATNQTANGEGGAEEVVPVKKPNGNKKGTSKTTGNNCNNG

NSKEGRWAEQLLNPCALAITGGNLIRVQHLLYVLHELASLTGDANHRLVAHGLRALTHHLSSSAPNGSASAGPVTFA

STEPRFFQKSLLKFYEVSPWFAFPNNIANSSILQLLAEEPDRTKNLHILDVGVSHGMQWPTLLEALTRRPGGPPPLV

RITVIAAAAAIENDQNTETPFSICPPGYNFSKLLGFAKSMNINLQINRLDNQPLQTLNAQAIDTSGDETLIVCLQFR

LHHLNHNLPDERTEFLKLLRNMEAKGVILSENNMECSCSNCGDFATGFSRQVEYLWRFLDSTSSAFKGRESDERRVM

EGEAAKALTNRGEMNEGKEKWCERMKGAGFVGETFGEDAIDGGRALLRKYDSNWEMRVDEKDGCAGLWWKGQPVSFC

SLWKMDMKASAK 
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Supplemental S4 

 

 

Workflow to find the orthologous NSP1 gene in Dryas octopetala 

which was unannotated. 
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a – Best hits of tblastn using MtNSP1 as query. 

Org Chr Position Coverage E-value 
Closest Genomic 

Feature 

Distance to 

Genomic 

Feature 

(bp) 

Medicago 

truncatula 
8 7352592 100.0% 0.0 Medtr8g020840.1 overlapping 

Dryas 

drummondii 
Scaffold490 1417812 99.3% 0.0 Drydr490S04636 overlapping 

Dryas 

octopetala 
scaffold4202_cov310 586090 99.3% 0.0 Dryoc4202S14123 2896.5 

b – SynFind using MtNSP1 as query. 

Organism Type Name Chr Synteny Score 

Medicago truncatula query Medtr8g020840.1 8 / 

Dryas drummondii Syntelog Drydr490S04636 scaffold490 11 

Dryas octopetala Proxy region pos 588314 scaffold4202_cov310 4 

c – SynFind using DdNSP1 as query. 

Organism Type Name Chr Synteny Score 

Dryas drummondii query Drydr490S04636 scaffold490 / 

Dryas drummondii Proxy region pos 2175997 Scaffold45 10 

Dryas octopetala Proxy region pos 588314 scaffold4202_cov310 13 

Dryas octopetala Proxy region pos 486558 Scaffold2953_cov328 9 

Dryas octopetala Proxy region pos 118530 Scaffold2378_cov267 6 

Medicago truncatula Syntelog Medtr8g020840.1 8 25 

Medicago truncatula Proxy region pos 18325935 2 5 

d – Visualization of the Synteny regions. 

 

Workflow to find the orthologous NSP1 gene in Dryas octopetala which was unannotated. 

(a) Using MtNSP1 protein as query tblastn was run on M. truncatula, D. drummondii and D. octopetala genomes. The 

best hit in D. drummondii was corresponding to the orthologous gene found by orthofinder. (b-d) Syntelogous regions 

were investigated in both Dryas spp. and in M. truncatula, using either MtNSP1 (b&d) or DdNSP1 (c) as query. 

D. octopetala sequence identified by blast was corresponding to the region having the best synteny scores. It was an 

annotated region (red rectangle with a star) where FGENESH+ tool predicted a gene annotation. Tables and graphic 

adapted and coming from the online tools on the website CoGE, Lyons and Freeling 2008. 

(data unpublished)  



 
 

138 

 

  



 
 

139 

 

 

 

 

 

 

 

 

Supplemental S5 

 

 

Maximum-likelihood phylogenetic trees for 

the three families of receptor like kinase. 

 

 

Part. 1 -> List of species used in OrthoFinder with “theoretical” trees 

Part. 2 -> Example of a “full” tree vs. its “simplified” version 

Part. 3 -> LYSM “simplified” maximum-likelihood phylogenetic trees 

Part. 4 -> LRRIII “simplified” maximum-likelihood phylogenetic trees 

Part. 5 -> LRRI-1 “simplified” maximum-likelihood phylogenetic trees 
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Part. 1 -> List of species used in orthofinder with “theoretical” trees. 
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Part. 2 -> Example of a “full” tree vs. its “simplified” version. 
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Part. 3 -> LYSM “simplified” maximum-likelihood phylogenetic trees. 
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Part. 4 -> LRRIII “simplified” maximum-likelihood phylogenetic trees. 
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Part. 5 -> LRRI-1 “simplified” maximum-likelihood phylogenetic trees. 
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Supplemental S6 

 

 

Overview of the workflow for the choice of LORE 1 insertion mutant lines. 
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a 

RLK 

family 

D. drummondii 

ID 
D. octopetala ID Remarks 

L. japonicus 

ID 

# of LORE 1 

in Lotus base tested 

LRRIII 

Drydr146S16082 Dryoc124516S20838 
gap in the kinase 

domain 

Lj0g3v0133349 0  - 

Lj1g3v1991630 19 3 

Drydr265S09332 Dryoc124300S18768/Dryoc124300S01356** fragmented gene No L. japonicus gene 

LYSM Drydr368S03769 Dryoc3475S24779 
premature STOP 

codon 
Lj0g3v0145339 3 2 

b 

RLK family Targeted gene 

LORE1 

insertional 

mutant 

line 

Number of insertions 

Exonic Intronic Intergenic Total 

LRRIII Lj1g3v1991630 

30035473 4 1 3 8 

30037601 7 3 0 10 

30039146 3 0 0 3 

30049695 3 2 0 5 

30052272 2 0 3 5 

30058354 5 1 3 9 

30073774 6 2 2 10 

30077439 3 0 0 3 

30092210 7 1 4 12 

30098812 5 2 3 10 

30104008 2 1 1 4 

30105750 7 4 4 15 

30122273 4 5 3 12 

30122957 6 1 6 13 

30126216 4 2 1 7 

30145017 4 0 2 6 

30150926 10 4 10 24 

30150926 10 4 10 24 

30003376 7 3 3 13 

LYSM Lj0g3v0145339 

30000889 11 2 2 15 

30008011 1 2 0 3 

30136249 2 2 2 6 

c 

L. japonicus line 
ZopRA seed bag number Name 

seed bag n°1 seed bag n°2 In Fig. 39 

30049695 111954 111955 lrrIII_1 

30077439 111958 111957 lrrIII_2 

30104008 111965 111964 lrrIII_3 

30008011 111946 111947 lysm_1 

30136249 111950 111951 lysm_2 

WT GIFU 110895 GIFU 

 

Overview of the workflow for the choice of LORE 1 insertion mutant lines. 

(a) List of the three RLK presenting polymorphism between both Dryas spp. that could led distinct phenotype. The 

number of LORE 1 insertional mutant lines on the L. japonicus gene are reported. (b) List of all LORE 1 insertional 

lines with an insertion in the two “candidate” genes. In green is highlighted the lines used in part 2.3.3. (c) List of 

L. japonicus lines used in Figure 37 with the seed bag numbers reference in the ZoPRA database and the name given 

in the figure.  
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Supplemental S7 

 

 

List of primer used. 
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"primer ID" sequence targeted gene remarks 

IST-p5_F CCTTATCAYTTAGAGGAAGGAG internal transcribed spacer (ITS) of nuclear 

ribosomal DNA 
internal transcribed spacer (ITS) of nuclear ribosomal DNA 

IST-u4_R RGTTTCTTTTCCTCCGCTTA 

DK02_gi_F ATGGCGTCCAAAAGTCCTGCATCG 

Lj0g3v0145339 

Check the 30008011 LORE1 insertion in Lj0g3v0145339 (GOI) 
DK02_gi_R AAGCATGAAGCTCCCTGTGGTGGC 

DK16_gi_F TGGGAAATCCATGTCCACAGAGCA 
Check the 30136249 LORE1 insertion in Lj0g3v0145339 (GOI) 

DK16_gi_R TGGATGTTCACGCCTCGAACCAGA 

DK12_gi_F GAACCTCAGCAGAGGCCCTGAGCA 

Lj1g3v1991630 

Check the 30104008 LORE1 insertion in Lj1g3v1991630 (GOI) 
DK12_gi_R TGTGGAAAACCTGTAAGCAACCCCTGC 

DK10_gi_F AGCTTCTTCACATAATTGATTTTGGGGCT 
Check the 30077439 LORE1 insertion in Lj1g3v1991630 (GOI) 

DK10_gi_R GAACCTCAGCAGAGGCCCTGAGCA 

DK07_gi_F AGCTTCTTCACATAATTGATTTTGGGGCT 
Check the 30049695 LORE1 insertion in Lj1g3v1991630 (GOI) 

DK07_gi_R GAACCTCAGCAGAGGCCCTGAGCA 

GAPDH-F CCCCAGTACGAATGCTCCCATGTTTG 
Drydr226S18269 - Dryoc1436S22582 glyceraldehyde-3-phosphate dehydrogenase 

GADPH-R TTAGCCAAAGGAGCAAGACAGTTGGTGG 

EF1a_Mt_F TGGGTTTGAGGGTGACAACATGA Drydr51S22898+Drydr51S22899+Drydr51S12917 

- 

Dryoc3749S25103+Dryoc3749S25104+Dryoc3749

S25112 

elongation factor 1 alpha 
EF1a_Rc_R GTACACATCCTGAAGTGGAAGTCGGAGG 

26SrRNA_F TACTGCAGGTCGGCAATCGG 
  26S ribosomal RNA 

26SrRNA_R TCATCGCGCTTGGTTGAAAA 

QRAM1_F1 CCAGCAAGAGAAGCAACACC 

Drydr690S13573 - Dryoc1788S22993 

Reduced Arbuscular Mycorrhization 1 (RAM1) 
QRAM1_R1 GCACAAGCTAGGAGGAGGTG 

AS16_RAM1_f1 AAGTCCAATCGCCAGACCAT 

AS17_RAM1_r1 ACAGGAAGAGTAGGCACCATC 

AS20_ RAM1_f1 ATGATGATTAATTCTCTTTGTGG 
Reduced Arbuscular Mycorrhization 1 (RAM1) for cloning all fragment 

AS21_RAM1_r1 TCAGCATCTCCATGCAGAAGC 

AS22_ram1_atg_c

F 

ccGAAGACttTACGGTCTCaCACCATGATGATTAATTCTCT

TTGTGG 
for cloning fragment GG comp _ BpiI + BsaI sites 

AS23_ram1_Bp1_

cR 
ccGAAGACatCcTCGATGGCAGGCAGTGTGTTC 

for cloning fragment GG comp/ remove R sites _ BpiI site single 

nucleotide mutation 

AS24_ram1_Bp1_

cF 
ccGAAGACatGAgGACTTCTTGGATGATTATC 

AS25_ram1_Es1_

cR 
ccGAAGACatCaTCTCTTTGATAATCATCC 

AS26_ram1_Es1_

cF 
ccGAAGACatGAtGGCTCATTCTTAGCGTACCC 

AS27_ram1_Bs1_

cR 
ccGAAGACatGTtTCTTCGGTCAATTGAGA 

AS28_ram1_Bs1_

cF 
ccGAAGACatAaACCACGAGGGGTGGTACTGC 

AS29_ram1_Bp2_

cR 
ccGAAGACatTCcTCTTTTGCAACGGCCTCAGC 

AS30_ram1_Bp2_

cF 
ccGAAGACatAgGACTACATGCTAGCAAGAAGG 

AS31_ram1_Es2_

cR 
ccGAAGACatTtTCTTTCACAGTCTCGATACACG 

AS32_ram1_Es2_

cF 
ccGAAGACatGAaACGGGCCTGTGTTTAACTG 

AS33_ram1_Bs2_

cR 
ccGAAGACatCaCGGATCATTGCTAACAAGTTCC 

AS34_ram1_Bs2_

cF 
ccGAAGACatCGtGACCAAGCACCCAATATTG 

AS35_ram1_cR5 
ccGAAGACatCAGAGGTCTCaCCTTGCATCTCCATGCAGA

AGCAGC 
for cloning fragment GG comp _ BpiI + BsaI sites 

QSTR_F1 CCACATTTCTTGATGCCTTGGC 

Drydr87S24490 - Dryoc756S06838 

stunted arbuscule (STR) / (1st intron-spanning) 
QSTR_R1 AACATGGGGAAGAGCTGGTC 

QSTR_F2 CGTGCTCATGACCATTCATCAG 
stunted arbuscule (STR) / (3rd intron-spanning) 

QSTR_R2 CTGGCCTTCCAAATCCAGAAAG 

CASTOR_F ATGTCCCTTGACTCCGACAC 
Drydr411S21715* - Dryoc57S26677* Ion channel (CASTOR) 

CASTOR_R GAAACGTCCGGTCGTCTTCTC 

NFP2_F TGATCCCGGTGTCAAAGCTC 

Drydr368S03767 - 

Dryoc124277S01099/Dryoc124277S01098*** 
homolog of NFR5 (Medtr5g019040) and LYS11 (Medtr8g078300) 

NFP2_R CCAAGAAGCGATTCCCGTCT 

L11Nf5_1F CAAAAGAAAGCCATAGAGAAATGCC 

L11Nf5_1R CATGTATGGGTAACCTTTGTATGAC 

RINRK101_F TTCAGTTCAATCCCGGGCTC 
Drydr284S19431 - Dryoc124303S18798* homolog of Medtr4g094885 

RINRK101_R TTGCTCGAACACTTGCTTGC 

RINRK41_F TGCAGGTCCCAAAACACACT 
Drydr192S07840 - Dryoc138S22207 homolog of Medtr6g470960 - Medtr8g107470 

RINRK41_R CGAAGAGTAACGCAGGCAGA 

RINRK112_F CAAGCATTTGACTGGGCCAC 
Drydr226S18342 - Dryoc1228S17759 homolog of Medtr2g023150 

RINRK112_R AGACATGAGAAAGGGGTTGCA 

RINRK121_F GGACTCTCAGCTCACCCAAC 
Drydr146S00962 - Dryoc124399S09791 

  

RINRK121_R CACTCACCTTACCGACACCC   

RINRK211_F CACCCTCTCCCATTACCTGC Drydr265S09332 - 

Dryoc124300S18768/Dryoc124300S01356** 
homolog of Medtr2g008740 

RINRK211_R TCCTCACTCACCAATGGCTT 

RINRK221_F ACCCTTTGAGGAGTTTGGCC 
Drydr64S23384 - Dryoc124371S09594* homolog of Medtr5g094380 

RINRK221_R GCCGAAGTCTCCATGGGAAA 

RINRK11_F AGGCCTAGCGTACCTGTACA 
Drydr146S16082 - Dryoc124516S20838 

homolog of Medtr1g009270 - Medtr8g087420 

RINRK11_R CTGGCGTACGACGAGTAGTC 

doRINRK11_s1R GCAAAAGAAAATGGACAATAGGG 

Dryoc124516S20838 

doRINRK11_s2F CAGTTCAGTGGCAAGATACC 

doRINRK11_s3R CCACTGAGATAACTATGATGCC 

doRINRK11_s4F GTCATTCATGCAAACGTGAATG 

doRINRK11_s5R CATATAACCCCCTATAGTGAGAC 

doRINRK11_s6F GCTTGGAAGGTTGTCACACC 

 

 

List of primer used. 
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• PhD student under the supervision of Prof. M. PARNISKE 

Genetic analysis of plant root endosymbioses in the genus Dryas 

(Rosaceae) 
Genetic department of the LMU; University of Munich 

2015-2019 

• Master 2 trainee under the supervision of Dr. A. NIEBEL 

MtENR1-promoter is a direct target of the CCAAT-box transcription 

factor MtNF-YA1 
Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594 

INRA-CNRS (Auzeville Tolosane, France) 

January-May 2013 

• Master 1 trainee under the supervision of Dr. P. LAPORTE 

Localisation of the MtNF-YA1 transcription factor expression during 

early nodulation stages 
Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594 

INRA-CNRS (Auzeville Tolosane, France) 

November-December 2011 

• Bachelor project under the supervision of Dr. T. GUERINIER 

Production of recombinant proteins of the AtSNRK1 complex in 

E. coli 
Institut de Biologie des Plantes (I.B.P.) University of Paris Sud - CNRS - 

UMR 8618 (Orsay, France) 

May-June 2011 

• “Discovery of the research” 1 month at the INRA-Lusignan genetic 

resources department (Lusignan, France) - 2010 

• Horticultural apprentices in flower production 
Flutre’s company (Eu, France) 

September 2007 – July 2009 

• Farming traineeships: Stud farm at Woking (UK) June-July 2005 ; 

Dairy farm at Cork (Ireland) June-July 2004 and at Druisy (France) July 

2003. 
 

Education 

• From 01/2015: PhD Thesis 
Ludwig-Maximilians-University of Munich 

Faculty of Biology, Genetics, Research group Prof. Martin Parniske 

• 09/2011 – 06/2013: Microbiology Agrobiosciences 

Bioinformatics and systems biology 

(MABS) Master degree 
Specialization in plant sciences 

Paul Sabatiers, University of Toulouse III 

• 09/2009 – 06/2011: General Biology Licence degree 
University of Poitiers 

• 09/2007 – 06/2009: Horticultural production technical 

postgraduate degree (BTS) 
Hortitheque, Mont Saint Aignan 

• 09/2003 – 06/2007: Integrated preparation 
ESITPA - School of Agricultural Engineering, Rouen 

• 2003: Science baccalaureate diploma 
Fenelon Sainte-Marie high school, Paris 

Picture 

 

International Conferences 
- 3rd international Molecular Mycorrhiza 

Meeting (iMMM); Toulouse 2017 
Talk: “Dryas, a new model for plant root 

symbioses – Discovery of a polymorphic AM 

symbiosis trait within the same plant genus” 

- 12th European Nitrogen Fixation 

Conference (ENFC); Budapest 2016 
Talk at the satellite symposium: 15th BNF-NL-

Symposium – “Dryas: a model genus for root 

symbioses of the Rosaceae” 

 

Publications 
- Development of Dryas genus as model 

for genetic studies on root symbioses of 

the Rosaceae. 

Billault-Penneteau B, Sandré A, Folgmann 

J, Parniske M, Pawlowski K. Frontiers in 

Plant Science. 2019 

DOI:10.3389/fpls.2019.00661 

- Phylogenomics reveals multiple losses of 

nitrogen-fixing root nodule symbiosis. 

Griesmann M, Chang Y, Liu X, Song Y, 

Haberer G, Crook MB, Billault-Penneteau 

B, Lauressergues D, Keller J, Imanishi L, 

Roswanjaya YP. et al. Science. 2018 

DOI:10.1126/science.aat1743 

- Two CCAAT‐box‐binding transcription 

factors redundantly regulate early steps 

of the legume‐rhizobia endosymbiosis. 

Laloum T, Baudin M, Frances L, Lepage A, 

Billault‐Penneteau B, Cerri MR, Ariel F, 

Jardinaud MF, Gamas P, de Carvalho‐Niebel 

F, Niebel A. The Plant Journal. 2014 

DOI:10.1111/tpj.12587 

Skills 
Horticultural: crop implementation and 

monitoring, phytosanitary and biological 

protection 

Scientific: directed mutagenesis, DNA 

extraction (CTAB, CsCl gradient), 

Chromatin Imunoprecipitation, plant 

transformation (A. rhizogenes and 

A. tumefaciens), symbiotic inoculations. 

Computer: Bioinformatic (CLC Genomics 

Workbench, R Statistic, Biopython), Image 

processing (Illustrator, ImageJ), Microsoft 

Office. 

Language: French (native), English (fluent), 

Spanish (basic). 
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