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1. Summary 

Mitosis is the process of dividing a eukaryotic cell into two identical daughter cells. 

This part of the cell cycle executes the faithful propagation of the genome. A 

prerequisite for maintaining genome stability is the assembly of the conserved 

kinetochore structure at chromosomal loci called centromeres. The kinetochore is 

a macromolecular protein complex that physically links chromosomes to spindle 

microtubules. Aberrations in chromosome segregation cause aneuploidy, which 

has been associated with tumorigenesis, trisomy, and age-related pathologies. To 

ensure the accurate segregation of sister chromatids, their kinetochores have to be 

attached to microtubules emanating from opposite spindle poles, a configuration 

which is known as biorientation of chromosomes. The kinetochore is composed of 

more than 80 proteins, which are organized in stable subcomplexes and follow a 

conserved hierarchy of assembly from centromeric chromatin to microtubules: the 

centromere proximal inner kinetochore or Constitutive Centromere Associated 

Network (CCAN), the microtubule binding KMN (KNL1/MIS12/NDC80) network 

at the outer kinetochore and the fibrous corona. The proteins of the CCAN complex 

build the interface between centromeric chromatin and the microtubule-binding 

unit. Several kinetochore proteins are conserved among eukaryotes. In contrast, 

the underlying centromeric chromatin is highly divergent and epigenetically 

specified. The major epigenetic mark of the centromere are nucleosomes that have 

H3 replaced by centromere specific histone variant CENP-A. Interestingly, the 

levels of CENP-A are halved during DNA replication by equally distributing 

CENP-A between sister chromatids. Cells pass through mitosis with half-maximal 

CENP-A levels until they are replenished during mitotic exit. The underlying 

molecular pathways of histone redistribution during DNA replication and CENP-A 

replenishment in the early G1-phase remain largely unknown. In this thesis, I 

analyzed the protein composition of the human centromere in a time-resolved 

manner to study the quantitative changes in protein interactions of CENP-A 

containing oligo-nucleosomes. This proteomic screen detected several proteins 

that are associated with the centromere in a cell cycle-dependent manner and 

identified candidates that may regulate CENP-A distribution to the leading and 

lagging DNA strands subsequent to replication. Besides chromatin-associated 

proteins, histone remodelers, and readers and writers of histone post-translational 

modifications (PTMs), I identified an uncharacterized protein. This transcription 
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factor-like protein was selectively associated with CENP-A at levels comparable to 

CCAN proteins throughout the entire cell cycle, indicating that this protein may 

have a structural role at the centromere or inner kinetochore. 

Spatial restraints derived from the mass spectrometric analysis of crosslinked 

proteins (XLMS) are widely applied in integrative structural biology approaches 

to determine protein connectivity. I used label-free quantification of crosslink 

spectral data to show the dependence of crosslink distances and intensities, which 

facilitated the estimation of protein dissociation constants and aided the 

prediction of interfaces of budding yeast subunit contacts. The load-bearing link 

of chromosomes to microtubules through the kinetochore is stabilized through 

phosphorylation of CCAN and KMN proteins by mitotic kinases. Titration of the 

assembly of up to 11 budding yeast kinetochore proteins in vitro indicated that 

phosphorylation of CCAN and KMN proteins induces cooperative stabilization of 

the kinetochore at the centromeric nucleosome, which is required to withstand the 

pulling forces of depolymerizing microtubules. Phosphorylation of distinct sites at 

the outer kinetochore subunit Dsn1 by AuroraBIpl1, and at the inner kinetochore 

protein Mif2, mediated cooperativity of the kinetochore assembly. These 

phosphorylation events decreased the KD values of the kinetochore protein-

interactions to the centromeric nucleosome by ~200-fold, which was essential for 

cell viability. This work demonstrates the potential of quantitative XLMS for 

characterizing mechanistic effects on protein assemblies upon post-translational 

modifications or cofactor interaction and for biological modeling.  
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2. Preface 

This study was performed in the laboratory of Dr. Franz Herzog. From November 

2014 to November 2020, I was working on two main projects described in this 

thesis. A detailed description based on the state of the art will introduce both 

projects as both deals with the investigation of the cell cycle regulation of 

centromeric chromatin and kinetochore assembly.  

The thesis was split into two parts, each of which will be introduced separately. 

The results of my first project will be summarized as a manuscript with the title: 

“Quantitative Crosslinking and Mass Spectrometry Determine Binding Interfaces 

and Affinities Mediating Kinetochore Stabilization” that was submitted. Parts of 

these results were presented in an international conference: EMBO workshop 

“Chromosome segregation and aneuploidy” from May 11-15th 2019 in Cascais, 

Portugal; Poster title: “Measuring Cooperativity in Multi-Protein Complex 

Assemblies by Quantitative Crosslinking Mass Spectrometry.” An extended 

discussion follows the results part in which I discuss the topics of the manuscripts 

in more detail, as well as future research directions for the field.  

Hagemann G*, Solis-Mezarino V*, Singh S, Potocnjak M, Kumar C, 

Herzog F. (2020) Quantitative Crosslinking and Mass Spectrometry 

Determine Binding Interfaces and Affinities Mediating Kinetochore 

Stabilization. (in revision) 

The second part contains my research on the human centromere-specific histone 

H3 variant CENP-A. This second part will be introduced, based on the main 

introduction and further specified on human centromeres and centromeric 

chromatin. The results of this part will be discussed based on the latest research 

giving future directions of the project. 

Several collaborative projects were performed with coworkers from the 

laboratories of Prof. Dr. Stefan Westermann (ZMB, Essen) and Dr. Kevin D. 

Corbett (Ludwig Institute for Cancer Research, University of California, San 

Diego). These projects are not subject to this work.  
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3. Main Introduction 

 Introduction 

The proliferation of all eukaryotes depends on the equal and accurate segregation 

of chromosomes during cell division. The foundation of this process is the 

duplication of the DNA sequence and its dynamic organization by nucleoproteins 

into chromatin throughout the progression of the cell cycle. The nucleosome, as 

the basic unit of chromatin, comprises a core particle with 147 bp of DNA wrapped 

~1.7 times around a histone octamer. Two molecules, each of the core histones 

H2A, H2B, H3, and H4, form a canonical histone octamer (Luger et al., 1997). Still, 

the nucleosome remains a highly versatile and modular structure. Changes in 

composition by incorporating various histone variants and the addition of 

multiple posttranslational-modifications (PTMs) can modulate the packaging and 

accessibility of DNA and adapt it to various needs to read and regulate expression 

or transmission of the genetic information (Ahmad and Henikoff, 2002, 

Kamakaka and Biggins, 2005, Probst et al., 2009). 

Consequently, the nucleosome make-up provides the basis of chromatin 

organization and orchestrates all DNA-templated processes, like transcriptional 

regulation, DNA repair, or dense packing of DNA chromosome protection (Rieder 

et al., 2012, Malik and Henikoff, 2003). Chromatin assembly and quality control 

are tightly aligned with DNA replication for reliable maintenance of chromatin 

organization. Reassembly of chromatin after DNA replication occurs either by 

recycling modified parental histones or by the deposition of newly synthesized 

ones (Gunjan et al., 2005, Marzluff and Duronio, 2002). The propagation of 

chromatin domains is dependent on these mechanisms (Ransom et al., 2010, 

Alabert and Groth, 2012, Probst et al., 2009). Accordingly, the current perspective 

proposes two models of histone mark propagation (Stellfox et al., 2013). In the 

first model, chromatin formation after replication happens randomly out of a pool 

of old and new histones (De Rop et al., 2012). Although easy to implement for the 

cell, there are some disadvantages. Random incorporation of histones would result 

in the dilution of PTMs and, consequently, in a loss of significance of the defined 

chromatin domains (Dunleavy et al., 2011). Also, the histone distribution relative 

to the DNA sequence is likely to change, which causes a change of transcription 
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patterns (Margueron and Reinberg, 2010, Probst et al., 2009). The second model 

proposes a semi-conservative distribution of histone dimers by a histone 

deposition machinery (Xu et al., 2010). However, proof of this model is still a 

matter of active research, and hence, the precise mechanism remains elusive. A 

key factor of this machinery could be the proliferating cell nuclear antigen (PCNA), 

a DNA clamp protein involved in DNA replication (Stillman, 1986, Smith and 

Stillman, 1989, Shibahara and Stillman, 1999, Stewart-Morgan et al., 2020). 

Several studies showed its capability to recruit DNA polymerase along with 

chromatin remodeling factors, cell-cycle regulators, and helicases (Gerard et al., 

2006). Up to now, a remodeling complex necessary for the incorporation of 

parental histone dimers, has not yet been identified. A detailed analysis of the 

CENP-A associated protein complexes will help us to understand the molecular 

mechanism of CENP-A deposition that propagates chromatin organization and 

epigenetic inheritance. Histone recycling by distribution onto sister DNAs after 

replication is vital for maintaining chromatin organization and the identity of 

specialized chromatin domains like centromeres. 

 Centromere Size and Composition 

Centromeres are specialized chromatin domains that establish the molecular basis 

for genomic stability. After DNA condensation, centromeres are visible as primary 

constrictions of the mammalian metaphase chromosomes and are the sites of 

kinetochore formation where spindle microtubules are attached to mediate 

chromosome segregation during mitosis and meiosis. Kinetochores facilitate the 

segregation of bivalents in the reductional division, known as meiosis, and the 

distribution of sister chromatids to obtain two identical daughter cells in mitosis. 

They have to withstand DNA replication stress, topological constraints, and 

pulling forces of depolymerizing microtubules during anaphase (Manuelidis, 1978, 

Vissel and Choo, 1987, Henikoff et al., 2001). Despite the high phylogenetic 

conservation of centromere function, the complexity, placement, and density are 

quite diverse among different species (Willard and Waye, 1987, Grady et al., 1992, 

Cleveland et al., 2003, Plohl et al., 2014, Schueler et al., 2001). In budding yeast, 

the centromere consists of a 125bp DNA sequence sufficient to define centromere 

function (Clarke and Carbon, 1980). The simplicity of these ‘point centromeres’ 

(CEN) enabled intense studying of the minimally required proteins for 

chromosome segregation. These centromeres organize into three distinct 
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‘centromere DNA elements’ (CDE) (Clarke and Carbon, 1980). CDEI is only 

partially conserved and 8bp long (Cumberledge and Carbon, 1987). CDEII is an 

AT-rich 78-86bp sequence; CDEIII consists of a palindromic sequence and is 

essential for kinetochore assembly (McGrew et al., 1986, Ng and Carbon, 1987, 

Cumberledge and Carbon, 1987). However, most eukaryotic species have ‘regional 

centromeres,’ which are complex assemblies of simple repeated DNA sequences 

(Fukagawa and Earnshaw, 2014, Kursel and Malik, 2016). As shown in multiple 

species like the orangutan, horse, chicken, mice, or human, a specific pattern of 

repeated DNA elements defining centromere identity has not been identified 

(Wade et al., 2009, Locke et al., 2011, Piras et al., 2010, Shang et al., 2010). Despite 

the efforts on finding a centromere consensus DNA sequence in metazoans, 

neither a consensus nor a defined order of sequences can be described, which 

demonstrates a satellite higher-order repeat (HORs) structure (Vissel and Choo, 

1987, Alkan et al., 2011).  

Human centromeres are composed of centromeric chromatin flanked by 

pericentromeric heterochromatin (Schueler and Sullivan, 2006). The core 

centromere contains an array of higher-order repeats of 171 bp α-satellite DNA 

(Alexandrov et al., 2001, Choo et al., 1991, Waye and Willard, 1987). While higher-

order α-satellite DNA sequences at centromeres slightly differ between 

chromosomes, all chromosomes, except the Y-chromosome, contain a 17 bp motif 

termed CENP-B box (Ikeno et al., 1994). This sequence is explicitly recognized and 

bound by the centromeric protein CENP-B, which is the only human kinetochore 

protein with DNA sequence specificity (Hemmerich et al., 2008). In contrast, 

monomeric α-satellite DNA, which resides in the pericentromeric region, varies 

significantly in sequence and lacks a higher-order organization (Schueler and 

Sullivan, 2006). This species-specific enrichment of a characteristic repetitive 

sequence, like the α-satellite DNA in humans repeats, is not strictly required for 

kinetochore formation (Ohzeki et al., 2002). 

Centromeres are epigenetically defined by the presence of the centromere-specific 

histone H3 variant CENP-A, except budding yeast point centromeres, that are 

specified by a distinct DNA sequence (Palmer et al., 1987, Yoda et al., 2000, 

Furuyama and Biggins, 2007). Unlike the distinct spatial organization of DNA 

sequence-specific point centromeres in budding yeasts, the regional centromeres 

of other eukaryotes span several hundred kilobases to several megabases (Aldrup-

Macdonald and Sullivan, 2014). Here, all active centromeres harbor large arrays 
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of CENP-A nucleosomes interspersed by those carrying histone H3 (Westhorpe et 

al., 2015). However, number and distribution vary between species ranging from 

a single CENP-ACse4 containing nucleosome in budding yeast to ~200 CENP-A 

nucleosomes per centromere in humans (Lawrimore et al., 2011, Black and 

Cleveland, 2011, Hasson et al., 2013). The incorporation of CENP-A histones into 

centromeric chromatin is essential in all organisms (Blower and Karpen, 2001, 

Howman et al., 2000, Goshima et al., 2003, Oegema et al., 2001, Regnier et al., 

2005, Stoler et al., 1995, Takahashi et al., 2000). As new centromeres (i.e., 

neocentromeres) are known to establish at chromosomal loci that do not have any 

sequence similarity to canonical centromeres but are solely characterized by the 

presence of CENP-A nucleosomes, CENP-A deposition is the most upstream event 

of centromere formation, which results in the recruitment of most known 

centromere and kinetochore proteins (Ishii et al., 2008, Ketel et al., 2009, Shang 

et al., 2013, Heun et al., 2006, Olszak et al., 2011). Artificial tethering of LacI 

tagged CENP-A to DNA containing the Lac operator sequence was sufficient for 

centromere formation and for the recruitment of all kinetochore proteins to stably 

attach to spindle microtubules (Mendiburo et al., 2011, Gascoigne et al., 2011). 

Importantly the site of neocentromere self-propagated even after the loss of LacI-

CENP-A tethering (Hori et al., 2013). This finding has supported the assumption 

that epigenetic events define centromeres, although repetitive alphoid DNA can 

induce centromere formation in humans (Barnhart et al., 2011, Guse et al., 2011).  

The centromeric chromatin domain is present throughout the cell cycle. It acts as 

a platform for the transient assembly of the kinetochore, which builds up a 

microtubule binding unit in mitosis just in time before chromosomes are attached 

and biorientated (Hegemann and Fleig, 1993, Pluta et al., 1995, Clarke, 1998). 

Aberrations in chromosome segregation can lead to aneuploidy, which has been 

associated with congenital disabilities, infertility, cancer, and aging (Ly et al., 

2019).  

 Inner Kinetochore Composition and Specification.  

CENP-A specifies the recruitment of several proteins to build up functional 

kinetochores. Kinetochores are highly conserved and composed of approximately 

100 proteins (in humans) organized in distinct subcomplexes and assemble in a 

defined hierarchy from centromeric DNA to microtubules (Tipton et al., 2012). 
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The centromere-proximal or inner kinetochore complex includes at least 16 

proteins, which are organized in subcomplexes that identify as constitutive 

centromere associated network ‘CCAN’ (organized in subcomplexes as CENP-C; 

CENP-L/-N; CENP-H/-I/-K/-M; CENP-O/-P/-Q/-U/-R; CENP-T/-W/-S/-X) 

(Figure 1) (Cheeseman and Desai, 2008). Besides CENP-A, CENP-C is an essential 

CCAN component that directly interacts with CENP-A containing nucleosomes 

(Falk et al., 2015, Falk et al., 2016, Kato et al., 2013). CENP-C was initially 

identified in patients with CREST syndrome (Earnshaw and Rothfield, 1985). Like 

CENP-A, most organisms have functional CENP-C homologs, although the overall 

sequence homology between human CENP-C and the yeast ortholog Mif2 is low 

(Brown, 1995, Meluh and Koshland, 1995). Its depletion causes severe 

chromosome defects resulting in cell death (Saitoh et al., 1992, Brown et al., 1993, 

Brown, 1995, Tomkiel et al., 1994, Meluh and Koshland, 1995, Fukagawa and 

Brown, 1997, Fukagawa et al., 1999, Holland et al., 2005, Heeger et al., 2005, 

Moore and Roth, 2001). 

Particular domains are well conserved between yeast and humans, and protein 

sequence analysis of CENP-C and its orthologs suggests that most of the protein is 

intrinsically disordered (Kato et al., 2013, Holland et al., 2005, Klare et al., 2015, 

Nagpal et al., 2015, Screpanti et al., 2011). The CENP-C N-terminus provides an 

interaction site for the microtubule-proximal outer kinetochore subcomplexes 

(Screpanti et al., 2011, Przewloka et al., 2011). Ectopic targeting of this domain 

induces the assembly of a functional kinetochore lacking other CCAN proteins 

(Hori et al., 2013). Along the carboxy-terminal half of the protein are two related 

short motifs (central domain and CENP-C motif) required to interact with 

centromeric chromatin (Nagpal et al., 2015, Klare et al., 2015). At the very C-

terminus resides a cupin fold domain, which induces dimerization (Cohen et al., 

2008). Another critical domain of vertebrate CENP-C is the PEST-rich domain 

that was shown to interact with CENP-H and CENP-L/N proteins of the CCAN 

(Nagpal et al., 2015, Klare et al., 2015). While CENP-C provides a direct link of 

centromeric chromatin to the microtubule-binding outer kinetochore, it is the 

dynamically modulated cornerstone of faithful chromosome segregation (Klare et 

al., 2015, Nagpal et al., 2015). Notably, the depletion of CENP-C in chicken DT40 

cells did not result in the loss of other CCAN proteins (Fukagawa et al., 2001, Hori 

et al., 2008, Kwon et al., 2007). The interactions of CENP-C with other CCAN 

subunits and how these affect kinetochore assembly and stabilization was further 

investigated in this work.  
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The three CCAN subcomplexes (CENP-L/-N; CENP-H/-I/-K/-M; CENP-O/-P/-

Q/-U/-R) form a ‘Y’-shaped structure that was obtained from cryo electron 

microscopy reconstructions from recombinant S. cerevisiae proteins (Hinshaw 

and Harrison, 2019, Yan et al., 2019). Like their human orthologs, the yeast 

proteins co-purify in in vivo pull-downs and are interdependent for kinetochore 

localization (Foltz et al., 2006, Akiyoshi et al., 2009). Despite the similarities in 

connectivity and assembly of CCAN proteins between budding yeast and 

vertebrates, not all CCAN proteins have orthologs in humans (Figure 1) 

(Cheeseman and Desai, 2008). Notably, almost all human CCAN proteins are 

required for mitosis, while only CENP-QOkp1 and CENP-UAme1 together with CENP-

CMif2 are essential in budding yeast (Hornung et al., 2014, De Wulf et al., 2003). 

Depletion of human CENP-U and CENP-Q result in comparably mild phenotypes 

(Foltz et al., 2006, Hornung et al., 2014). This striking difference could point to a 

different organization of budding yeast and human kinetochores, yet sequence 

conservation and domain arrangement of the orthologous proteins indicate 

substantial architectural similarity (Hinshaw and Harrison, 2019, Yan et al., 

2019). Notably, subunit connectivity differences may reflect the requirement for 

linking microtubules to point or regional centromeres in budding yeast and 

humans, respectively. In humans, CENP-N binds selectively and directly to the L1-

loop in the CENP-A targeting domain (CATD) of CENP-A (Pentakota et al., 2017). 

This second axis of kinetochore attachment is more interlaced with the other 

CCAN components and probably underlies a dynamic regulation (Pentakota et al., 

2017). Likewise, CENP-N, despite its direct binding to CENP-A containing 

nucleosomes, needs to simultaneously interact with other CCAN components for 

stabilization (Weir et al., 2016, Pentakota et al., 2017). CENP-N forms a 

heterodimeric complex with CENP-L, which directly binds to the CENP-H/-I/-K/-

M subcomplex and CENP-C (McKinley et al., 2015, Weir et al., 2016). In the 

assembly process, CENP-N and CENP-C can bind CENP-A simultaneously at 

different binding sites (Weir et al., 2016, Pentakota et al., 2017). CENP-H/-I/-K/-

M form a stable complex that is important for chromosome alignment, 

segregation, and viability by maintaining the integrity and stability of the CCAN 

(Basilico et al., 2014, Weir et al., 2016). Human CENP-M has a pseudo GTPase 

activity of unknown function and lacks an ortholog in yeast (Basilico et al., 2014). 

The yeast orthologs of CENP-N/-L, Chl4/Iml3 do not interact with the CENP-ACse4 

nucleosome but reside more central in the ‘Y’-shaped structure of the CCAN 

(Hinshaw and Harrison, 2019, Yan et al., 2019). Even though CENP-NChl4 is 
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required for faithful chromosome segregation in yeast, it remains elusive how its 

position in the kinetochore and its contacts with other CCAN proteins can 

contribute to this function without affecting viability (Hinshaw and Harrison, 

2019, Yan et al., 2019, Carroll et al., 2009). CENP-LIml3 forms the interface with 

CENP-H Mcm16/-I Ctf3/-K Mcm22 along with CENP-T Cnn1/-W Wip1 and generates one 

arm of the ‘Y’ (Hinshaw and Harrison, 2019, Yan et al., 2019). Several studies 

suggested that the vertebrate CENP-T/-W/-S/-X subcomplex forms a 

nucleosome-like complex that binds to 80-100 bp of DNA and introduces positive 

supercoils into DNA in vitro (Takeuchi et al., 2014). In contrast, in budding yeast, 

CENP-TCnn1 /CENP-WWip1 were found to co-localize with centromeric chromatin in 

a CENP-ICtf3 dependent manner (Pekgoz Altunkaya et al., 2016). CENP-S and 

CENP-X are neither necessary for viability nor conserved between budding yeast 

and vertebrates (Hori et al., 2008). The N-terminus of budding yeast CENP-TCnn1, 

similar to the vertebrate CENP-T, directly binds to the microtubule-binding 

Ndc80 complex in a phosphorylation-dependent manner. Hence CENP-T offers 

an additional scaffold for microtubule-binding (Pekgoz Altunkaya et al., 2016, 

Malvezzi et al., 2013). Due to its centered position, CENP-NChl4 interacts on one 

side with the more elongated CENP-P/-Q/-O/-U (Ctf19, Okp1, Mcm21, Ame1 in 

yeast: COMA complex) subcomplex that generates the opposite arm and stem of 

the ‘Y’-shape (Hinshaw and Harrison, 2019, Yan et al., 2019). Notably, the CENP-

UAme1/CENP-QOkp1 heterodimer of the COMA complex is a direct and selective 

interactor of the N-terminal tail of CENP-ACse4 (Anedchenko et al., 2019, 

Fischbock-Halwachs et al., 2019). Remarkably, the Okp1 core domain (AA163–

187) interacts with AA34-46 of CENP-ACse4 (Fischbock-Halwachs et al., 2019).  
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Figure 1. Schematic Representation of the Human Kinetochore 

Topology.  

The highly conserved hierarchy of kinetochore modules is depicted from 

centromeric chromatin to the microtubule binding interface. Proteins that are 

not conserved in budding yeast are grayed out. Centromeric chromatin is 

composed of CENP-A containing nucleosomes (orange) interspersed by 

patches of H3 containing nucleosomes (blue). The first assembly step is the 

interaction of the proteins that build the centromeric chromatin and the 

constitutive centromere associated network (CCAN). Proteins of the CCAN are 

constitutively bound to CENP-A containing nucleosomes. This module 

recruits the outer kinetochore complexes of the KMN network by forming 

protein contacts between CENP-C and the MIS12 complex and CENP-T and 

the NDC80 complex. The binding of NDC80 to microtubules from opposing 

spindle poles is monitored by a surveillance mechanism called the spindle 

assembly checkpoint (SAC). The SAC delays cell cycle progression until an 

AuroraB kinase-mediated correction mechanism resolves all improper 

attachments. 

Even though the enormous efforts in reconstituting vertebrate and yeast 

kinetochores expand our understanding of the molecular interactions, the 

complicated features of their interaction network and their interdependency for 

centromere localization are not entirely understood. Especially the dynamics of 

transient protein interactions and their influence on dynamic alterations of single 

CCAN interactions throughout the cell cycle are particularly intriguing. How PTM 

events influence kinetochore assembly dynamics has been challenging to explore 
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and will be addressed in this work. Gaining insights into the architecture of the 

centromere‑proximal subcomplexes of the kinetochores and the interactome of 

centromeric chromatin will significantly improve our understanding of cell cycle 

regulation, mitotic checkpoint establishment, and chromatin dynamics. 

 Composition of the Microtubule-Binding Outer 

Kinetochore 

On the microtubule-proximal site, the outer kinetochore forms a load-bearing link 

between the CCAN proteins and the plus ends of the spindle microtubules. The 

highly conserved framework of the outer kinetochore is a 10-subunit protein 

assembly known as KMN-network (KNL1-, MIS12- and NDC80-complex) 

(Cheeseman et al., 2004). The primary microtubule receptor at the kinetochore is 

the four-subunit NDC80 complex (NDC80 [Hec1 in humans], Nuf2, Spc24, Spc25) 

(Figure 1) (Ciferri et al., 2008). The large coiled coils, flanked by globular domains, 

resulting in a dumbbell-like structure, dominate the morphology of the complex 

(Ciferri et al., 2008, Wei et al., 2007, Wei et al., 2005). Its primary function, 

microtubule-binding, is mediated by the N-terminal side of the structure, built by 

Ndc80 and Nuf2 (Wan et al., 2009). Structural analysis has shown that a pair of 

tightly packed calponin-homology (CH) domains in Nuf2 and Ndc80 impart direct 

interaction with microtubules (Ciferri et al., 2008, Wei et al., 2007, Wei et al., 

2005). Besides the CH domains, two basic patches in the unstructured N-terminal 

tail of Ndc80 showed microtubule-binding capabilities in vitro (Ciferri et al., 

2008). Interestingly, only the deletion of the CH domains and not the basic 

segments in the N-terminal tail resulted in a loss of microtubule interaction 

(Ciferri et al., 2008). Whether these segments mediate an intermolecular 

interaction of NDC80-complexes or promote a cooperative binding effect by 

forming NDC80-complex clusters of microtubules is highly controversial. 

However, microtubule interaction of Ndc80 is dynamically regulated by 

phosphorylation events that antagonize the intrinsic positive charge, which results 

in a marked decrease in the binding affinity (DeLuca et al., 2006). AuroraBIpl1 

mediates this phosphorylation (DeLuca et al., 2006, Guimaraes et al., 2008). C-

terminally, the RWD-domains of the NDC80-complex subunits Spc24 and Spc25 

directly interact with the CCAN protein CENP-T (Malvezzi et al., 2013). Within the 

KMN-network, the MIS12-complex, consisting of Mis12, Pmf1, Dsn1, Nsl1, or 

MIND-/MTW1-complex (Mtw1, Nnf1, Dsn1, Nsl1) in budding yeast, acts as a 
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central interaction hub to facilitate the assembly and attach the KMN to the CCAN 

by interaction with CENP-C, CENP-T (in most organisms), and CENP-UAme1/-

QOkp1 (only in yeast) (Malvezzi et al., 2013, Dimitrova et al., 2016). The MIS12-

complex is, like all members of the KMN-network, highly conserved between 

human and yeast and organized as a four-protein rod-shaped structure that seems 

to extend the Ndc80-complex (Dimitrova et al., 2016). The stable subcomplexes 

Mis12/ Pmf1 and Dsn1/Nsl1 meet in the central stalk domain, whereby the 

C-termini of the Dsn1/ Nsl1 subcomplex provide binding sites for the RWD 

domains of the Spc24/25 subunits of the Ndc80-complex (Hornung et al., 2011, 

Maskell et al., 2010, Petrovic et al., 2010). The C-terminal end of Nsl1, together 

with the stalk domain, also provides a binding interface for the two-member 

KNL1-complex (KNL1/Zwint) (Hornung et al., 2011, Maskell et al., 2010, Petrovic 

et al., 2010). Besides its C-terminus that contains RWD-domains, KNL1 is vastly 

disordered and has some microtubule-binding affinity (Krenn et al., 2014, 

Lampert and Westermann, 2011). However, cell biological and biochemical work 

has shown that it has several conserved protein-binding motifs (Zhang et al., 2014, 

Vleugel et al., 2013, Krenn et al., 2014). The very N-terminus harbors a protein 

phosphatase1 (PP1) binding domain, followed by multiple MELT-repeats (Met, 

Glu, Leu, Thr) (Krenn et al., 2014). Mps1 kinase phosphorylates the Thr of the 

MELT-repeats, forming a binding hub for the spindle assembly checkpoint (SAC) 

protein complex consisting of Bub1 and Bub3 (Krenn et al., 2014).  

The NDC80 complex, along with the KNL1 complex, builds an elaborate 

microtubule-binding site (Lampert and Westermann, 2011). In particular, the 

NDC80 complex supports load-bearing microtubule attachments in vitro 

(Lampert and Westermann, 2011). The depletion of any KMN component leads to 

an aberrant kinetochore structure and, in the worst case, to a complete lack of 

kinetochore-microtubule attachments in all eukaryotes. Factually, spindle 

attachment is the crucial step of mitosis. Therefore, sister chromatids and their 

kinetochores are monitored by tight surveillance systems, whose components -in 

case of an error- interact with the kinetochore architecture most likely provided 

by KNL1 (Lara-Gonzalez et al., 2012).  
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 Regulation of Kinetochore Microtubule 

Attachments and the Spindle Assembly Checkpoint 

Kinetochores not only mediate the proper attachment of spindle microtubules but 

detect unattached kinetochores by their tension state and regulate the progression 

of mitosis by the SAC (Welburn et al., 2010). Although the essential components 

of the SAC have been identified, the precise signaling mechanism remains 

enigmatic and remains a matter of ongoing research (Lampson and Cheeseman, 

2011). An important turning point in mitosis is the transition from metaphase to 

anaphase (Lampson and Cheeseman, 2011). Before the onset of anaphase, all sister 

chromatid kinetochores are attached to microtubules of opposing spindle poles 

(Gordon et al., 2012). After achieving bi-oriented microtubule attachment, the 

Anaphase-Promoting Complex/Cyclosome (APC/C), an E3-ubiquitin ligase, 

promotes the degradation of several substrates, like B-type cyclins, and securin by 

ubiquitination for degradation by the 26S proteasome (Peters, 2006). Securin 

inhibits separase, the protease which - once activated - cleaves a subunit of the 

cohesin complexes that hold bi-oriented sister chromosomes together (Cohen-Fix 

et al., 1996, Funabiki et al., 1996, Holloway et al., 1993, King et al., 1995, Sudakin 

et al., 1995). Hence, inhibition of APC/C activity delays the onset of anaphase and 

therefore is the principal target of the SAC (Glotzer et al., 1991). In particular, the 

four-protein mitotic checkpoint complex (MCC) directly binds and inhibits the 

APC/C by incorporating the coactivator Cdc20 (Foe et al., 2011, Foster and 

Morgan, 2012, Pan and Chen, 2004).  

The assembly of the MCC eventuates at unattached kinetochores (Sudakin et al., 

2001, Fraschini et al., 2001, Kim and Burke, 2008, Malureanu et al., 2009). Here, 

the MELT repeats in KNL1 are phosphorylated by Mps1 (Krenn et al., 2014). 

MELT-(p) recruits the SAC proteins Bub3, Bub1, and its paralog BubR1 (Krenn et 

al., 2014). Bub1 serves as the primary hub and recruits other SAC components 

(Rischitor et al., 2007, Vanoosthuyse et al., 2004). After Bub1 and BubR1 bind 

Bub3 through their so-called GLEBS motifs, the proteins bind the MELT-(p) motif 

(Krenn et al., 2014, Overlack et al., 2017). For Cdc20 co-inhibition, Mad2 has to 

be recruited to the kinetochore (Musacchio and Salmon, 2007, Luo and Yu, 2008). 

In higher eukaryotes, Mad2 recruitment is most likely achieved by the interaction 

of Mad1/Mad2 with the RZZ-complex (Rod, Zwilch, ZW10) (Kops et al., 2005, 

Musacchio and Salmon, 2007). Here the conformation of Mad2 changes from a 
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soluble O-Mad2 (open) to a C-Mad2 (closed) state, which is capable of binding 

Cdc20 (Luo and Yu, 2008). The mature MCC consists of Bub3, BubR1, C-Mad2, 

and Cdc20 that can signal a single unattached kinetochore to prevent anaphase 

onset (Musacchio and Salmon, 2007). Mps1 recruitment to the kinetochore is key 

to SAC-signaling and the onset of anaphase (Maciejowski et al., 2010, Hewitt et 

al., 2010, Santaguida et al., 2010). Although the critical determinant of Mps1 

recruitment is the Ndc80 complex, the coordination of Mps1 within the 

kinetochore remains unknown.  

Before anaphase onset, microtubule-binding requires to be such dynamic that 

erroneous microtubule attachments can be corrected while bi-oriented 

attachments on chromosomes remain stable during anaphase (Lampson et al., 

2004, Pinsky et al., 2006). Balancing these two conflicting requirements is 

regulated in part by reversible phosphorylation of the KMN-network (Foley and 

Kapoor, 2013). The conserved main effector proteins in this error-correction 

mechanism are the kinase Aurora B (Ipl1 in yeast) and the phosphatase B56-PP2A 

(Lampson and Cheeseman, 2011). Aurora BIpl1, together with INCENP, Survivin, 

and Borealin (Sli15, Bir1, and Nbl1 respectively in yeast), form the chromosomal 

passenger complex (CPC) that is targeted to centromeric chromatin and acts as a 

molecular ruler in a tension-sensing manner (Lampson and Cheeseman, 2011). In 

brief, the tension on erroneously attached kinetochores is lower compared to bi-

oriented kinetochores (Figure 2) (Yoo et al., 2018). When the tension is low, the 

distance between the kinetochore and centromere is small and within the reach of 

Aurora B, destabilizing microtubule attachments by phosphorylation (Lampson 

and Cheeseman, 2011). If the tension increases, the spatial distance of the 

microtubule attachment also increases and eventually exceeds the range of Aurora 

B activity (Lampson et al., 2004). Recent publications found several pools of 

Aurora B acting independently of the CPC framework (Fischbock-Halwachs et al., 

2019, Campbell and Desai, 2013). Accordingly, misaligned chromosomes display 

enriched Aurora B levels at centromeres and kinetochores (Salimian et al., 2011). 
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Figure 2. Schematic Representation of Tension Induced Error 

Correction.  

A single incorrectly attached kinetochore can prevent cell cycle progression. 

Incorrect microtubule attachments occur quite frequently and are corrected in 

a tension sensing process. When microtubules depolymerize, the applied 

tension leads to intra- and inter-kinetochore stretching. The lack of tension in 

incorrect microtubule attachments results in AuroraB phosphorylation of the 

microtubule binding interface and the recruitment of the spindle assembly 

checkpoint (SAC) to the kinetochore. This enables the correction of 

microtubule attachments. Here the chromosomal passenger complex (CPC) 

acts as a ‘molecular ruler’ that detaches the microtubules from the 

kinetochore. The SAC is recruited to unattached kinetochores and halts cell 

cycle progression by inhibiting APC/C activity. When tension across 

centromeres is achieved by bioriented (amphitelic) microtubule attachment, 

the SAC is deactivated, and the cell cycle progresses. 

After correct kinetochore-microtubule attachment, the phosphorylation of the 

KMN-network is decreased by the antagonizing phosphatase B56-PP2A (Foley 
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and Kapoor, 2013). Regulation of kinetochore-microtubule attachments depends 

on an interlinked and sophisticated network of SAC proteins, Aurora B, and 

additional proteins, including Polo-like kinase 1 (Plk1) (Suijkerbuijk et al., 2012). 

Polo-like kinases are a conserved subfamily of serine/threonine protein kinases 

that play a substantial role throughout the cell cycle (Combes et al., 2017, Liu et 

al., 2017). Plk1 is recruited via its polo box domain (PBD) to the CCAN protein 

CENP-U which is phosphorylated by Plk1 (Kang et al., 2006). In addition, the PBD 

of Plk1 interacts with multiple components of the outer and inner kinetochore 

(Combes et al., 2017). However, the mechanism underlying the recruitment of Plk1 

to these sites is mostly unclear. Without sufficient Plk1 activity, cells suffer severe 

chromosome misalignment and kinetochore instabilities (Lera et al., 2019). 

Hence, this kinase is an essential regulator of microtubule-kinetochore 

attachments and kinetochore robustness (Lera et al., 2019). The substrate 

specificities of Plk1 and Mps1 are largely overlapping as both can phosphorylate 

the MELT repeats of KNL1 (von Schubert et al., 2015). 

Furthermore, there is tight crosstalk between Plk1 and Aurora B, which affects 

their activities at the kinetochore (Joukov and De Nicolo, 2018). Additionally, Plk1 

is often deregulated in a multitude of human cancers and targeted in therapeutic 

cancer drugs (Liu et al., 2017). How these mitotic protein kinases interact in the 

spatiotemporal context of the kinetochore to guide various mitotic events is key to 

our understanding of the coordination of chromosome segregation. 
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4. Quantitative Crosslinking and Mass 

Spectrometry Determine Binding 

Interfaces and Affinities Mediating 

Kinetochore Stabilization 

 Introduction 

The importance of the timely assembly of the macromolecular kinetochore 

complex to ensure accurate chromosome segregation in eukaryotes raises the 

important questions of how it is built up and what are the underlying regulatory 

mechanisms controlling the formation of this high-affinity linkage between 

centromeric nucleosomes and microtubules? Notably, the role of internal 

stabilization of the CCAN and the KMN through phosphorylation to generate 

stable microtubule attachment and biorientation remains elusive. Various protein 

kinases coordinate kinetochore functions (Saurin, 2018). As mentioned earlier, 

Mps1 initiates the mitotic checkpoint, BubR1 controls microtubule attachment, 

AuroraB corrects erroneous microtubule attachments, Haspin kinase helps to 

align chromosomes, and Plk1 serves several purposes, including the stabilization 

of end-on microtubule attachments (Saurin, 2018). The localization of each kinase 

reflects their distinct roles within the structure of the kinetochore (Saurin, 2018). 

Plk1 phosphorylates substrates throughout the entire kinetochore, either by 

binding them directly or through adjacent proteins (Lera et al., 2016, Saurin, 

2018). Many interaction partners are crucial, as Plk1 is tethered to distinct 

proteins within the kinetochore; it can solely phosphorylate in the vicinity of this 

kinetochore subcompartment (Lera et al., 2016, Saurin, 2018, Qi et al., 2006). 

Most Plk1 interacting proteins are found at the KMN network (Saurin, 2018). 

However, Plk1 localization at the CCAN and centromeric chromatin has been 

shown to be essential for proper alignment and faithful chromosome segregation, 

but the corresponding substrates remain unclear (Kang et al., 2006).  

Several studies reported the cooperative binding of kinetochore proteins 

(Hornung et al., 2014, Dimitrova et al., 2016, Weir et al., 2016, Pesenti et al., 2018). 

Thus far, there is only speculation about why kinetochore proteins act in 
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cooperative binding networks. The size and complexity of the kinetochore limit the 

possibility of studying all interactions and their modulations that happen. The use 

of hybrid structural approaches might overcome these limitations. 

4.1.1 Identification of Protein-Protein Interactions 

Protein-protein interactions (PPIs) and their fundamental essence in biology led 

to the development of multiple sophisticated methods to analyze the protein 

interactome. Despite most of the techniques like co-immunoprecipitation, affinity 

purification in combination with mass spectrometry (AP-MS), proximity-

dependent biotin identification (BioID), or conventional yeast two-hybrid 

screening (Y2H) are successfully used to map protein interactions, - each has its 

deficiencies (Smits and Vermeulen, 2016). Besides requiring tedious genetic 

modifications, most of the techniques have time-consuming experimental 

workflows and conceivably result in alteration of structural properties of the 

proteins (Smits and Vermeulen, 2016). Furthermore, the ability to gain 

quantitative information on protein complex abundance and composition from 

AP-MS experiments is limited (Smits and Vermeulen, 2016). 

In the field of proteomics, liquid chromatography coupled with mass spectrometry 

(LC-MS) is the primary protein analytics technology. Mass spectrometry (MS) 

examines molecules based on their mass to charge ratio (m/z) (Eliuk and Makarov, 

2015). In combination with chromatography and ionization methods, MS can 

resolve proteins and peptides after ionization and sort them based on their masses 

(Domon and Aebersold, 2006). The information enables the quantification of the 

peptides and fragmentation into smaller molecules (Domon and Aebersold, 

2006). Reconciling the derived masses with theoretical databases enables 

identifying the proteins in a sample (Cox and Mann, 2008). A typical workflow in 

this approach, also known as shotgun-proteomics, begins with the extraction and 

purification of proteins from the cell or any other biological sample (Domon and 

Aebersold, 2006, Cox and Mann, 2008). The isolated proteins are digested into 

peptides by endopeptidases with particular cleavage specificity (e.g., trypsin) 

(Olsen et al., 2004). Subsequently, the peptides are separated by chromatography 

based on their hydrophobicity charged by an ionization source, focused further by 

the mass spectrometer based on their m/z ratios and identified by a detector 

within the machine (Aebersold and Mann, 2003). These peaks result in the first 

spectral data or MS1 spectrum. Some of these peptides qualify for fragmentation 



4. Quantitative Crosslinking and Mass Spectrometry Determine Binding Interfaces and 

Affinities Mediating Kinetochore Stabilization 

4.1 Introduction   | 27 

into smaller molecules. Here their masses are again analyzed and stored in a 

spectrum (MS2 spectrum). 

During fragmentation of a peptide, the bondage break occurs at the amino acid 

backbone of the sequence (Ong and Mann, 2005). Thus, the MS2 spectrum of a 

peptide contains masses of its complete sequence and fragments (Ong and Mann, 

2005). Protein candidates from a sequence database are cleaved in silico to their 

theoretical peptides following the rules of the endopeptidase of choice (e.g., 

trypsin) (Cox and Mann, 2008). Finally, the experimental spectra are checked 

against the theoretical database to match the masses' best identification for the 

protein identity (Cox and Mann, 2008). 

The spectra also contain quantitative information as the MS1 spectral intensity 

corresponds to the relative abundance of peptides in the sample (Ong and Mann, 

2005). As the peak intensity is not in direct proportion to the protein abundance, 

MS is not intrinsically a quantitative method, which led to the development of 

several quantification methods (Ong and Mann, 2005). Some are reliant on 

protein labeling techniques either through metabolic (e.g., SILAC) or chemical 

approaches (e.g., TMT) (Ong et al., 2003, Thompson et al., 2003). These tags allow 

mixing and analyzing different cell or protein populations simultaneously, as the 

labeling-introduced mass-shift enables the discrimination between each 

population (Ong et al., 2003, Thompson et al., 2003). Under distinct experimental 

conditions, the relative changes in peptide intensities infer differences in protein 

abundance (Bantscheff et al., 2007). Alternatively, label-free approaches utilize 

computational strategies to obtain quantitative information on MS derived 

spectral data (Bantscheff et al., 2007). These are either based on the count of 

peptide fragmentation (spectral counting) or the sum of intensities obtained from 

all precursor peptide scans (Bantscheff et al., 2007). Both approaches have assets 

and drawbacks, but label-free quantification is, in general, less precise, yet less 

tedious and expensive (Bantscheff et al., 2007). Besides improvements in these 

methods, neither can discriminate between direct and indirect protein 

interactions nor determine the topology or dynamics of protein complexes. 
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4.1.2 Quantitative Chemical Cross-Linking followed by Mass 

Spectrometry 

The combination of chemical cross-linking and mass spectrometry (XLMS) 

facilitates the characterization of large protein complexes and has emerged over 

the past two decades as a versatile tool for identifying protein connectivity and 

topology (O'Reilly and Rappsilber, 2018). Typically, protein cross-linking is 

implemented by using homo-bi-functional N-Hydroxysuccinimide (NHS)-esters 

(O'Reilly and Rappsilber, 2018). The reactive groups form bridges between the ε-

ammonium groups of the lysines nearby. Thereby varying the spacer length 

between the functional groups controls the range of interaction (O'Reilly and 

Rappsilber, 2018). The covalent linkages between the protein’s lysines enable to 

analyze the interactions, which happen within distances beneath the spatial 

restraint of the linker length (O'Reilly and Rappsilber, 2018). Cross-link derived 

distance restraints identify interactions at peptide resolution and allow to pinpoint 

sites of interaction.  

A cross-link sample contains several moieties of peptide species, whereby the 

dominating amount is linear peptides, but also several cross-linking products 

(Holding, 2015). Most interesting are inter- and intra-protein cross-links, which 

harbor most structural information (Holding, 2015, Leitner, 2016). Besides, two 

more cross-links species occur that are generally less informative — Loop-links 

form when the endopeptidase is not cleaving between the cross-link residues 

(Holding, 2015). Moreover, mono-links occur when one side of the cross-linker is 

inactive by either hydrolysis or amination (Holding, 2015, Leitner, 2016).  

A comprehensive characterization of protein complexes goes beyond determining 

its members and their stoichiometry. Furthermore, the binding interfaces and the 

affinities their interactions establish within the protein complex play a significant 

role. High-resolution structural methods cannot characterize the majority of 

known protein complexes, either by the limitation of resolving flexible regions of 

the protein or due to their sheer size (Chavez and Bruce, 2019). Therefore, most 

protein domain interactions remain unexplored for the lack of structural 

information (Chavez and Bruce, 2019, Schmidt and Urlaub, 2017). Even low-

resolution structural data would be sufficient to characterize such interactions 

more comprehensively (Leitner, 2016, Schmidt and Urlaub, 2017). However, these 

experimental approaches that necessitate mutagenesis of specific amino acid 
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residues are either arduous or have low accuracy (e.g., hydrogen/deuterium 

exchange [HXD]) and XLMS) (Leitner, 2016). Computational approaches have 

low specificity and are not suitable to make sophisticated statements about protein 

complexes (Xue et al., 2011). Combining the advantages of both methods might 

deliver the best results. 

Indeed, quantification of cross-link intensities bears excellent possibilities to 

understand protein-protein binding events on a peptide level (Solis-Mezarino, 

2019). Recent developments of bioinformatics pipelines for the label-free 

quantification of cross-links now allow the detection of conformational changes 

within protein complexes and will allow the weighted use of distance restraints in 

integrative modeling (Walzthoeni et al., 2015, Solis-Mezarino, 2019, Schmidt et 

al., 2013, Fischer et al., 2013).  

For this purpose, we established a bioinformatics pipeline, which is based on 

modified tools from the OpenMS framework, which was described earlier (Solis-

Mezarino, 2019). We observed a linear dependency of cross-link peak intensity 

and Euclidean lysine-lysine distance (Solis-Mezarino, 2019). This not only bears 

the potential to identify interaction sites within protein complexes but might guide 

computational modeling even for de novo protein structure prediction. Based on 

this observation, we used statistical modeling to estimate apparent binding 

affinities of in vitro reconstituted yeast kinetochore protein complexes expressed 

in E. coli or insect cells. The results of this project are presented in the format of a 

manuscript (in revision) and will be further discussed in a separate section.  
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 Aims of the Work 

As previously demonstrated by Victor Solis-Mezarino in his thesis (Solis-

Mezarino, 2019), the quantification of cross-links by mass spectrometry (qXLMS) 

aids the determination of binding interfaces and facilitates the estimation of 

binding affinities of several subunit in contacts in protein complexes. Hence, 

quantitative crosslink data provide a measure for the kinetic description of the 

assembly and stabilization of protein complexes and how post-translational 

modifications and ligand binding may affect the molecular mechanism of protein 

complexes.  

The formation of interactions is described by the apparent constant of dissociation 

(KD) and is critical to characterize complex formation. However, standard methods 

for KD measurements almost exclusively assess binary interactions and have 

limitations with respect to protein concentration, size, and sample amounts. This 

pipeline has the potential to measure multiple protein interactions simultaneously 

that are necessary to establish macromolecular complexes. I applied this pipeline 

to study the interactions of a minimal budding yeast kinetochore assembled on a 

CENP-ACse4 containing nucleosome by qXLMS. The in vitro reconstitution of 

CCAN and KMN complexes interacting with CENP-ACse4 containing nucleosomes 

was expected to provide insights into the assembly of a high-affinity CENP-ACse4 

nucleosome binding complex and how it is stabilized by phosphorylation. 

Ultimately, I aimed to address the following questions: 

● What is the dynamic range of estimating apparent KD values by qXLMS? 

● What are the interfaces of key interactions that mediate the cooperative 

stabilization of the kinetochore at CENP-ACse4 containing nucleosomes? 

● What are the specific phosphorylation sites that mediate the cooperative 

stabilization of the kinetochore resulting in a high-affinity kinetochore 

complex that resists the pulling forces of depolymerizing microtubules in 

mitosis? 
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Abstract  

Crosslinking and mass spectrometry (XLMS) are used in integrative structural 

biology to acquire spatial restraints. We found a dependency between crosslink 

distances and intensities and developed a quantitative workflow to simultaneously 

estimate apparent dissociation constants (KD) of contacts within multi-subunit 

complexes and to aid interface prediction. Quantitative XLMS was applied to study 

the assembly of the macromolecular kinetochore complex, which is built on 

centromeric chromatin and establishes a stable link to spindle microtubules in 

order to segregate chromosomes during cell division. Inter-protein crosslink 

intensities facilitated determination of phosphorylation-induced binding 

interfaces and affinity changes. Phosphorylation of outer and inner kinetochore 

proteins mediated cooperative kinetochore stabilization and decreased the KD 

values of its interactions to the centromeric nucleosome by ~200-fold, which was 

essential for cell viability. This work demonstrates the potential of quantitative 

XLMS for characterizing mechanistic effects on protein assemblies upon post-

translational modifications or cofactor interaction and for biological modeling.  
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Main 

Distance restraints derived from the mass spectrometric identification of 

crosslinked amino acids (XLMS) are widely applied in integrative approaches to 

determine protein connectivity (O'Reilly and Rappsilber, 2018) and to model the 

topology of proteins and their domains in a complex (Rout and Sali, 2019). 

Quantification of crosslinks has been initially implemented to detect 

conformational changes and domain interactions (Fischer et al., 2013, Schmidt et 

al., 2013, Walzthoeni et al., 2015). Besides structure, the critical determinant of 

the molecular mechanism of a complex is the interaction strength of its subunit 

contacts, which can be modulated through cofactors or post-translational 

modifications to execute its biological function on time. Several biophysical 

methods (Rossi and Taylor, 2011) are available to measure protein-protein affinity 

through estimation of the apparent dissociation constant (KD), but the individual 

methods mainly analyze binary interactions and require high protein 

concentrations, protein engineering, immobilization or labeling which may affect 

the integrity of complexes. We reasoned that crosslink intensities provide a 

quantitative measure for the formed complex and the free subunits at the 

equilibrium state. Thus, we investigated whether crosslink intensities facilitate the 

simultaneous estimation of individual protein-protein affinities within 

kinetochore multi-subunit complexes. 

The kinetochore is a macromolecular protein complex assembled at centromeric 

chromatin that ensures the fidelity of chromosome segregation by connecting 

chromosomes and spindle microtubules and by integrating feedback control 

mechanisms (Biggins, 2013, Musacchio and Desai, 2017). In order to bi-orient 

chromosomes on the mitotic spindle the budding yeast kinetochore has to 

transmit forces of ~10 pN (Akiyoshi et al., 2009, Powers et al., 2009) by forming 

a load-bearing attachment to spindle microtubules and a high-affinity link to the 

centromeric nucleosome, marked by the histone H3 variant Cse4CENP-A (human 

orthologs are superscripted if appropriate). The kinetochore subunits are largely 

conserved between budding yeast and humans (Schleiffer et al., 2012, van Hooff 

et al., 2017) and form stable subcomplexes, which are organized in two layers of 

the kinetochore architecture. The outer kinetochore, a 10-subunit network that is 

built up on the inner kinetochore, forms the microtubule binding site. The inner 

kinetochore is assembled by at least 15 proteins on centromeric chromatin with 

Mif2 and Ame1/Okp1 directly linking the outer kinetochore MTW1 

(Mtw1/Nnf1/Dsn1/Nsl1) complex to the Cse4-NCP (Cse4 containing nucleosome 
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core particle) in budding yeast (Anedchenko et al., 2019, Fischbock-Halwachs et 

al., 2019, Xiao et al., 2017, Hornung et al., 2014). Whereas the human kinetochore 

assembly is temporally regulated, establishing a microtubule attachment site in 

mitosis, budding yeast kinetochores are built up and attached to a single 

microtubule almost throughout the entire cell cycle (Biggins, 2013, Gascoigne and 

Cheeseman, 2013, Hara and Fukagawa, 2020). In both species, phosphorylation 

of Dsn1DSN1 by the mitotic kinase Ipl1AuroraB stabilizes the recruitment of the outer 

to the inner kinetochore (Akiyoshi et al., 2013, Dimitrova et al., 2016, Petrovic et 

al., 2016). In addition, phosphorylation of the human kinetochore by Plk1 has been 

shown to stabilize the inner kinetochore architecture at centromeric chromatin to 

withstand the pulling forces of depolymerizing microtubules (Lera et al., 2019).  

By quantifying crosslink-derived restraints we found a dependency between 

crosslink distances and intensities. This relation was applied to improve the 

prediction of protein binding interfaces and to determine apparent KD values of 

their interactions, which provided quantitative measures to capture different 

functional states of the kinetochore. Our approach facilitated the detection of 

phosphorylation-induced changes in binding affinities between the centromeric 

nucleosome and a minimal kinetochore assembly composed of the outer 

kinetochore MTW1MIS12 complex, the inner kinetochore Mif2CENP-C and 

Ame1/Okp1CENP-U/Q proteins. 

 

Results 

Determination of Crosslink Intensity and its Dependence on Crosslink 

Distance 

To quantify protein crosslinks, we first extracted the MS1 peak intensities of the 

MS2 based crosslink identifications using an in-house bioinformatics pipeline that 

merges the open-source software tools xQuest/xProphet (Herzog et al., 2012, 

Walzthoeni et al., 2012) and OpenMS (Rost et al., 2016) (Figure 3 and Methods). 

Protein complexes were crosslinked by modifying the α-amino groups with the 

isotopically labeled BS2G-d0/d6 reagent and crosslinked peptide fractions were 

analyzed by liquid chromatography coupled to tandem mass spectrometry. The 

raw files were processed by the xQuest/xProphet software to identify the 

crosslinked peptides, their precursor ion masses and retention times. This 

information was subsequently used for the extraction of ion chromatograms by the 

OpenMS software tool, which were summarized in text tables. The quantification 
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pipeline was benchmarked against available datasets showing that our 

bioinformatics workflow performs similarly to previously reported software tools 

in terms of signal detection rate and accuracy of quantification and is independent 

of the crosslinker type (Figure 9). 

Quantifying the crosslinks of published multi-protein complex datasets (Iacobucci 

et al., 2019, Jennebach et al., 2012) and mapping the corresponding Euclidean 

lysine-lysine distances on available crystal structures, including those of RNA 

polymerase I and II, indicated that shorter Euclidean distances between the 

crosslinked lysines correlate with increasing crosslink intensities (a and Figure 

10). We assumed that the inter-protein crosslink intensity is also affected by the 

physicochemical microenvironment of individual lysines as well as by a 

competition for the formation of intra-, inter-protein or mono-links at a specific 

lysine site during the crosslinking reaction. To assess whether crosslink intensities 

increase for lysine sites proximal to binding interfaces, we mapped the intensity 

values along the sequences of the RPB1-RPB2 interaction in RNA polymerase II 

(Figure 11a) as well as of the budding yeast kinetochore Cnn1-Spc24/25 interaction 

(Figure 11b). We normalized the inter-protein crosslink intensities to the sum of 

intensities of intra- and inter-protein crosslinks and monolinks occurring at a 

specific lysine residue. This normalized intensity value or 'Relative Interface 

Propensity Index' (RIPI) served as an indicator for putative interface sequences 

and was applied in an heuristic approach together with secondary structural 

elements, sequence conservation and other parameters to aid in the prediction of 

protein-protein interfaces (Figure 11 and Methods).  

Estimation of protein affinities based on crosslink intensities 

We further applied inter- and intra-protein crosslink intensities to estimate the 

concentrations of the formed complex and the free subunits according to the 

steady state equilibrium in solution. To assess whether crosslink intensities 

supported the estimation of binding affinities we purified recombinant 

kinetochore subunits and titrated complex formation over a range of molar ratios. 

First, the inner and outer kinetochore proteins Cnn11-270 and Spc24/25 (Malvezzi 

et al., 2013), respectively, were titrated by applying molar ratios from 0.05:1 to 2:1 

(Figure 3, Figure 12, and Figure 13). To capture the equilibrium state of the binding 

reaction by crosslinking, the reaction time of the BS2G-d0/d6 reagent was limited 

to 2 minutes. Intra-protein crosslink intensities of the constant interactor 

facilitated the normalization between titration steps and those of the titrated 

interactor enabled the calculation of a linear regression of the intra-protein 
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intensities on the increasing input protein concentrations (Figure 12, and Figure 

13). The regression model was applied to interpolate the concentration of the 

formed complex from the inter-protein crosslink intensities (Figure 3).  

The estimation of the apparent KD value was performed first by the Scatchard plot 

(Scatchard, 1949) (Figure 4 and Methods) that indicates the KD value as the 

negative inverse of the slope. We calculated the KD values for three different sets 

of inter-protein crosslinks (Figure 4). Applying either all inter-protein crosslinks 

to Cnn11-270 or only those intersecting with the structured domains of Spc24/25 

resulted in KD values of ~120 nM or ~50 nM, respectively. The subset of inter-links 

decorating the Cnn160-84 motif, that is required for mediating the interaction with 

Spc24/25, showed a KD of ~15 nM which agrees with the value previously obtained 

by isothermal titration calorimetry (ITC) (Malvezzi et al., 2013). This observation 

is consistent with the notion that residues proximal to the interface may be stably 

positioned and thus yield relatively higher inter-protein crosslink intensities. The 

second method used the steady state equilibrium equation to calculate the mean 

of KD values of each titration step from the concentrations of the formed complex 

and the free interactors (Figure 3, c). The second approach based on the steady 

state equilibrium equation closely reproduced the values obtained by the 

Scatchard plot. Moreover, a similar experiment was performed by titrating 

increasing concentrations of the Cnn160-84 peptide, containing the minimal 

binding motif, against the Spc24/25 dimer. The estimated KD value of 2.6 µM 

(Figure 14, and Figure 15) agrees with previous ITC measurements (Malvezzi et 

al., 2013) and suggests that Cnn1 sequences outside the Cnn160-84 motif contribute 

to the stabilization of the interaction. 

Phosphorylation of the inner kinetochore by Cdc5Plk1 induces its 

cooperative stabilization on Cse4 nucleosomes 

To determine the apparent KD values of the individual interactions that assemble 

the kinetochore on the octameric Cse4 nucleosome, we in vitro reconstituted 

kinetochore complexes of up to 11 recombinant proteins (Figure 5) purified from 

E. coli, except Mif2, which was isolated from insect cells (Methods). We first 

reproduced the interaction of Mif2 and Ame1/Okp1 (Hornung et al., 2014), both 

of which directly bind Cse4-NCPs (Anedchenko et al., 2019, Fischbock-Halwachs 

et al., 2019, Hinshaw and Harrison, 2019), and found that this interaction was lost 

upon dephosphorylation of Mif2 (Figure 5b). In vitro phosphorylation of lambda-

phosphatase-treated Mif2 by the mitotic kinases Cdc28CDK1, Cdc5PLK1, Ipl1AuroraB 

and Mps1MPS1 showed that Cdc5PLK1 restored Ame1/Okp1 binding to levels detected 
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at insect cell-phosphorylated Mif2 (Figure 5b). For the subsequent XLMS and 

binding experiments Mif2 wild-type and mutant proteins were in vitro 

phosphorylated by Cdc5 and are indicated as Mif2*. 

We first estimated apparent KD values of the individual interactions of Cse4-NCP, 

Mif2* and Ame1/Okp1 by titrating the Cse4-NCP with increasing concentrations 

of Mif2* or Ame1/Okp1 and by titrating Ame1/Okp1 with Mif2* (Figure 5c, d, e, and 

Figure 16). The binding affinities of these binary interactions were then compared 

to the KD values of these interactions in the Mif2*:Ame1/Okp1:Cse4-NCP complex. 

Only intra- and inter-protein crosslinks yielding the extraction of intensities from 

all 3 replicates (Figure 17 - Figure 24) were applied to estimate the apparent KD 

values based on the steady state equilibrium equation. The affinities of the binary 

interactions ranging from 3 to 6 µM were increased 6-fold for the Mif2*:Cse4-NCP 

interaction and 10-fold for the Ame1/Okp1:Cse4-NCP and Mif2*:Ame1/Okp1 

interactions in the Mif2*:Ame1/Okp1:Cse4-NCP complex, indicating cooperative 

stabilization upon the phosphorylation-induced Mif2*:Ame1/Okp1 interaction 

(Figure 5c, d).  

Similar to the KD calculation of the Cnn11-270:Spc24/25 interaction, the restriction 

of inter-protein crosslinks to the subset intersecting with the minimal binding 

motif, the Mif2285-311 signature motif (Figure 5d and e) which directly binds the 

CENP-A C-terminus (Kato et al., 2013, Xiao et al., 2017), resulted in lower KD 

values. The KD value of the Mif2*:Cse4-NCP complex was reduced from 3.2 to 0.9 

µM which is in agreement with ITC measurements of the Mif2285-311 peptide with 

the Cse4-NCP showing a KD of 0.5 µM (Kato et al., 2013). Upon the cooperative 

interactions of Mif2* and Ame1/Okp1 to the Cse4-NCP the KD dropped by a factor 

of ~30 from 0.6 to 0.03 µM (Figure 5d and e) demonstrating that quantitative 

XLMS facilitates the estimation of apparent KD values and the detection of ~200-

fold affinity changes in multi-subunit complexes. 

Phosphorylation of outer and inner kinetochore proteins 

synergistically enhance kinetochore stabilization at the Cse4 

nucleosome 

The tetrameric MTW1MIS12 complex binds Mif2CENP-C and Ame1/Okp1. This 

interaction is stabilized upon Dsn1DSN1 phosphorylation by Ipl1AuroraB which 

releases the masking of the Mif2CENP-C and Ame1/Okp1 binding sites at the 

MTW1MIS12 head I domain by Dsn1DSN1 (Figure 5a) (Akiyoshi et al., 2013, Dimitrova 

et al., 2016, Emanuele et al., 2008, Yang et al., 2008). To test whether addition of 
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MTW1c affected the interactions of Cse4-NCP with Mif2* and Ame1/Okp1, we 

titrated constant levels of Cse4-NCPs with increasing concentrations of an 

equimolar mixture of Mif2*:Ame1/Okp1:MTW1c which contained either wild-type 

Dsn1 or the phosphorylation-mimicking Dsn1S240D,S250D mutant (Figure 25). The 

quantification of inter-protein crosslinks (Figure 26 and Figure 27) intersecting 

with Mif2 indicated the previously reported Mif2 interfaces to the Cse4-NCP 

(Hornung et al., 2014, Kato et al., 2013, Xiao et al., 2017) and to the MTW1c 

(Figure 28 and Figure 29a) (Musacchio and Desai, 2017). The estimation of 

binding affinities by the steady state equilibrium equation revealed that addition 

of wild-type MTW1c did not affect the KD values of Mif2* and Ame1/Okp1 to the 

Cse4-NCP (Figure 5d, Figure 6a and b). In comparison, the phosphorylation-

mimicking MTW1c(Dsn1S240D,S250D) decreased the KD values by ~20-fold and a 

similar change in affinity was observed for the Mif2:Okp1 interaction (Figure 6a 

and b). This indicated that in addition to the Mif2*:Okp1 interaction, putatively 

mediated by Cdc5, phosphorylation of Dsn1 by Ipl1 synergistically enhanced the 

binding affinity of Mif2* and Ame1/Okp1 to the Cse4-NCP. 

The phosphorylation-induced cooperativity mediating kinetochore 

stabilization is essential in budding yeast 

The RIPI calculated from inter-protein crosslink intensities of the Mif2*:Okp1 

interaction identified Mif2150-250 and Okp1180-220 as the putative binding motifs 

(Figure 5a, Figure 6c and Figure 29b). Based on the indicated regions, mutant 

proteins were generated to assess the required Mif2 phosphorylation sites 

mediating its interaction with Ame1/Okp1 in in vitro binding and cell viability 

assays. The Mif2Δ221-240 mutant abrogated the Mif2*:Ame1/Okp1 interaction in 

vitro whereas Mif2Δ200-230 still bound (Figure 7a). By assessing the 

phosphorylation dependency of this interaction (Figure 5b), we found that 

Ame1/Okp1 binding was lost upon mutating 9 serines to alanines within Mif2217-

240 (Figure 7a and Figure 30a). Ectopic expression of the Mif2 mutants, that were 

impaired in Ame1/Okp1 binding, did not affect growth of budding yeast cells after 

nuclear depletion of endogenous Mif2 (Figure 31, Figure 32a). Similarly, the 

Dsn1S240A,S250A,S264A mutant, which has been previously shown to affect binding of 

the outer kinetochore MTW1 complex to the inner kinetochore, was viable (Figure 

7b) (Akiyoshi et al., 2013). Notably, ectopic expression of the Mif2 mutants as only 

nuclear copies in a Dsn1S240A,S250A,S264A mutant background showed that the Mif2217-

240*9S-A mutant was synthetically lethal whereas the Mif2177-229*9ST-A and Mif2232-

240*5S-A mutants grew normally (Figure 7b). The synthetic growth defect of only the 



4. Quantitative Crosslinking and Mass Spectrometry Determine Binding Interfaces and 

Affinities Mediating Kinetochore Stabilization 

4.3 Results   | 39 

phosphorylation-deficient Mif2 mutants, that did not mediate interaction with 

Ame1/Okp1 in vitro, suggests that cooperative kinetochore stabilization through 

phosphorylation of Dsn1 and the Mif2 region 217-240 is required for cell viability. 

The putative Okp1 interface region included 2 predicted helices (Figure 29b and 

Figure 30b). A deletion mutant of the helix motif Okp1156-188, which was previously 

reported to be essential for binding the Cse4-END (essential-N-terminal-domain) 

(Fischbock-Halwachs et al., 2019), was lethal but still bound Mif2* in vitro, 

whereas the Okp1196-229 helix deletion abrogated Mif2* binding (Figure 7c and 

Figure 30c) and inhibited cell growth (Figure 7d and Figure 32b). Both Okp1 

helices form an α-helical hairpin-like structure (Figure 8) (Hinshaw and Harrison, 

2019, Yan et al., 2019) suggesting that the putative phosphorylation of the 9 

serines within Mif2217-240 establishes a cooperative high-affinity binding 

environment for the Cse4-NCP by bringing the Mif2217-240:Okp1196-220, Cse4-

END:Okp1156-188 and Mif2285-311:Cse4C-term contacts into close proximity (Figure 8 

and Figure 28). Moreover, Ame1/Okp1 and Mif2217-240*9S-A* competed for binding 

to Mtw1/Nnf1 (Figure 5a) (Killinger et al., 2020) but formed a nearly 

stoichiometric complex with in vitro phosphorylated wild-type Mif2*, suggesting 

that phosphorylation of the Mif2217-240 motif (Figure 5b) might facilitate the 

simultaneous stabilization of Mif2* and Ame1 at the same MTW1c (Figure 7e and 

Figure 8) (Dimitrova et al., 2016). 

Discussion 

Our observation that increasing crosslink intensities correlate with shorter 

crosslink distances lead to the development of a quantitative XLMS approach, 

which applies inter-protein crosslinks to characterize protein binding interfaces 

beyond the detection of the protein connectivity. This study demonstrates the 

capacity of inter-protein crosslink intensities to simultaneously estimate KD values 

of individual contacts in multi-protein assemblies ranging from 6 to 0.015 µM. 

Notably, the subset of inter-links proximal to minimal binding interfaces yielded 

apparent KD values that are in good agreement with values determined by ITC (c 

and Figure 5d). Moreover, the distance-intensity relation was exploited in the 

'Relative Interface Propensity Index' to support the prediction of putative interface 

sequence regions, whose physiological importance was confirmed in cell viability 

assays.  

To demonstrate the applicability of our workflow to datasets, which were not 

acquired as titration experiments for the purpose of this study, we analyzed the 
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XLMS dataset of the histone H3 methyltransferase Polycomb repressive complex 

2 (PRC2) (Figure 8b) (Kasinath et al., 2018). Based on crosslink intensities we 

showed that binding of methylated JARID2 increases the relative affinity of the 

second cofactor AEBP2 to the PRC2 complex (Figure 8c, d), which is consistent 

with the observation of a compact active state upon methylation of JARID2 by 

electron microscopy (Kasinath et al., 2018). In addition, the sequence areas, 

indicated by the RIPI blot, are in good agreement with the binding interfaces of 

the PRC2 subunit SUZ12 with the cofactors, JARID2 and AEBP2, which were 

obtained from electron microscopy density maps (Figure 8e, f) (Kasinath et al., 

2018). 

By applying the quantitative XLMS method to analyze the budding yeast 

kinetochore assembly at centromeric nucleosomes, we identified the interface of 

the phosphorylation-dependent Mif2:Ame1/Okp1 interaction at the inner 

kinetochore (Figure 5a and b). The phosphorylation sites within the Mif2217-240 

motif established the Mif2:Ame1/Okp1 interaction in vitro (Figure 7a) and were 

required not only to generate a hub of Cse4 nucleosome binding motifs but might 

also induce the switch-like stabilization of Mif2 and Ame1 at the outer kinetochore 

MTW1 complex phosphorylated at the Dsn1 subunit (Figure 5a, Figure 7e and 

Figure 8). Together, phosphorylation of the outer kinetochore Dsn1 and the inner 

kinetochore Mif2 proteins resulted in a ~200-fold increase in Cse4 nucleosome 

binding affinity in vitro (Figure 5 and Figure 6) and expression of 

phosphorylation-ablative mutants resulted in synthetic lethality suggesting that 

the phosphorylation-induced cooperativity is important for kinetochore 

stabilization in vivo. This highlights the capacity of quantitative XLMS to detect 

the impact of two phosphorylation events on the cooperative stabilization of a 

macromolecular assembly by a sharp increase in binding affinities. 

Although human and budding yeast kinetochores differ in subunit connectivity 

(Musacchio and Desai, 2017), the human orthologue of the MTW1 complex, 

MIS12c, has been implicated in CENP-A stabilization at centromeres (Kline et al., 

2006). Moreover, we found that the Mif2:Okp1 interface is partially conserved in 

their human orthologues CENP-C:CENP-Q (Figure 33) and the CENP-C residue 

T667, which corresponds to Mif2 S226, shows a single nucleotide polymorphism, 

T667K, in malignant hepatic cancer cells (Wu et al., 2014).  

We demonstrated that quantitative XLMS facilitated the mechanistic 

characterization of protein complexes beyond a structural description by 

estimating protein affinities and their relative changes upon protein modification 
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or ligand interaction. This quantitative XLMS method will significantly contribute 

to biological modeling at the molecular and cellular level and holds great promise 

for the development of diagnostic tools for studying the effects of drug interactions 

on protein complexes and the characterization of epitopes for protein 

therapeutics. 
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Figure 3 

Figure 3. Schematic Workflow of Estimating Protein Affinities by 

Quantitative XLMS.  

The binding partners were titrated by increasing the molar ratio of one 

interactor. Crosslinked proteins were proteolytically digested, enriched by size 

exclusion chromatography and linked peptides were identified by tandem 

mass spectrometry and the software xQuest(Herzog et al., 2012, Walzthoeni et 

al., 2012). Precursor intensities of the crosslinks were extracted using our 

TOPP-qXL (The OpenMS Proteomics Pipeline-quantitative XLMS) 

bioinformatics workflow. The intensities of intra- and inter-protein site-site 

links were applied to estimate the concentration of free interactors and 

complex and for the statistical modeling of apparent KD values.  
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Figure 4 

Figure 4. Estimation of apparent KD values in protein complexes 

using quantitative XLMS.  

a, Correlation of increasing crosslink intensities with decreasing Euclidean 

distances between crosslinked residues obtained from RNA polymerases 

analyses (Figure 10). The R-squared statistics and Fisher´s test was computed 

(p-value(intra)=0.00526, p-value(inter)=0.00098). b, Estimation of apparent 

KD values of the Cnn11-270:Spc24/25 interaction by the Scatchard plot using 

different subsets of inter-protein crosslinks to quantify complex formation. c, 

Apparent KD values were calculated based on the concentration of formed 

complex interpolated from the linear regression and averaged across molar 

ratios of the titration steps.   
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Figure 5 

Figure 5. The phosphorylation-dependent binding of Mif2* to 

Ame1/Okp1 cooperatively stabilizes their interactions with the 

Cse4-NCP.  

a, Reconstitution of the Mif2:Ame1/Okp1interaction by dephosphorylation 

(deP) of Mif2 and subsequent in vitro phosphorylation with the indicated 

kinases (mean ±SD of 3 replicates). b, Schematic representation of the 

assembly of MTW1c, Mif2, and Ame1/Okp1 on the Cse4-NCP. c, Estimation of 

apparent KD values from XLMS analysis of Mif2*:Ame1/Okp1, Mif2*:Cse4-

NCP and Ame1/Okp1:Cse4-NCP complexes compared to the apparent KD 

values within the Mif2*:Ame1/Okp1:Cse4-NCP complex (mean ±SD of 3 

replicates). d, Summary of estimated KD values including the KD 

determination of the Mif2:Cse4-NCP interaction using the subset of inter-

protein crosslinks to the Mif2285-311 signature motif. e, Network plot of 

Mif2*:Cse4-NCP crosslinks intersecting with Mif2285-311.  
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Figure 6 

Figure 6. Binding of the MTW1c cooperatively increased the affinity 

of the Mif2* and Ame1/Okp1 interaction to the Cse4-NCP.  

a, Estimation of apparent KD values by titrating Cse4-NCPs with increasing 

concentrations of a MTW1c:Mif2*:Ame1/Okp1 complex containing either 

wild-type Dsn1 or phosphorylation-mimicking Dsn1S240D,S250D (mean ±SD of 2 

replicates). b, Summary of KD values showing the effect upon binding of 

MTW1c(Dsn1S240D,S250D). c, Prediction of the Mif2*:Cse4 and Mif2*:Okp1 

interface by calculating the RIPI based on inter-protein crosslink intensities 

(Figure 10 and Methods).  
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Figure 7 

Figure 7. Phosphorylation of Mif2 and Dsn1 mediates a cooperative 

high-affinity link to the Cse4-NCP and is essential for cell viability.  

a, In vitro binding assay to identify the Ame1/Okp1 binding site on Mif2* 

using the indicated Mif2* deletion and phosphorylation-ablative mutants. b, 

Assay monitoring the rescue of cell growth upon nuclear depletion of Mif2 

using the anchor-away method through the ectopic expression of wild-type 

Mif2 or its indicated deletion or phosphorylation-ablative mutants in a Mif2-

FRB/Dsn1S240A-S250A-S264A background. c, Identification of the Mif2* 

binding site on Okp1 by assessing the binding of Okp1 deletion mutants in 

vitro. d, Assay of the effect of ectopically expressed Okp1 deletion mutants on 

cell growth in an Okp1-FRB anchor-away strain. e, In vitro assay to determine 

the effect of 9 putative phosphorylation sites within Mif2217-240 on the 

interaction of Mif2 and Ame1/Okp1 with Mtw1/Nnf1.  
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Figure 8 

 

Figure 8. Summary of quantitative XLMS applications to the 

kinetochore and PRC2.  

a, Structural model of cooperative kinetochore stabilization on the Cse4 

nucleosome through phosphorylation-induced interactions. Model of the 

MTW1c:Mif2:Ame1/Okp1:Cse4-NCP complex based on cryo electron 

microscopy and crystal structures (PDB 6NUW, 6QLD, 5T58) depicting the 

subunit contacts essential for establishing the cooperative binding of Cse4-

NCPs by Mif2 and Ame1/Okp1 upon phosphorylation of Dsn1 and 

Mif2(Hinshaw and Harrison, 2019, Yan et al., 2019). L1 shows Cse4 loop1. Light 

red and red residues within the Mif2215-240 sequence indicate acidic and 

putatively phosphorylated amino acids, respectively. b, Cryo electron 

microscopy density map of the PRC2 complex with the cofactors JARID2 (dark 

green) and AEBP2 (cyan) (PDB 6C23) showing the subunits SUZ12 (grey), EED 

(orange), EZH2 (kaki) and RbAp48 (violet). c, Estimation of relative affinities 

of the cofactors AEBP2 and JARID2 to the PRC2 complex based on crosslink 

intensities which were extracted and quantified by the TOPP-qXL pipeline. 

Boxplots with the same colour indicate replicates. d, Relative affinity change of 

AEBP2 for the PRC2 complex in the presence of methylated and non-

methylated JARID2. e, f, Interface sequence regions are indicated by RIPI blots, 

calculated from crosslink intensities, for the interactions of SUZ12 with (e) 

AEBP2 and (f) JARID2. Inter-protein crosslink lysines are represented as black 

asterisks. The top 20% conserved residues within the protein sequences are 

indicated. Secondary structures are shown as alpha helices (blue) and beta 

strands (green). Real interface residues were obtained from the PDB 6C23.  
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 Materials and Methods 

M1. Protein Expression and Purification of Spc24/25, MTW1C, 

Cnn1ΔHFD, Ame1/Okp1, Clb2 and Mps1 from E. coli 

For the expression of the budding yeast Spc24/25 complex in E. coli, the respective 

genes were amplified from genomic DNA and cloned into the pETDuet-1 vector 

(Novagen). Expression and purification of the Spc24/25 complex were performed 

as described previously (Hornung et al., 2014). In brief, pETDuet1-Spc24-

6xHis/Spc25 was transformed into E. coli strain BL21 DE3 (EMD Millipore). 

Bacteria were grown in selective LB-medium to an OD600 of 0.6 at 37 °C and 

protein expression was induced with 0.2 mM IPTG for 18 h at 18 °C. Cells were 

lysed in lysis buffer (30 mM HEPES, pH 7.5, 300 mM NaCl, 5% glycerol, 30 mM 

imidazole, Complete EDTA-free protease inhibitor [Roche]) and the cleared lysate 

was incubated with Ni-NTA agarose beads (Qiagen). The protein complex was 

eluted with buffer containing 30 mM HEPES pH 7.5, 150 mM NaCl, 0.01% NP-40, 

2% glycerol and 250 mM imidazole and further purified on a Superdex 200 

HiLoad 16/600 column (GE Healthcare) in the gel filtration buffer (30 mM 

HEPES pH 7.5, 150 mM KCl and 5% glycerol). 

The constructs for budding yeast Mtw1/Nnf1 (pETDuet-Mtw1-Nnf1-6xHis) and 

Dsn1/Nsl1 (pST-39-Mtw1-Nsl1-6xHis-Dsn1) were kindly provided by S. 

Westermann (Hornung et al., 2014). For the phospho-mimetic version of MTW1c 

(Mtw1/Nnf1/Dsn1S240DS250D/Nsl1), the serine residues S240 and S250 in Dsn1 were 

mutated to aspartic acid using the Q5 site-directed mutagenesis kit (NEB) as 

described previously (Akiyoshi et al., 2013, Dimitrova et al., 2016). The plasmid 

containing Mtw1/Nnf1 was transformed into E. coli Rosetta (DE3) strain (EMD 

Millipore), whereas Dsn1/Nsl1 was transformed into BL21 DE3 (EMD Millipore). 

Transformed bacteria were grown in selective LB medium at 37 °C to OD600 0.6-

0.8 and protein expression was induced with 0.2 mM IPTG (Mtw1/Nnf1 

expression) or 0.5 mM IPTG (Dsn1/Nsl1) at 18 °C for 18 h. Cells were lysed in lysis 

buffer (50 mM HEPES, pH 7.5, 400 mM NaCl, 5% glycerol, 20 mM imidazole, 1 

mM DTT, Complete EDTA-free protease inhibitor [Roche]) and the cleared lysate 

was incubated with Ni-NTA agarose beads (Qiagen). After several washing steps 

in wash buffer (50 mM HEPES, pH 7.5, 600 mM NaCl, 5% glycerol, 20 mM 

imidazole) the protein complex was recovered in elution buffer (50 mM HEPES 
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pH 7.5, 150 mM NaCl, 5% glycerol, 300 mM imidazole). To reconstitute the 

MTW1c, fractions containing pure protein sub-complexes were subjected to size-

exclusion chromatography (Superose 6 increase 10/300, GE Healthcare) in 25 

mM HEPES pH 7.5, 150 mM KCl, 5% glycerol and fractions containing 

reconstituted MTW1c were collected, flash-frozen in liquid nitrogen and stored at 

-80 °C. 

The construct encoding Ame1-6xHis/Okp1 (pST39-Okp1-Ame1-6xHis) was kindly 

provided by S. Westermann (Hornung et al., 2014). Protein expression and 

purification in E. coli was essentially performed as described (Hornung et al., 

2014) with the modification that 25 mM HEPES buffer was used as buffer 

component in all purification steps and the final gel filtration was performed on a 

Superdex 200 HiLoad 16/600 column (GE Healthcare) in 25 mM HEPES pH 7.5, 

150 mM KCl, 5% glycerol. 

For Mps1 expression and purification, the Mps1 coding sequence was cloned into 

pETDuet-1 with an N-terminal 6xHis-tag. Protein expression and purification was 

performed as described for the MTW1c and the Ni-NTA eluate was desalted using 

a PD10 column (GE Healthcare) in desalting buffer (50 mM HEPES pH 7.5, 150 

mM NaCl, 10% glycerol, 0.5 mM DTT). 

The construct for budding yeast Cnn11-270 (pETDuet-6xHis- Cnn11-270) was kindly 

provided by S. Westermann (Malvezzi et al., 2013) and purified as described. After 

elution, the protein was further purified on a Superdex 200 HiLoad 16/600 

column (GE Healthcare) in gel filtration buffer (25 mM HEPES pH 7.5, 150 mM 

KCl and 5% glycerol). 

M2. CDC28CDK1 Complex Purification 

Reconstitution of the CDC28 complex, consisting of Clb2, Cdc28 and Cks1, could 

not be performed by the single expression of all partners from a single baculovirus 

in insect cells, as Clb2 was degraded. To reconstitute the three subunit CDC28c, 

1xStrep-tagged Clb2 was expressed and purified from E. coli, immobilized on 

Strep-Tactin beads (Qiagen) and incubated with cell lysate of baculovirus infected 

High Five™ cells expressing Cdc28 and Cks1, to assemble the three subunit 

CDC28c. 

Full-length Clb2 was PCR amplified from budding yeast genomic DNA and cloned 

into pET-28 with an N-terminal 1xStrep-tag. pET28-1xStrep-Clb2 transformed E. 
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coli Rosetta (DE3) (EMD Millipore) cells were grown in selective LB medium to 

OD600 0.6-0.8 and expression of Clb2 was induced by 0.4 mM IPTG at 18 °C for 18 

h. Cells were resuspended in lysis buffer containing 50 mM HEPES pH 7.5, 150 

mM KCl, 5% glycerol, 0.01% Tween, 1.5 mM MgCl2, 1 mM DTT and complete 

EDTA-free protease inhibitor (Roche) and lysed by sonication. The cleared lysate 

was incubated with Strep-Tactin Superflow resin (Qiagen) for 1 h at 4 °C. 

Immobilized Clb2 was washed with wash buffer (50 mM HEPES pH 7.5, 150 mM 

KCl, 5% glycerol, 1 mM DTT) and incubated with the cleared insect cell lysates 

containing recombinant Cdc28 and Cks1 for one hour at 4 °C. Beads were washed 

and the reconstituted CDC28 complex was recovered in elution buffer (50 mM 

HEPES pH 7.5, 300 mM KCl, 5% glycerol, 1 mM DTT, 10 mM biotin). The eluate 

was dialyzed in 50 mM HEPES pH 7.5, 150 mM KCl, 10% glycerol) and flash-

frozen aliquots were stored at -80 °C. 

M3. Protein Expression and Purification from Insect Cells 

Open reading frames encoding the respective subunits were amplified from yeast 

genomic DNA and cloned into the pBIG1/2 vectors for insect cell expression 

according to the biGBac protocol (Weissmann et al., 2016). Generation of 

recombinant viruses expressing single or multiple subunits was performed 

according to the MultiBac system (Trowitzsch et al., 2010). 

Mif2-6xHis-6xFlag wild-type and mutant proteins were expressed in High Five™ 

cells for three days at 27 °C. Cells were lysed in lysis buffer (30 mM HEPES pH 7.5, 

400 mM NaCl, 20 mM imidazole, 5% glycerol, 125 U/ml benzonase (Merck), 1 mM 

MgCl2 and complete protease inhibitor cocktail [Roche]) using a dounce 

homogenizer. The cleared lysate was incubated with Ni-NTA resin (Qiagen) 

washed with lysis buffer (without protease inhibitor) and eluted in 30 mM HEPES 

pH 7.5, 150 mM NaCl, 5% glycerol and 250 mM imidazole.  

6xHis-Cdc5Plk1
 was expressed and purified from insect cells as described for Mif2 

with the following modifications. Cells were lysed in lysis buffer (50 mM HEPES 

pH 7.5, 150 mM NaCl, 5% glycerol, 125 U/ml benzonase (Merck), 1 mM MgCl2 and 

complete protease inhibitor cocktail [Roche]) using a dounce homogenizer. The 

cleared lysate was incubated with Ni-NTA resin (Qiagen), washed with 50 mM 

HEPES pH 7.5, 300 mM NaCl, 20 mM imidazole, 5% glycerol and eluted in 50 mM 

HEPES pH 7.5, 150 mM NaCl, 5% glycerol and 250 mM imidazole. Peak fractions 

were combined, and the buffer was exchanged using a PD10 column (GE 
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Healthcare) in desalting buffer (50 mM HEPES pH 7.5, 120 mM NaCl, 3% 

glycerol). 

Sli15ΔN228-2xStrep/Ipl1 complex was purified from insect cells as described 

previously (Fischbock-Halwachs et al., 2019). 

Insect cell lysates containing expressed untagged Cdc28 and Cks1 were prepared 

as described above in lysis buffer (50 mM HEPES, pH 7.5, 150 mM KCl, 5 % 

glycerol, 0.01% Tween and complete EDTA-free protease inhibitors [Roche]) and 

the cleared lysates were used to assemble the trimeric CDC28 complex with 

1xStrep-Clb2 purified from E. coli. 

For in vitro binding and quantitative crosslinking experiments Cdc5Plk1 

phosphorylated Mif2 was generated according to the following procedure. 1 mg 

6xHis-tag purified Mif2-6xHis-6xFlag was immobilized on anti-FlagM2 agarose 

beads (Merck) for 1 h, at 4 °C. Unbound protein was removed by washing 2x with 

wash buffer (30 mM HEPES pH 7.5, 150 mM NaCl, 5% glycerol). Subsequently, 

Mif2 was treated for 2 h at 30 °C with lambda-phosphatase (New England 

Biolabs) according to the manufacturer´s instruction. The dephosphorylation 

reaction was stopped by washing 1x in wash buffer supplemented with HaltTM 

Phosphatase Inhibitor Cocktail (Thermo Fisher) and 2x without phosphatase 

inhibitors. Mif2 was rephosphorylated by adding 50 µg Cdc5Plk1 in the presence of 

2.5 mM MgCl2 and 1 mM ATP at 30 °C. The kinase reaction was stopped by 

washing 2x in wash buffer and Mif2 was recovered in elution buffer (30 mM 

HEPES pH 7.5, 150 mM NaCl, 5% glycerol, 1 mg/ml 3xFLAG-peptide). For 

quantitative crosslinking experiments the eluate was further purified on a 

Superdex 200 HiLoad 16/60 column (GE Healthcare) in gelfiltration buffer (30 

mM HEPES pH 7.5, 150 mM KCl and 5% glycerol). 

M4. In vitro Binding Assay of Mif2 Wild-Type and Mutant 

Proteins to Ame1/Okp1 

To analyze the interaction of Ame1-6xHis/Okp1 with Mif2-6xHis-6xFlag wild-type 

and mutant proteins in vitro, 10 µM Cdc5Plk1 rephosphorylated Mif2 protein (M3) 

was immobilized on anti-FlagM2 beads (Merck) and incubated with 25 µM 

Ame1/Okp1 complex in binding buffer (50 mM HEPES pH 7.5, 150 mM NaCl, 3% 

glycerol, 0.01% Tween 20) for 1 h at 4 °C and 1200 rpm in a thermomixer 

(Eppendorf). Unbound protein was removed by washing 2x with high salt buffer 
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(50 mM HEPES pH 7.5, 300 mM NaCl, 3% glycerol, 0.01% Tween 20) and 1x with 

binding buffer. Bound protein was eluted in binding buffer containing 1 mg/ml 

3xFLAG peptide (Ontores).  

To test the binding of Mif2 and Ame1/Okp1 to Mtw1/Nnf1, 10 µM Mif2-6xHis-

6xFlag or Mif2 S217-240A-6xHis-6xFlag was incubated with 20 µM Mtw1-Nnf1-

6xHis and immobilized on anti-FlagM2 beads (Merck) for 1 h at 4 °C and 1200 

rpm. The beads were washed 1x with high salt buffer and 1x with binding buffer. 

The complex was subsequently incubated with 10 µM Ame1/Okp1 complex in 

binding buffer for 1 h at 4 °C and 1200 rpm. Unbound Ame1/Okp1 was removed 

by washing 2x with high salt buffer and 1x with binding buffer. Proteins were 

eluted in a buffer containing 50 mM HEPES pH 7.5, 150 mM NaCl, 5% glycerol 

and 1 mg/ml 3xFLAG peptide (Ontores). The input and bound fractions were 

separated by SDS-PAGE and proteins were visualized by Coomassie brilliant blue 

staining. Quantification of the ratios of bound protein to the bait was performed 

by using ImageJ (Schindelin et al., 2012). 

To analyze the binding of untreated, dephosphorylated or rephosphorylated Mif2-

6xHis-6xFlag wild-type to Ame1-6xHis/Okp1 in vitro, 10 µM Mif2 protein per 

condition was immobilized on anti-FlagM2 agarose beads (Merck) for 1 h at 4 °C 

and 1200 rpm in a thermomixer. The beads were washed 3x with wash buffer (50 

mM HEPES pH 7.5, 150 mM NaCl, 3% glycerol, 0.01% Tween 20) and an aliquot 

of the untreated sample was removed. Anti-Flag immobilized Mif2-6xHis-6xFlag 

was then treated with lambda-phosphatase (New England Biolabs) according to 

the manufacturer´s instruction and incubated for 2 h at 30 °C and 1200 rpm in a 

thermomixer. The dephosphorylation reaction was stopped by washing 1x in wash 

buffer supplemented with HaltTM Phosphatase Inhibitor Cocktail (ThermoFisher) 

and 2x without phosphatase inhibitors. An aliquot of the lambda-phosphatase 

treated sample was removed and the rest was aliquoted and used in in vitro kinase 

assays with CDC28c, Cdc5, Sli15/Ipl1, Mps1 or combinations thereof in the 

presence of 2.5 mM MgCl2 and 1 mM ATP for 30 min at 30 °C and 1200 rpm. The 

kinase reaction was stopped by washing 1x with high salt buffer and 2x with wash 

buffer. The binding of the untreated, dephosphorylated and rephosphorylated 

Mif2-6xHis-6xFlag samples to Ame1-6His/Okp1 was analyzed as described. 
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M5. In vitro Reconstitution of Cse4- and H3-Nucleosome Core 

Particles (NCP) 

Octameric Cse4 and H3 containing nucleosomes were in vitro reconstituted from 

budding yeast histones which were recombinantly expressed in E. coli and 

assembled on the 147 bp 'Widom601' nucleosome positioning sequence according 

to a modified protocol (Turco et al., 2015, Shim et al., 2012). 

M6. Protein Complex Titration, Chemical Crosslinking and Mass 

Spectrometry 

The purified proteins and protein complexes were titrated applying a series of 

molar ratios and incubated for 45 min at room temperature to allow complex 

formation. For example the titration of the Cnn11-270-Spc24/25 complex was 

performed by incubating Cnn11-270 with the Spc24/25 dimer at molar ratios of 0.05, 

0.15, 0.25, 0.55, 0.60, 0.65, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0, 1.25, 1.5 and 2.0 in a 

final volume of 95 µl at 25 °C. Subsequently, protein complexes were crosslinked 

by the addition of an equimolar mixture of isotopically light (hydrogen) and heavy 

(deuterium) labelled bis(sulfosuccinimidyl) 2,2,4,4-glutarate (BS2G-d0/d6) 

(Creative Molecules) at a final concentration of 0.5‑0.75 mM at 30 °C for 2 min. 

The crosslinking reaction was quenched by adding ammonium bicarbonate to a 

final concentration of 100 mM for 20 min at 30 °C. Proteins were diluted by adding 

2 volumes of 8 M urea, reduced by 5 mM TCEP (Thermo Fisher) at 35 °C for 15 min 

and alkylated by incubating with 10 mM iodoacetamide (Sigma-Aldrich) at room 

temperature for 30 min in the dark. Proteins were digested with Lys-C (1:50 

(w/w), Wako Pure Chemical Industries) for 2 h at 35°C and 1300 rpm, diluted to 

1 M urea with 50 mM ammonium bicarbonate and digested with trypsin (1:50 

(w/w), Promega) overnight at 35 °C and 1300 rpm. Peptides were acidified by 

adding trifluoroacetic acid to a final concentration of 1% and purified by reversed 

phase chromatography using C18 cartridges (Sep-Pak, Waters). Crosslinked 

peptides were enriched by size exclusion chromatography on a Superdex Peptide 

PC 3.2/30 column (GE Healthcare) using water/acetonitrile/TFA (77.4/22.5/0.1, 

v/v/v) as mobile phase at a flow rate of 50 μl/min. Fractions containing 

crosslinked peptides were analyzed by liquid chromatography coupled to tandem 

mass spectrometry (LC-MS/MS) using an EASY-nLC 1200 and an LTQ-Orbitrap 

Elite mass spectrometer (Thermo Fisher). Peptides were injected onto a 15 cm x 

0.075 mm i.d. Acclaim™ PepMap™ C18 column (2 µm particle size, 100 Å pore 
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size) and separated at a flow rate of 300 nl/min using the following gradient: 0-5 

min 3% B and 5-65 min 3-35%B (acetonitrile/water/formic acid, 98:2:0.1). The 

mass spectrometer was operated in data-dependent mode, selecting up to 10 

precursors from a MS1 scan (resolution 60,000) in the range of m/z 350–1800 for 

collision-induced dissociation excluding singly and doubly charged precursor ions 

and precursors of unknown charge states. Dynamic exclusion was activated with a 

repeat count of 1, exclusion duration of 30 s, list size of 300, and a mass window 

of ±50 ppm. Fragment ions were detected at low resolution in the linear ion trap. 

M7. Identification of Peptide-Peptide Crosslink Spectra 

Raw spectra were converted to mzXML format using MSConvert (Chambers et al., 

2012) and crosslink spectra were searched and identified using xQuest/XProphet 

(Walzthoeni et al., 2012). Peptide spectrum matches were performed against a 

database including the subunits of the respective complex (Spc24, Spc25, Cnn1 or 

Mif2, Ame1/Okp1, Cse4-NCP, Mtw1/Nnf1/Dsn1/Nsl1) and 22 E. coli decoy protein 

sequences. A maximum of two trypsin missed cleavages and peptide lengths 

between 4 and 45 amino acids were allowed. Carbamidomethyl-Cys was set as a 

fixed modification and a mass shift of 96.0211296 for intra-/inter-protein 

crosslink candidates with an additional shift of 6.03705 to account for crosslinks 

with the heavy version of BS2. A precursor mass tolerance of ±10 ppm was used 

and a tolerance of 0.2 and 0.3 Da for linear and crosslinked fragment ions, 

respectively. The search was performed in the 'ion-tag' mode. Identifications were 

filtered by applying a maximum FDR of 5%, precursor errors of ±5.0 ppm, a 

maximum delta score of 0.9 and a minimum of 3 fragment ion matches per 

peptide. The final identification tables were downloaded as xtract.csv files from 

the xQuest/xProphet visualization tool. 

M8. Quantification of Peptide-Peptide Crosslinks and Site-Site 

Crosslinks 

Quantification was performed with an in-house developed workflow based on the 

OpenMS software version 2.0 (Rost et al., 2016). All scripts as well as the xtract.csv 

files to run the python script ‘toppXLquant.py’ 

(C:/Users/…/Scripts/TOPPqXL/bin/) are provided in the ‘Scripts.zip’ folder. The 

pipeline starts with the conversion of the identification tables in the xtract.csv files 

to idXML format using our script ‘xtractToIdXML.py’. The files were saved and 



4. Quantitative Crosslinking and Mass Spectrometry Determine Binding Interfaces and 

Affinities Mediating Kinetochore Stabilization 

4.4 Materials and Methods   | 55 

the workflow ‘basic_xlquant.toppas’ (C:/Users/…/Scripts/TOPP-qXL/workflows) 

was opened in the OpenMS framework (Rost et al., 2016). The ‘*.idXML’ files were 

loaded as input to (1) and ‘*.mzXML’ files are input to (2) and the script was 

executed. In parallel, raw files in the mzXML format were converted to mzML 

using the FileConverter function with default parameters except for the filter of 

MS2 scans and MS1 peaks with intensities <100.0. Peak features in the mzML files 

and their respective profile chromatograms were extracted with a modified version 

of the FeatureFinderAlgorithmPicked function from OpenMS. Parameters fed to 

this tool are found in the file 'ffcentroided_params.ini'. Detected features were 

annotated with their putative peptide identifications in the idXML files using the 

IDMapper function with an m/z tolerance of ±7 ppm and retention time tolerance 

of ±10 s. Retention times between runs were aligned using the 

MapAlignerIdentification function with default parameters. Finally, consensus 

tables were generated using the FeatureLinkerUnlabeled function with default 

parameters and converted to .csv format with the TextExporter function. The 

intensities of the unique peptide-peptide crosslink ions were summarized to site-

site crosslink intensities using the in-house script 'csvToToppXLqTSV.py' 

(provided in: C:/Users/…/ Scripts/TOPPqXL/bin).  

M9. Estimation of the Apparent Equilibrium Dissociation 

Constant (KD) Based on Crosslink Intensities 

Site-site crosslink intensities were loaded and analyzed in the statistical 

environment R (https://www.r-project.org). Technical replicates were averaged 

with non-assigned values being ignored at this step. The intensities of peptides 

seen in >1 SEC fraction were summed up and peptide-peptide crosslinks were 

summarized to site-site crosslinks by addition of their intensities. The intensities 

of the subunit whose concentration was constant in all titrations were applied to 

normalize the intensities between runs. Finally, a linear model was fitted between 

the initial concentrations of the varying subunit and the median intensity of its 

intra-protein crosslinks. This linear relation was used to estimate the 

concentration of the formed complex from the median intensity of the inter-

protein crosslinks. Subsequently, the KD was calculated as: 

𝐾𝑑 =
(𝐴𝑖𝑛𝑖𝑡𝑐𝑜𝑛𝑐

− 𝐴𝑐𝑜𝑛𝑐) ∗ (𝐵𝑖𝑛𝑖𝑡𝑐𝑜𝑛𝑐
− 𝐵𝑐𝑜𝑛𝑐)

(𝐴: 𝑥: 𝐵)𝑐𝑜𝑛𝑐
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where A represents the subunit whose concentration varies, B the subunit whose 

concentration remains constant and A:x:B the complex. The initial concentrations 

of A and B were recalculated based on the linear relation of concentration and 

intensity. For each titration step a KD value was calculated and the mean and 

standard deviation of these values were reported. 

We also applied the Scatchard plot (Scatchard, 1949) to estimate the KD by 

plotting the linear relation of 'fraction of B bound over concentration of free A' (y-

axis) versus 'fraction of B bound' (x-axis). This approach indicates the KD as the 

negative inverse of the slope as well as the inverse of the intersection coefficient 

(Figure 4b). 

To calculate the apparent KD values based on the steady state equilibrium equation 

the R script was run according to the following procedure. The scripts 

(C:/Users/…/Scripts/R-Script) were opened in the R environment. To analyze the 

Cnn1:x:Spc24/25 titration the ‘CnnSPC_Kd_Est.R’ script and for the analysis of 

the Mif2:Ame1/Okp1:MTW1c:x:Cse4-NCP titration the ‘MTW1cMifAO_CSE4-

NCP_Kd_Est.R’ script were applied. The location of the input files was defined in 

the working directory in setwd("C:/Users/…/"). The input file name was defined 

in ‘fname’ (e.g.: fname = "1.1-MIFNUC_F restraints.tsv"). Subsequently, the 

default settings of the calculation parameters, as described above, can be altered 

by following the instructions in the code. Executing the script shows the results 

table (‘kdtable2’) which indicates the KD values of each titration step and the mean 

(KD) and standard deviation (SD). At this step outliers that exceed the double SD 

are excluded and the mean KD (KD2) and standard deviation (SD2) are 

recalculated. In addition, several exploratory plots are generated. (1) Crosslink 

intensities per protein:x:protein pair (median) before normalization (Figure 12, 

Figure 14, Figure 17, Figure 19, Figure 21, Figure 23, and Figure 26) (2) Correlation 

of crosslink intensities within protein:x:protein pairs. (3) Crosslink intensities per 

protein:x:protein pair (median) after normalization (Figure 13, Figure 18, Figure 

20, Figure 22, Figure 24, and Figure 27). (4) Correlation of crosslink intensities 

between experiments and between crosslinks. (5) Linear regression between 

crosslink intensity and protein concentration. The linear regression model is used 

to estimate the apparent KD values. The statistical analysis of the apparent KD 

values for each interaction is summarized in ‘kdtable2’.  
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M10. Determination of the Relative Interface Propensity Index 

(RIPI)  

Peptide-peptide crosslink intensities were summarized to site-site intensities, by 

summing up all restraint intensities involving the specific lysine residue. This total 

sum includes mono-links, loop-links, intra- and inter-protein crosslinks. Next, the 

site-site intensity of the inter-protein crosslinks from a specific dimer interaction 

was divided by the total sum. The resulting value was called the Relative Interface 

Propensity Index (RIPI) of a crosslinked residue. Lysine sites, which were not 

identified in inter-protein crosslinks, were assigned a RIPI value equal to the 

minimum RIPI in the set, in order to avoid infinite values for the plotted inversed 

RIPIs. 

Sequence conservation in the RIPI plots was computed by using PSIBlast against 

the UNIREF90 database. Only residue positions with conservation above the 80% 

quantile within the protein sequence were plotted.  

Secondary structure and rASA (relative accessible surface area) were predicted 

using the SPIDER2 software (Yang et al., 2017) against the UNIREF90 database. 

The fasta protein sequences and the PSSMs (Position-Specific Scoring Matrix) 

obtained by PSIBlast were used as input for the SPIDER2 software. Residues were 

considered to have low accessibility if their rASA was below 40%. Residues were 

considered to have low disorder if their IUPred index was below 0.25 in a scale of 

0 to 1. 

Real interface residues were extracted from PDB models if applicable. Real 

binding interfaces were identified by a residue-residue distance between the 

interacting proteins of below 4.5 Å. The distances were measured from any heavy 

atom in one residue to any heavy atom in the other residue. 

M11. Yeast Strains and Methods 

All yeast strains used in this study were created in the S288c background. The 

generation of yeast strains and yeast methods were performed by standard 

procedures. The anchor-away analysis was performed as described previously 

(Haruki et al., 2008). 

For anchor-away rescue experiments, the Mif2 promoter (1 kb) and coding 

sequence were PCR amplified from yeast genomic DNA and cloned with a 6xHis-
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7xFlag tag PCR fragment into vector pRS313 via the Gibson assembly reaction 

(Gibson et al., 2009). The deletion mutants were generated using the Q5 site-

directed mutagenesis kit (New England Biolabs) and phospho-ablative mutants 

were constructed by Gibson assembly of the corresponding mutant gene fragments 

(IDT). The rescue constructs were transformed into a Mif2 anchor-away strain 

(Mif2-FRB), a Mif2-FRB/dsn1S240AS250AS264A mutant strain or a Mif2-FRB/Δcnn1 

mutant strain and cell growth was tested in 1:10 serial dilutions on YPD plates in 

the absence or presence of rapamycin (1 mg/ml) at 30 °C for 3 days. 

M12. Western Blot Analysis 

The levels of proteins ectopically expressed in yeast were probed by western blot 

analysis as described previously (Fischbock-Halwachs et al., 2019). For western 

blot analysis an equivalent of 10 OD600 of cells logarithmically grown in liquid 

culture was collected by centrifugation at 3140 x g for 5 min at room temperature 

and the pellet was washed once with aqua dest. For protein extraction, the pellet 

was resuspended in 1 ml ice-cold 10% trichloroacetic acid and incubated on ice for 

1 hr. Samples were pelleted at 4°C and 20000x g for 10 min and washed twice with 

ice-cold 95% ethanol. Pellets were air-dried and resuspended in 100 µl 1x SDS-

PAGE sample buffer containing 75 mM Tris (pH 8.8). Samples were boiled (10 

min, 95°C) and centrifuged at 10800 x g for 3 min at room temperature and 

supernatants were separated on 10% or 15% (Cse4 containing samples) SDS-PAGE 

gels. Immunoblotting was performed with the following antibodies: Anti-FLAG 

M2 (Sigma-Aldrich), Anti-PGK1 (ThermoFisher) and visualized by HRP-

conjugated anti-mouse secondary antibodies (Santa Cruz). 

M13. Amino Acid Sequence Alignment 

Multiple sequence alignments of S. cerevisiae Mif2 and Okp1 amino acid 

sequences with their respective mammalian orthologues CENP-C or CENP-Q were 

performed with Clustal Omega (Sievers et al., 2011) 

(https://www.ebi.ac.uk/Tools/msa/clustalo/). 
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 Supplementary Figures 

Figure 9 

 

Figure 9. Validation of the Bioinformatic Workflow TOPP-qXL for 

the Extraction of Crosslink Precursor Intensities.  

For validation, the performance of the TOPP-qXL pipeline was tested against 

published datasets which were analyzed by different extraction tools including 
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datasets for the development of the Xtract algorithm(Walzthoeni et al., 2015) 

(a) and the extraction pipelines described in (b) and (c) (Fischer et al., 2013, 

Muller et al., 2018). 

(a) The first dataset comprises 4 dilution experiments from bovine albumin, 

bovine transferrin and chicken transferrin (Walzthoeni et al., 2015). Each 

protein was crosslinked separately and then pooled before MS acquisition. In 

each dilution experiment, the concentration of albumin was kept constant, 

whereas the transferrin concentration decreased monotonically in 2:4:8 ratios 

for the bovine homolog and 4:16:64 for the chicken homolog. Our pipeline is 

able to reproduce the dilution steps of the experimental design. In the two 

highest dilutions of chicken transferrin the extracted features were only 

detectable by the 'match-between-runs' strategy, as the protein was not 

identified by fragment spectra in these two dilutions. In the highest dilution 

experiment, the features that passed undetected by the 'match-between-runs' 

strategy were noisy and had missing mass traces and thus, the failure of 

detection was justified. Our pipeline was able to quantify a similar number of 

site-site crosslinks in comparison to the Xtract software, for which this dataset 

was created. The overall recall of site-site crosslinks was 97.5% (118/121) and 

the accuracy of the quantification close to the expected values. 

(b) The second dataset (Fischer et al., 2013) consists of a SILAC-like 

experiment which used the protein C3 crosslinked in its native and cleaved 

form, C3b, in forward (C3-BS3d0 and C3b-BS3d4) and reverse labeling (C3-

BS3d4 and C3b-BS3d0). The crosslink identifications provided by the authors 

were applied as feature extraction seeds and without the 'match-between-runs' 

strategy, as it was not applicable to this dataset. As reference extraction 

pipeline the authors used the Pinpoint software with manual curation of the 

extracted features and compared it against their proposed pipeline based on 

MaxQuant. We also applied Pinpoint as basis to compare the performance of 

their MaxQuant version tailored for crosslinking quantification against our 

pipeline. Our pipeline showed a 10% increase in sensitivity by recalling 

features not detected by MaxQuant. Moreover, our pipeline could quantify 

certain identifications, whose recall was not possible even with the benchmark 

pipeline Pinpoint. Thus, the reported sensitivity might be even higher than 

79%.  

(c) A third dataset, which was published for the assessment of the 

reproducibility of crosslink quantification (Muller et al., 2018), was also used 
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for benchmarking the TOPP-qXL workflow. This dataset comprises two 

experiments with ten replicates each. In the first dataset, human serum 

albumin was crosslinked in 10 crosslinking reaction replicates that were 

analyzed separately by mass spectrometry. For the second dataset, the 10 

reaction replicates were pooled and analyzed 10 times by mass spectrometry 

and thus representing injection replicates. The crosslink identifications 

provided by the authors were matched to the MS1 peaks, which were extracted 

using our pipeline and a 'match-between-runs' strategy. As a result, unique 

crosslinks were quantified with a recall between 67-76% in the injection 

replicates and 55-66% in the reaction replicates in respect to the overall 

number of unique crosslinks in each of the two experiments (first row). 

Pooling all the quantifications across their replicates results in a sensitivity of 

86% and 79% for the injection and reaction experiments, respectively. The 

sensitivities of the number of identifications within each replicate are even 

higher and fluctuate between 84-92% and 82-92% for the injection and 

reaction experiments, respectively (second row). Overall, these quantification 

rates indicate the high sensitivity of the proposed pipeline. Next, we calculated 

the correlations and coefficients of variation of the abundances at the peptide-

peptide crosslink level (third and fourth row). The minimum Pearson 

correlation between replicates was 0.92 in the injection experiment and 0.67 

in the reaction experiment. Regarding the coefficients of variation, the median 

value was 14.6% in the injection experiment and 42.3% in the reaction 

experiment. Similar coefficients of variation were observed at the unique 

crosslinked residues level: 15% and 43%, respectively. These values are higher 

than the values reported in the original publication of 14% and 32%, 

respectively. 
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Figure 10 

 

Figure 10. Correlation Between Crosslink Intensity and the 

Euclidean Distance of the Linked Residues.  

Crosslink restraints were extracted and quantified with the in-house TOPP-

qXL pipeline (Figure 9 and Methods) from RNA polymerase I and II, 26S 

Proteasome, XRCC5/6 and PLC (MHC-I peptide-loading complex) datasets 

(Blees et al., 2017, Dubois et al., 2016, Iacobucci et al., 2019, Jennebach et al., 

2012, Wang et al., 2017). The Euclidean intra- and inter-protein distances 

were mapped on the crystal structures of RNA Polymerase I (PDB 4C2M), 

RNA Polymerase II (PDB 5IP7), Ku heterodimer (XRCC5/6) (PDB 1JEY) and 

the electron microscopy density maps of PLC (PDB 6ENY) and 26S 

Proteasome (PDB 5L4G; 5L4K) using the XWALK software (49). The 

Euclidean distances were plotted against the site-site crosslink intensities. To 

assess the dependence of crosslink intensity on Euclidean distance the R-

squared statistics and the Fisher´s Exact Test were computed (p-value (intra) 

< 0.001 ; p-value (inter) < 0.001 ). 
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Figure 11 
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Figure 11. High RIPI (Relative Interface Propensity Index) Values 

Indicated the Binding Interfaces of the Cnn11-270:Spc24/25 

Complex.  

Crosslink intensities were extracted and quantified using the TOPP-qXL 

quantification pipeline (M8) and the RIPI was calculated as described (M10). 

The inverse of the RIPI is plotted in the respective first panel of each 

protein:protein interaction. Areas of sequence conservation, secondary 

structure prediction (Yang et al., 2017), state of protein disorder and the rASA 

are indicated by colored lines (M10). Amino acid residues establishing the 

binding interface (Real Interface) were retrieved from the PDB database 

(4GEQ). This heuristic approach was applied by interpreting a drop in 1/RIPI 

together with predicted secondary structures, sequence conservation and 

rASA in order to identify amino acid sequences that putatively establish 

binding interfaces and serve as candidates for mutational analysis.  

  



4. Quantitative Crosslinking and Mass Spectrometry Determine Binding Interfaces and 

Affinities Mediating Kinetochore Stabilization 

4.5 Supplementary Figures   | 65 

Figure 12 
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Figure 12. Inter- and Intra-Protein Crosslink Intensities of the 

Cnn11-270 to Spc24/25 Titration Before Normalization.  

Constant levels of Spc24/25 complex were titrated with Cnn11-270 applying the 

indicated molar ratios. Crosslink intensities were extracted using the TOPP-

qXL pipeline (M8). The intensities of the identified peptide-peptide crosslinks 

were summarized to protein site-site crosslink intensities. The intra-protein 

crosslink intensities of the constant interactor were used to normalize 

intensities between titration points and showed the reproducible 

quantification of the subunits across the titration series. The sum of the site-

site raw intensities of the indicated intra- or inter-protein crosslinks of the 

individual molar ratios were plotted after normalization. The intra-protein 

crosslink intensities of the titrated interactor were applied to calculate a linear 

regression on the input concentrations. The linear regression model was used 

to recalculate the input concentrations and to interpolate the concentration of 

the formed complex from the inter-protein crosslink intensities. 
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Figure 13 

 

Figure 13. Inter- and Intra-Protein Crosslink Intensities of the 

Cnn11-270 to Spc24/25 Titration After Normalization.  

The plot was generated as described in Figure 12.  
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Figure 14 

 

Figure 14. Intra- and Inter-Protein Crosslink Intensities of 

Spc24/Spc25 Titration with Cnn164-80 Before Normalization.  

The identified peptide-peptide crosslink intensities in each of the three 

replicates were extracted by the TOPP-qXL pipeline (M8) and summarized to 

their respective site-site crosslink intensities. The intra-protein crosslink 

intensities of the constant interactor were used to normalize intensities 

between replicates and showed the reproducible quantification of the subunits 

across the titration series (right panel). The intra-protein crosslink intensities 

of Cnn164-80 were applied to calculate a linear regression on the input 

concentrations (left panel). The linear regression model was used to 

recalculate the input concentrations and to interpolate the concentration of 

the formed complex from the inter-protein crosslink intensities (Figure 15). 
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Figure 15 

 

Figure 15. The Linear Regression Model and Scatchard Plot yielded 

Comparable KD Estimation Values for Cnn164-80:Spc24/25 

Interaction.  
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A constant molar concentration of Spc24/25 complex was titrated against 

increasing amounts of the Cnn164-80 peptide. After feature extraction, the 

intensities of site-site crosslinks were summarized and used to interpolate 

crosslink intensities and protein concentrations. Apparent KD values were 

calculated based on the concentration of the formed complex estimated from 

the linear regression and averaged across molar ratios of the titration steps 

from 3 biological replicates (a) (c) and (d). Using the linear regression model 

a KD value was estimated for each step of the titration (b). By excluding 

titration steps that exceeded twice the standard deviation (Std. KD) the 

estimation of KD was further refined (b). Estimation of apparent KD values of 

the Cnn160-84:Spc24/25 interaction by the Scatchard plot (e) is refined when 

excluding values exceeding twice the standard deviation (f) in three biological 

replicates (g) and (h). 
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Figure 16 

 

Figure 16. Schematic Representation of Crosslink Restraints on 

Mif2, Ame1/Okp1 and Cse4-NCP Complexes Applied for the 

Estimation of Apparent KD Values.  

All crosslink restraints which were reproducibly identified in all replicates of 

the individual Mif2:Ame1/Okp1, Mif2:Cse4-NCP, Ame1/Okp1:Cse4-NCP and 

Mif2:Ame1/Okp1:Cse4-NCP titrations are visualized by network plots. The 

crosslink restraints were identified by xQuest and MS1 intensities (raw 

intensity) were extracted by the TOPP-qXL pipeline (M8). 
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Figure 17 - Figure 24 Intra- and Inter-Protein Crosslink Intensities 

of Cse4-NCP Titration with Mif2.  

The intensities of crosslinks detected in each of the three replicates were 

extracted by the TOPP-qXL pipeline (M8). The intensities of the identified 

peptide-peptide crosslinks were summarized to protein site-site crosslink 

intensities. The intra-protein crosslink intensities of the constant interactor 

were used to normalize intensities between replicates and showed the 

reproducible quantification of the subunits across the titration series. The sum 

of the raw intensities of the indicated intra- or inter-protein crosslinks of the 

individual molar ratios were plotted before and after normalization. The intra-

protein crosslink intensities of the titrated interactor were applied to calculate 

a linear regression on the input concentrations. The linear regression model 

was used to recalculate the input concentrations and to interpolate the 

concentration of the formed complex from the inter-protein crosslink 

intensities. Plots in Figure 17 - Figure 24 were generated accordingly. 
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Figure 17 

 

Figure 17. Intra- and Inter-Protein Crosslink Intensities of Cse4-

NCP Titrated with Mif2.  

The plot was generated before normalization as described. 
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Figure 18 

 

Figure 18. Intra- and Inter-Protein Crosslink Intensities of Cse4-

NCP Titrated with Mif2.  

The plot was generated after normalization as described. 
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Figure 19 

 

Figure 19. Intra- and Inter-Protein Crosslink Intensities of Cse4-

NCP Titrated with Mif2.  

The plot was generated after normalization as described. 
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Figure 20 

 

Figure 20. Intra- and Inter-Protein Crosslink Intensities of Cse4-

NCP Titrated with Mif2.  

The plot was generated after normalization as described.  
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Figure 21 

 

Figure 21. Intra- and Inter-Protein Crosslink Intensities of Cse4-

NCP Titrated with Mif2.  

The plot was generated after normalization as described. 
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Figure 22 

 

Figure 22. Intra- and Inter-Protein Crosslink Intensities of Cse4-

NCP Titrated with Mif2.  

The plot was generated after normalization as described. 
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Figure 23 

 

Figure 23. Intra- and Inter-Protein Crosslink Intensities of Cse4-

NCP Titrated with Mif2.  

The plot was generated after normalization as described. 
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Figure 24 

 

Figure 24. Intra- and Inter-Protein Crosslink Intensities of Cse4-

NCP Titrated with Mif2:Ame1/Okp1.  

The plot was generated after normalization as described.   
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Figure 25 

 

Figure 25. Comparison of Crosslink-Derived Restraints Detected 

on MTW1c:Mif2:Ame1/Okp1:Cse4-NCP Complexes Containing 

Either Dsn1wt or the Dsn1S240D,S250D Mutant.  

Intra- and inter-protein crosslinks that were reproducibly identified in 2 

replicates of the individual titration were visualized as network plot by xVis 

(Grimm et al., 2015). The crosslink restraints were identified using the xQuest 

software (Walzthoeni et al., 2012).  
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Figure 26 

 

Figure 26. Intra- and Inter-Protein Crosslink Intensities of 

Cse4-NCP Titrated with MTW1c(Dsn1wt):Mif2:Ame1/Okp1.  

The plot was generated after normalization as described in Figure 17.  
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Figure 27 

 

Figure 27. Intra- and Inter-Protein Crosslink Intensities of 

Cse4-NCP Titrated with MTW1c(Dsn1S240D,S250D):Mif2:Ame1/Okp1.  

The plot was generated after normalization as described in Figure 17.  
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Figure 28 

 

Figure 28. Schematic Representation of the Mif2 Amino Acid 

Sequence Indicating the Lysines Crosslinked to MTW1c, Mif2, 

Ame1/Okp1 and Cse4-NCP.  

Crosslink intensities were extracted and quantified with our quantification 

workflow (M7, M8). The intensities of site-site crosslinks from Cse4-NCP 

titrated with MTW1c(wt):Mif2:Ame1/Okp1 or 

MTW1c(Dsn1S240D,S250D):Mif2:Ame1/Okp1 were log2 transformed and the fold 

change (log2FC) of each restraint was calculated. Crosslinks were assigned to 

a color code (gray – no increase in intensity; blue – increase in intensity) and 

mapped on the amino acid sequence of Mif2. Crosslinked lysines are indicated 

in red, lysines that are not involved in crosslinks are light red. The Mif2 N-

terminal domain (green) interacts with the MTW1c, the Ame1/Okp1 

interaction domain is indicated in light blue, Cse4-NCP bind to the signature 

motif of Mif2 (depicted in blue) and the C-terminal Mif2 cupin domain is 

indicated in turquoise. The comparison of MTW1c(wt) to MTW1c 

(Dsn1S240D,S250D) showed an increase of intensity of crosslinks that are within 

or close to the binding domains of the Mif2 interacting protein complexes. 
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Figure 29 

 

Figure 29. RIPI Analysis of the Mif2:Cse4, Mif2:Okp1 and 

Ame1:Okp1 Contacts to Identify the Binding Interfaces.  

The Mif2:Cse4-NCP, Ame1/Okp1:Cse4-NCP and Mif2:Ame1/Okp1:Cse4-NCP 

complexes were analyzed by quantitative XLMS (Figure 6c). Crosslink 

intensities were extracted using the TOPP-qXL quantification pipeline (M8). 

The RIPI was calculated as described in Figure 17 (M10). The inverse of the 

RIPI was plotted in the respective first panel of each protein:protein 

interaction. (A) The sequence areas of the Mif2 and Cse4 interface is indicated 

by a drop of the inversed RIPI. The previously reported binding sites on 

Mif2285-311 (signature motif) (Hornung et al., 2014, Kato et al., 2013) and the 

Cse4 loop L1 and C-terminus (Kato et al., 2013, Xiao et al., 2017) are indicated 

as red boxes. (B) (C) The Mif2:Okp1 and Ame1:Okp1 interfaces were analyzed 

in the presence or absence of the Cse4-NCP using the quantitative XLMS 
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datasets of the Ame1/Okp1:Cse4-NCP and Mif2:Ame1/Okp1:Cse4-NCP 

complexes. In the absence of Cse4-NCP the RIPI indicated that the Okp1 

binding site is formed by the Mif2 residues 320-380 close to the signature 

motif. In the presence of Cse4-NCP the putative Okp1 binding site is indicated 

between Mif2 residues 150-250.  
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Figure 30 

 

Figure 30. Input Protein Levels in Mif2:Ame1/Okp1 Binding Assays.  

a, The protein input levels for testing the interaction of Mif2-6xHis-6xFlag 

wild-type (wt), Mif2-deletion or -phospho-ablative mutants with Ame1-

6xHis/Okp1 shown in Figure 7a were analyzed by Coomassie stained SDS-

PAGE. b, Prediction of 3 alpha helical motifs in the Okp1 core domain 

(Hornung et al., 2014) using JPred (Drozdetskiy et al., 2015). c, d, The protein 

input levels of the binding assays shown in Figure 7c and f were visualized by 

SDS-PAGE and Coomassie staining.  
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Figure 31 

 

Figure 31. Cell Viability Assay of Mif2 Deletion and Phospho-

Ablative Mutants in Budding Yeast Using the Anchor-Away System.  

The Mif2 wild-type and indicated mutant proteins were ectopically expressed 

in a Mif2 anchor-away strain (Mif2-FRB) and yeast cell growth was assessed 

in 1:10 serial dilutions on YPD medium at 30 °C in the absence and presence 

of rapamycin.  
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Figure 32 

 

Figure 32. Western Blot Analysis of Ectopically Expressed Mif2 and 

Okp1 Wild-Type and Mutant Proteins in Yeast Cells.  

Western blot analysis visualizing the levels of the ectopically expressed 

proteins in the yeast strains spotted in the cell viability assays. (A) Western 

blot of the expression of 7xFlag-tagged Mif2 wildtype (wt) and mutant proteins 

in the Mif2-FRB/Dsn1S240A-S250A-S264A background shown in Figure 7B. 

(B) Western blot of the expression of 7xFlag-tagged Okp1 wt and helix deletion 

mutants in the Okp1-FRB background shown in Figure 7D. Pgk1 levels are 

shown as loading control. 
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Figure 33 

 

Figure 33. Phylogenetic Conservation of the Mif2CENP-C and 

Okp1CENP-Q Binding interface.  

Multiple sequence alignments of the S. cerevisiae Mif2 and Okp1 amino acid 

sequences with their indicated mammalian orthologues were conducted using 

Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/).  
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 Discussion 

Integrative structural biology applied XLMS to determine spatial proximity and 

protein connectivity at the domain level. Quantification of chemical crosslinking 

derived distance restraints has been initially used to detect conformational 

changes of protein complexes (O'Reilly and Rappsilber, 2018). In my thesis, I 

aimed to demonstrate the applicability of protein crosslink intensities to 

approximate binding affinities. The RNA polymerase datasets analysis indicated 

that shorter Euclidean distances of site-site crosslinks coincide with higher inter-

protein crosslink intensities. This implied that inter-protein crosslinks of high 

intensity relative to the sum of all detected crosslink intensities are in proximity of 

the residues and may guide the identification of binding interfaces. Furthermore, 

this observation bears great potential for biological and functional modeling, even 

in de novo structural analysis of protein complexes. I applied the quantitative 

workflow, described by Victor Solis-Mezzarino (doctoral thesis, LMU), to estimate 

binding affinities of up to 11-budding yeast kinetochore proteins and their 

interaction sites (Solis-Mezarino, 2019). 

To investigate the molecular mechanism of a protein complex, the interaction 

strength of its subunit contacts is a fundamental determinant to characterize its 

biological function. Most protein complexes are dynamically modulated by co-

factors and PTMs to perform their often spatiotemporally regulated role. Thus far, 

biophysical methods to measure protein affinities focus on binary protein contacts 

that depend on the preparation of highly concentrated and homogenous protein 

or peptide samples, bulky fluorescent tags, or protein immobilization, therefore 

steric alteration, including crowding effects or masking of binding interfaces. 

Strikingly, all known methods to measure protein-protein affinity lack the ability 

to determine affinities of individual contacts in macromolecular complexes 

simultaneously and thus cannot study the cooperativity of interactions during 

assembly.  

Based on inter-protein crosslink intensities acquired by in vitro titration 

experiments, I have assessed the concentration of the formed complex in the 

steady state equilibrium, which facilitated the estimation of apparent KD values in 

multi-subunit complexes. Thereby, when introducing the crosslinker, the protein-

protein interaction is stabilized by the covalent binding and therefore resembles a 

snapshot of the equilibrium at the time before quenching the crosslink reaction. 
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To preserve the equilibrium at a certain time, I kept the reaction time of each 

titration point long enough to ensure that the crosslink reaction was successful 

and short enough not to shift the equilibrium to either side. This step might be 

critical as too short reaction times might lead to an incomplete reaction with the 

proteins, especially within their interaction sites, and too long reaction times may 

lead to “over-crosslinking,” where -due to the long reaction time- lysines that are 

incidentally in the proximity of the reactive site of the crosslinker are 

nonspecifically crosslinked and thus impact on the equilibrium. The reaction 

speed can be influenced by time and crosslinker concentration, and therefore each 

experiment was titrated for each crosslinker concentration in a reaction time of 2 

minutes. As chemical labeling might also affect biophysical properties of the 

protein and are dependent on the presence of primary amine groups, I decided on 

a label-free quantification and an adequate number of titration points in order to 

interpolate protein concentrations from MS1 peak intensities. By using light and 

heavy labeled crosslinker, mixed in a 1:1 molar ratio, I ruled out irregular behavior 

of the reactant by only using crosslink spectra that were identified with both 

crosslinker species.  

In this work, I have demonstrated the capacity of quantitative crosslinking and 

mass spectrometry to estimate KD values ranging from 6 to 0.015 µM and which 

enabled the detection of a ~200-fold change in binding affinity. The three most 

commonly used technologies to measure the KD of protein interactions are Surface 

Plasmon Resonance (SPR), Isothermal Titration Calorimetry (ITC), and 

fluorescence-based methods, such as Fluorescence Polarization (FP) and 

Fluorescence Resonance Energy Transfer (FRET). Advantages and disadvantages 

exist for all of these methods. For example, ITC measurements require large and 

highly concentrated protein amounts, proper orientation of the immobilized 

subunit has to be assured to allow binding in SPR or proper orientation of the 

fluorophores in FRET. In addition, obligatory labeling may change the molecular 

properties of the subunits. In SPR, the interaction is not measured in solution but 

on a surface, where non-specific interactions can occur. ITC has limited sensitivity 

(KD range 0.1-10µM) and is best suited for measuring the biophysical properties of 

small molecules and peptides. None of these methods can measure large protein 

complexes under native conditions. qXLMS does not have the capability of 

measuring thermodynamic parameters or physical properties of the reaction and 

is based on statistical models that are only estimations of the forward reaction of 

the steady state equilibrium and, therefore, the apparent KD of a protein 
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interaction. However, thus far, qXLMS is the sole opportunity to gain mechanistic 

insights into the dynamics of large protein assemblies and their everchanging 

degrees of stability to fulfill their biological functions. This was demonstrated on 

the highly conserved and essential macromolecular kinetochore complex 

(Musacchio and Desai, 2017).  

Its complexity, size, and the predominance of elongated proteins have limited the 

structural and biophysical analysis of the kinetochore. The regulated and timely 

buildup of the kinetochore at centromeric chromatin ensures the fidelity of 

chromosome segregation by connecting chromosomes and spindle microtubules. 

In order to bi-orient chromosomes on the mitotic spindle, the kinetochore has to 

transmit forces of ~10 pN by forming a load-bearing attachment to spindle 

microtubules and a high-affinity link to the centromeric nucleosome, marked by 

the histone H3 variant CENP-ACse4 (Gennerich et al., 2007, Mallik et al., 2004, 

Toba et al., 2006, Yardimci et al., 2008). Whereas the human kinetochore 

assembly is temporally regulated, establishing a microtubule attachment site in 

mitosis, budding yeast kinetochores are built up and attached to a single 

microtubule almost throughout the entire cell cycle (Biggins, 2013). In both 

species, phosphorylation by mitotic kinases has been shown to stabilize the 

kinetochore to withstand the pulling forces of the depolymerizing microtubules 

(Akiyoshi et al., 2009). If these phosphorylation events are responsible for a high-

affinity binding between the kinetochore and centromeric chromatin upon the 

onset of anaphase is currently unknown. 

To determine the apparent KD values of the individual interactions that assemble 

the kinetochore on the octameric CENP-ACse4 nucleosomal core particle 

(CENP-ACse4-NCP), I in vitro reconstituted various kinetochore complexes of up 

to 11 recombinant proteins, which were purified from E. coli except for 

CENP-CMif2, which was isolated from insect cells. I first tested the interaction 

between CENP-CMif2 and CENP-UAme1/-QOkp1, which directly bind CENP-ACse4-NCP 

by immobilizing CENP-CMif2 on solid-phase and found that this interaction was 

lost upon dephosphorylation of CENP-CMif2. In vitro phosphorylation by different 

mitotic kinases showed that phosphorylation of CENP-CMif2 by Plk1CDC5 restored 

CENP-U Ame1/-QOkp1 binding to levels detected with insect cell phosphorylated 

CENP-CMif2 (Figure 5). This suggests that Plk1Cdc5 activity is required during CCAN 

establishment of budding yeast kinetochores to stabilize the CENP-UAme1/-QOkp1 

interaction. Mps1 and Plk1Cdc5 have a very similar consensus sequence and act 

cooperatively in SAC signaling in humans (von Schubert et al., 2015). I observed a 
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similar effect on restoring CENP-CMif2 binding to CENP-U Ame1/-QOkp1 for Mps1 and 

Plk1Cdc5 phosphorylation. However, CENP-CMif2 bound CENP-U Ame1/-QOkp1 levels 

were highest when phosphorylating CENP-CMif2 with Plk1Cdc5, compared to the 

other mitotic kinases and combinations thereof (Figure 5). 

To compare protein affinities measured for binary interactions with those 

measured within a multi-subunit protein complex context, I measured the binary 

interactions by titrating constant amounts of CENP-ACse4-NCPs with increasing 

concentrations of CENP-CMif2 or CENP-UAme1/-QOkp1 or incubated a constant 

amount of CENP-U/-QAme1/Okp1 with increasing concentrations of CENP-CMif2, 

respectively. These binary interaction affinities were then compared to the KD 

values of the interactions in the CENP-CMif2: CENP-U Ame1/-QOkp1: CENP-ACse4-NCP 

complex. The KD values were determined by the steady state equilibrium equation 

calculating the mean of the KD values of each titration step. The affinities ranged 

from 3 to 6 µM for the binary interactions and were increased by 6-fold for the 

CENP-CMif2: CENP-ACse4-NCP interaction and by 10-fold for the CENP-U Ame1/-

QOkp1: CENP-ACse4-NCP and CENP-CMif2: CENP-U Ame1/-QOkp1 interactions in the 

CENP-CMif2: CENP-U Ame1/-QOkp1: CENP-ACse4-NCP complex (Figure 5). Taken 

together, this shows that putative phosphorylation of the inner kinetochore CENP-

CMif2 subunit by Plk1Cdc5 raises its affinity to the centromeric nucleosome by ~10-

fold. 

Restricting the inter-protein crosslinks to the subset that intersected with the 

CENP-CMif2(285-311) signature motif which directly binds the CENP-ACse4 C-terminus, 

resulted in a KD value of ~0.9 µM for the binary interaction, which dropped by a 

factor of 30 upon the cooperative binding of CENP-CMif2 and Ame1/Okp1 to the 

Cse4-NCP (Figure 5). ITC measurements of the CENP-CMif2(285-311) peptide with the 

CENP-ACse4-NCP yielded a KD of ~0.5 µM similar to our quantitative XLMS 

determined value, once inter-protein crosslinks were restricted to the minimal 

binding interface (Kato et al., 2013). This indicates that estimation of the apparent 

KD by crosslink intensities has a sufficient sensitivity that is capable of estimating 

equivalent measurements to thermodynamic based methods of dissociation 

constants determination. Furthermore, it represents a more holistic approach to 

characterize protein-protein interactions in the context of larger protein 

assemblies.  

As cryo-EM studies are not capable of resolving the localization of CENP-CMif2 on 

CENP-ACse4, I analyzed the crosslinks between these proteins in order to further 
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characterize this pivotal interaction. The most intense crosslinks within the 

interaction site of CENP-CMif2 and CENP-ACse4 were on CENP-CMif2 K302, K306, 

K308, and K311 (Figure 28). All of these crosslinks exclusively interact with K172 

of CENP-ACse4, which is in the L1-loop and not resolved in the cryo-EM structures 

(Figure 8) (Ali-Ahmad et al., 2019, Yan et al., 2019). Furthermore, no crosslinks 

were found that showed an interaction of CENP-CMif2 with the C-terminal end of 

CENP-ACse4. Besides the CENP-CMif2 interaction with CENP-ACse4, also crosslinks 

with low intensity were found to CENP-UAme1 and CENP-QOkp1 (Figure 16, Figure 

28). Lysines interacting with the CENP-ACse4-NCP are also involved in forming 

intra-protein crosslinks within CENP-CMif2, indicating increased flexibility of 

CENP-CMif2. However, intra-protein crosslinks are generally at a lower intensity. 

The increase of crosslink intensity upon interaction with the centromeric 

nucleosome may imply a conformational change in CENP-CMif2 upon binding of 

the CENP-ACse4-NCP, as has been recently shown (Killinger et al., 2020). 

CENP-CMif2, which seems to have a pivotal role in the assembly of the inner 

kinetochore, is also binding to the outer kinetochore MIS12MTW1 complex. The 

interaction of the CENP-CMif2 N-terminus with the MIS12MTW1 complex is well 

described by cryo-EM analysis (Dimitrova et al., 2016). As a second receptor for 

MIS12MTW1 complex interaction, the N-terminus of CENP-UAme1 also binds an 

equivalent CENP-CMif2 motif. This equivalency was demonstrated by swapping the 

N-termini of Ame1Mif2-N and CENP-CMif2, where Ame1Mif2-N was capable of rescuing 

the lethality induced by deletion of the Ame1 N-terminus (Killinger et al., 2020). 

Whether the two proteins bind cooperatively or competitively to the MIS12MTW1 

complex was a matter of debate (Hornung et al., 2014, Killinger et al., 2020, 

Dimitrova et al., 2016). When the CENP-CMif2 N-terminal binding site was purified 

from E.coli and pre-bound to the MIS12MTW1 complex, the binding was competed 

with increasing amounts of a CENP-UAme1 N-terminal peptide (Killinger et al., 

2020). However, phosphorylated CENP-CMif2 was capable of binding the 

MIS12MTW1 complex cooperatively with CENP-UAme1 (Figure 7e), while the 

cooperative interaction was lost in a phospho-ablative mutant of CENP-CMif2. This 

indicates that phosphorylation of CENP-CMif2 facilitates cooperative binding of 

CENP-CMif2 and CENP-UAme1 to the MIS12MTW1complex, probably by inducing a 

conformational change of the N-terminus of CENP-CMif2. I titrated increasing 

amounts of an equimolar mixture of MIS12MTW1complex:CENP-CMif2: CENP-UAme1 

/-QOkp1 to CENP-ACse4-NCP to investigate whether two AuroraBIpl1 phosphorylation 

sites (S240 and S250) on the MIS12MTW1complex subunit Dsn1 have an impact on 
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the centromere binding affinity of this 11-protein budding yeast kinetochore 

complex. While the KD of wildtype Dsn1 containing MIS12MTW1complex did not 

change the affinity of CENP-ACse4-NCP binding, the addition of the 

phosphomimetic MIS12MTW1(Dsn1S240D, S250D) complex yielded an increase of ~200 

fold. Thus, both phosphorylation events contribute synergistically to the 

cooperative stabilization of the kinetochore at the centromeric nucleosome. Since 

in the qXLMS based KD measurements presented here and in ITC experiments, 

the affinity of the CENP-UAme1 binding site was lower compared to the CENP-CMif2 

binding site of the MIS12MTW1 complex, it remains elusive whether CENP-CMif2 

engages in intermolecular interactions resulting in conformational changes or 

CENP-UAme1 masks the MIS12MTW1 complex binding site for CENP-CMif2 (Killinger 

et al., 2020). 

Based on inter-protein crosslink intensities, we have identified the CENP-CMif2:/ 

CENP-QOkp1 interface using the highest Relative Interface Propensity Index (RIPI). 

Binding regions were indicated as a drop of the inverse of the RIPI; here, the inter-

protein crosslink intensities are higher than the sum of all intensities, which 

results in high RIPI values (Figure 6 and Figure 29). Considering the degree of 

conservation, secondary structure prediction, relative accessible surface area, and 

degree of disorder of the protein structure, the interface on CENP-CMif2 was 

predicted between aa 176-230 and between aa 196-220 on CENP-QOkp1 (Figure 6 

and Figure 29). Furthermore, I demonstrated that phospho-ablative mutations in 

the predicted CENP-CMif2 interaction region and in the MIS12MTW1 complex 

subunit Dsn1 lead to synthetic lethality in vivo, indicating that the induced 

cooperativity by these particular sites is essential for cell viability (Figure 7).  

CENP-CMif2 was described as the cornerstone for kinetochore assembly. However, 

due to its high flexibility and the presence of disordered regions, neither crystal 

structures nor cryo-electron microscopy structures have been solved yet (Lampert 

and Westermann, 2011). In an attempt to map the topological arrangement of 

CENP-CMif2 and, in particular, how it is positioned at centromeric chromatin 

reaching to the outer kinetochore, I gathered the crosslink data of the 

interconnectivity of 11 yeast kinetochore proteins with recent cryo-EM structures 

(Figure 8). Particularly interesting is a helix-turn-helix motif in CENP-QOkp1, 

where the first helix (aa 161-188) is responsible for the interaction with the 

N-terminal tail of CENP-ACse4 and the second helix (aa 196-217) induced the 

binding with CENP-CMif2 (Figure 8). This model gives functional insight into how 

phosphorylation induces the cooperative binding of these proteins. 
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Although human and budding yeast kinetochores differ in subunit connectivity, 

the human MIS12 complex has been implicated in CENP-A stabilization at 

centromeres suggesting that similar phosphorylation events might induce 

cooperative stabilization of human kinetochores. The yeast Mif2: Okp1 interface is 

partially conserved in their human orthologues CENP-C: CENP-Q, and a single 

nucleotide polymorphism in this region (CENP-C T667K) has been found in 

malignant hepatic cancer cells (Wu et al., 2014). As Ame1/Okp1, together with 

Mif2, are the only essential CCAN proteins in budding yeast and have functions 

comparable to vertebrate CENP-L/-N and CENP-C, their functional conservation 

is very likely. Therefore, it would be interesting to further characterize the 

functional conservation of CENP-L/-N and CENP-Q/-U between yeast and human 

and the mechanism which establishes high-affinity microtubule binding upon the 

onset of anaphase. 

In this part of my thesis, I was able to demonstrate the estimation of dissociation 

constants on various protein interactions (Figure 3 , Figure 5, Figure 6). qXLMS 

also allows the quantification of multivalent interactions within a protein complex. 

Furthermore, PTMs at or around the contact interface can be quantified, which 

allows the evaluation of the effect of PTMs on the affinity of protein interactions. 

qXLMS can detect changes in these complex and sophisticated structures and thus 

may reveal the crosstalk of multi-subunit protein complexes while maintained in 

its native state. Although the cell cycle dependent CCAN reorganization has not 

been comprehensively understood yet, it might be related to the dynamic 

(re)localization of the conserved CCAN subunits in kinetochores. In fact, electron 

microscopy observation suggests that during mitosis, the CCAN subunits change 

their distribution in the kinetochore when microtubule tension is applied. How the 

kinetochore structure is rearranged and what is the significance of this remodeling 

are future questions to be addressed. 
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5. A Time-Resolved Proteomic Analysis of 

the Human Centromeric Chromatin 

 Introduction 

5.1.1 The Eukaryotic Cell Cycle 

The extraordinary trait of life is its capacity to proliferate and pass on the genetic 

information from generation to the next. In eukaryotes, the cell cycle consists of 

four distinguished steps: G1-, S- and G2-phase, followed by mitosis. The 

fundamental elements that drive the progression of the cell-cycle are cyclins 

(Evans et al., 1983). These act as a regulatory subunit and activate cyclin-

dependent kinases (CDKs), the "engine" of the cell cycle (Ubersax et al., 2003, 

Sullivan and Morgan, 2007). Hence, the oscillating protein levels of cyclins, which 

are determined by gene expression and degradation through ubiquitin-mediated 

proteolysis, result in distinct CDK activities (Peters, 2006). This interplay between 

cyclin production and degradation, along with the activation of CDKs, initiates and 

regulates different cell-cycle specific events to take place in an orderly manner 

(Martinez-Alonso and Malumbres, 2020). Cell cycle-progression happens in 

waves of transcription (Simon et al., 2001, Pramila et al., 2006, Lee et al., 2002). 

The next wave of transcription forms a continuous regulatory network in which 

each wave is triggered by the previous one and contains activators for the next 

wave (Simon et al., 2001, Pramila et al., 2006, Lee et al., 2002). For example, the 

deactivation of CDKs is needed in mitosis for spindle disassembly, cytokinesis, and 

the transition into the G1-phase (Martinez-Alonso and Malumbres, 2020). 
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Figure 34. Schematic Overview of the Cell Cycle and Arrest or 

Arrest/Release Strategies.  

The composition of the kinetochore is precisely timed over the cell cycle. In S-

phase, chromosomes are duplicated by DNA replication, and centromere 

proteins are dynamically recruited and evicted to and from the centromeric 

chromatin. These processes can be tracked by the addition of chemical 

compounds to capture the cell in distinct cell cycle moments. For cell cycle 

arrest, I used Lovastatin, which leads, upon addition, to the accumulation of 

the CDK inhibitors p21 and p27 and, therefore, a G1-phase arrest. When 

adding thymidine, the cells arrest in G1/S-phase transition by inhibition of 

ribonucleotide reductase and therefore stalling the replication machinery by 

inhibition of dCTP synthesis. The cells can be released of this arrest by washing 

out thymidine and the addition of dCTP. 

Throughout G1-phase, the cells commit to fate decisions, grow, and prepare for 

entering S-phase by synthesizing precursor proteins needed for DNA-synthesis. 

During every round of cell division, cells decide to either continue dividing or 

withdraw from the cell cycle to enter into the quiescent state (G0) by a mechanism 

identified as 'restriction point' (R-point) control (Foster et al., 2010). Throughout 

G1-Phase, cyclin-D accumulates and forms a complex with CDK4/6, which creates 

a positive feedback loop to initiate the expression of S-phase genes (Bertoli et al., 

2013). After passing the R-point, the cell is committed to the cell cycle, and 

irreversibly progresses through DNA synthesis or S-phase (Bertoli et al., 2013). 

Here, the replication machinery duplicates the DNA of each sister chromatid. 

Activation of the pre-replication complexes (pre-RC), which is assembled during 
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the G1-phase, enables the unwinding of small stretches of parental DNA by MCM 

(minichromosome maintenance protein complex) helicase (Hammond et al., 

2017). The phosphorylation-induced activation of replication protein A (RPA) 

leads to its binding to ssDNA and therefore primes the replication fork for loading 

of replicative DNA polymerases and PCNA (Boehm et al., 2016). This completes 

the activation of replication forks, and DNA synthesis starts (Boehm et al., 2016). 

Since new DNA must be packaged into nucleosomes to function appropriately, the 

synthesis of canonical histones occurs simultaneously with DNA replication 

(Annunziato, 2005, Alabert and Groth, 2012). This high demand for canonical 

histones is, on the one hand, provided by increasing synthesis of new canonical 

histones, organized as multiple copies in gene-clusters, that only transcribe during 

S-phase (Hammond et al., 2017). In addition to increased transcription of histone 

genes, genes of canonical histones lack polyadenylated tails and instead possess a 

conserved supply regulating stem-loop structure at the 3' end (Marzluff et al., 

2008). On the other hand, parental histones, produced by the cell during 

replication, are rapidly recycled into nucleosomes behind the replication fork 

(Hammond et al., 2017). MCM helicase translocation along the leading strand 

most likely mediates the recycling of these histones, which disrupts parental 

nucleosome octamers, following the release of H3-H4 and H2A-H2B subunits 

(Hammond et al., 2017, Petryk et al., 2018). Chromatin assembly factors (CAFs) 

are reassembling the nucleosomes behind the replication fork in a process that is 

not fully understood.  

With the completion of DNA duplication, the cell enters a short phase of rapid 

growth and protein synthesis, termed G2-phase. As some cell types directly 

proceed from S-phase to mitosis, G2-phase is not a fundamental part of the cell 

cycle progression (Liskay, 1977). However, double-strand breaks, which occur 

during DNA-replication, might be repaired by homologous recombination using 

the intact sister chromatid during this subphase of the interphase (Burgoyne et al., 

2007). A threshold level of the activated cyclin-B1/CDK1 complex determines the 

entry into mitosis after the G2-phase (Stark and Taylor, 2006, Martinez-Alonso 

and Malumbres, 2020). The protein levels of cyclin B1 remain suppressed 

throughout G1 and S phases and start rising after DNA replication (Dimova et al., 

2012, Martinez-Alonso and Malumbres, 2020). A positive feedback loop of CDK1 

with Cdc25 phosphatases, also involving Polo-like kinase (PLK1), leads to the 

transition into mitosis (Martinez-Alonso and Malumbres, 2020).  
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At the end of S-phase, each sister chromatid only holds half the epigenetic 

modifications that were present in the parental chromatid (Hammond et al., 

2017). Accordingly, the cell must use this partial set of instructions to restore 

functional chromatin domains (like, e.g., centromeres) before entering mitosis.  

5.1.2 Histone Inheritance During Replication 

What has arisen from more recent studies is the observation that chromatin states 

harbor epigenetic information, which is propagated between cell divisions to 

maintain cellular identity and which also defines centromere integrity and 

function (Hammond et al., 2017). In S-phase, the chromatin disassembles prior to 

DNA replication in order to allow replication fork passage (Hammond et al., 2017). 

Histone chaperones, epigenetic readers, and writers, along with chromatin 

remodelers, follow the replication fork and reassemble chromatin after replication 

(Hammond et al., 2017). The influence of the cell cycle on chromatin structure and 

composition still remains elusive, despite long-standing efforts to solve the 

question, how these processes are orchestrated. The maintenance of characteristic 

chromatin traits is especially crucial for functional domains like the centromere. 

Behind the replication fork, two pathways of histone deposition have to happen 

simultaneously in distinct processes: 1. reassembly of evicted parental histones 

and 2. incorporation of newly synthesized histones (Petryk et al., 2018, Yu et al., 

2018, Stewart-Morgan et al., 2020, Alabert and Groth, 2012). CAF1 is a histone 

chaperone that directly interacts with new histones and the replication fork via the 

processivity clamp PCNA (Shibahara and Stillman, 1999, Moggs et al., 2000). This 

pathway of new histone deposition demonstrates a close link to DNA replication. 

DNA replication happens through distinct mechanisms for the leading and the 

lagging strand (Ransom et al., 2010, Probst et al., 2009). Likewise, to prevent the 

dilution of epigenetic features, the redeposition of parental histones happens from 

independent types of machineries, near the leading and lagging strand after the 

replisome (Ransom et al., 2010, Probst et al., 2009). In this process, as mentioned 

earlier, the conserved N-terminal tail of MCM2 from the MCM helicase complex 

binds and evicts parental H3-H4 dimers and tetramers (Huang et al., 2015). The 

deletion of this N-terminal histone binding domain leads to chromatin assembly 

defects in yeast (Huang et al., 2015). Novel deep sequencing techniques identified 

a nearly equal distribution of parental histones to the leading and lagging strand 

after the replisome (Petryk et al., 2018). When the histone binding properties of 
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MCM2 is abolished by the deletion of the N-terminus, parental histones strongly 

prefer the leading strand—hence showing an apparent defect in lagging strand 

histone recycling (Petryk et al., 2018). 

Similarly, after detaching one of the core lagging strand polymerases (Polα) from 

the MCM helicase, lagging strand histone recycling fails (Gan et al., 2018). 

Whether the N-terminal truncation of MCM2 disrupted the interaction of the 

lagging strand DNA replication machinery or impaired a histone specific H3-H4 

recycling is not known (Gan et al., 2018). Two non-catalytical subunits of the core 

leading strand enzyme Polε, POLE3-POLE4, have been shown to harbor histone 

chaperone properties for histone H3-H4 (Bellelli et al., 2018). Likewise, the 

deletion of the yeast homologs showed impaired, leading strand parental histone 

recycling (Yu et al., 2018). This evidence led to the assumption that parental 

histone distribution happens in a semi-conservative manner, guided by a 

specialized type of machinery (Bellelli et al., 2018). 

 

Figure 35. Identifying the CENP-A Loading Machinery Assembled 

on Centromeric Chromatin.  

During S-Phase, CENP-A levels are halved and do not rise until G1-phase, 

although protein synthesis of CENP-A peaks in G2-phase. However, loading 

of CENP-A is replication-independent and restricted to early G1-phase, which 

is possibly regulated by the CENP-A specific chaperone HJURP, and cell cycle-

regulated post-translational modifications. During S-phase, nucleosomes are 

disassembled in front of the DNA replication machinery and reincorporated 

into chromatin behind the replication fork. The underlying processes to 

maintain chromatin domains is vastly unknown.  
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The necessity for such machinery becomes even more apparent in terms of 

specialized chromatin domains like the centromere, which is characterized by the 

presence of CENP-A nucleosomes. Throughout DNA replication, parental CENP-

A-H4 histones are distributed equally to the leading and lagging strand after the 

replisome (Jansen et al., 2007, Dunleavy et al., 2011, Ross et al., 2016). Recent 

data showed that CENP-A deposition happens at the same DNA locations in the 

centromere over several cell cycles (Nechemia-Arbely et al., 2019). Whether the 

CENP-A specific chaperone HJURP is capable of mediating the redeposition by 

itself or if this mechanism necessitates a distinct type of machinery is unclear. 

Furthermore, the centromeric histone CENP-A is atypical, as most histone 

variants express from one or two gene copies throughout the cell cycle. CENP-A 

expression levels peak in G2-phase, but histone incorporation exclusively happens 

in early G1-phase (Foltz et al., 2009, Heun et al., 2006, Shelby et al., 1997, Jansen 

et al., 2007). It seems extraordinary that during mitosis, where CENP-A 

establishes the physical link between depolymerizing spindle microtubules and 

DNA, the centromere only harbors half of the maximum CENP-A levels (Ross et 

al., 2016, Jansen et al., 2007).  

5.1.3 The CENP-A Deposition Pathway during G1-Phase 

For stable centromeric chromatin inheritance over many cell cycles, the CENP-A 

deposition machinery must ensure exact deposition at the site of pre-existing 

centromeres. This process occurs in three distinct steps, each involving a specific 

protein complex (Stellfox et al., 2013). I. The priming of centromeric chromatin in 

order to create a predisposed state of chromatin (Stellfox et al., 2013, Moree et al., 

2011). II. Deposition of new histones by CENP-A specific proteins (Barnhart et al., 

2011, Stellfox et al., 2013, Dunleavy et al., 2009, Foltz et al., 2009, Shuaib et al., 

2010). III. Maturation of the nascent centromeric chromatin by the 

reestablishment of the centromeric environment and stabilization of nucleosomes 

by histone remodeling (Stellfox et al., 2013, Lagana et al., 2010, Perpelescu et al., 

2009). 

Towards the end of mitosis, when CDK1 levels decrease, the MIS18 complex 

(consisting of Mis18α, Mis18β, Mis18BP1, RbAp46, RbAp48) is localized to 

centromeres and associates with CENP-A nucleosomes in a phosphorylation-

dependent manner (Stellfox et al., 2013, Silva et al., 2012, Moree et al., 2011, 

Dambacher et al., 2012). Under this condition, Mis18α, Mis18β, and Mis18BP1 are 

dependent on each other for centromere targeting (Fujita et al., 2007, Hayashi et 
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al., 2004). Knockdown experiments showed the requirement of all three proteins 

along with RbAp46 RbAp48 for the deposition of newly synthesized CENP-A 

(Fujita et al., 2007). The CENP-A specific chaperone HJURP is also a necessary 

and sufficient player in histone deposition, as it localizes to centromeres 

specifically at G1-phase and is capable of generating neocentromeres upon ectopic 

localization (Barnhart et al., 2011, Dunleavy et al., 2009, Foltz et al., 2009). 

Knockdown of the MIS18 complex members Mis18α and Mis18BP1 results in loss 

of centromeric HJURP, which underlines the importance of the MIS18 complex in 

CENP-A deposition (Barnhart et al., 2011). 

Since the deposition of CENP-A appears to be phosphorylation-dependent, the 

APC/C targeted degradation of B-type cyclins after anaphase onset is capable of 

temporal regulation of CENP-A deposition (Castro et al., 2005, Erhardt et al., 

2008, Grosskortenhaus and Sprenger, 2002). The coupling of the deposition 

machinery to the CCAN might regulate the spatial regulation of CENP-A 

deposition (Stellfox et al., 2013). In particular, as confirmed in Xenopus egg 

extracts, the MIS18 complex interacts with the CCAN protein CENP-C to initiate 

CENP-A deposition (Moree et al., 2011). However, the ectopic localization of 

CENP-C did not recruit the MIS18 complex and initiated CENP-A deposition 

(Moreno-Moreno et al., 2006, Heun et al., 2006). The lack of ectopic MIS18 

complex initiated CENP-A deposition was leading to the assumption that the 

deposition pathway is more complex and not fully understood.  

Priming of centromeric chromatin is an acetylation dependent mechanism. The 

Mis18 complex promotes H3.3 acetylation by the recruitment of acetyltransferase 

KAT7, which earmarks H3.3 histones for chromatin eviction (Ohzeki et al., 2016, 

Srivastava and Foltz, 2018, Stellfox et al., 2013). Accordingly, after knockdown of 

MIS18 complex members, the deposition of CENP-A could be restored by 

trichostatin A treatment, increasing the overall acetylation state by histone 

deacetylase (HDAC) inhibition (Fujita et al., 2007). The exchange mechanism of 

histone H3.3 eviction and CENP-A deposition is not known. Known histone H3 

variants associate with distinct histone chaperones to define the location and 

timing of histone remodeling (Zink and Hake, 2016). Likewise, CENP-A and 

histone H4 form a pre-nucleosomal complex with HJURP that localizes to 

centromeres during G1-phase and which was sufficient to assemble nucleosomes 

in vitro (Shuaib et al., 2010, Bernad et al., 2011, Foltz et al., 2009, Dunleavy et al., 

2009). 
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Equally, the recruitment of HJURP to non-centromeric sites leads to CENP-A 

incorporation into chromatin. However, the formation of the pre-nucleosomal 

CENP-A/ H4/ HJURP complex excludes tetramer formation as well as DNA 

interactions (Barnhart et al., 2011, Bernad et al., 2011, Dunleavy et al., 2009, 

Shuaib et al., 2010). Hence, CENP-A incorporation requires a stepwise 

conformational change and nucleosome assembly mediated by a histone 

remodeling machinery (Stellfox et al., 2013). Besides, CENP-A deposition takes 

place at a highly condensed chromatin state, right after mitosis (Cuylen and 

Haering, 2011). Even though depletion of structural maintenance of chromosomes 

protein 2 (SMC2) leads to a reduced CENP-A incorporation, there is no evidence 

of a link between chromosome condensation and centromere maintenance 

(Samoshkin et al., 2009). Condensin may maintain the higher-order structure of 

chromatin (Yong-Gonzalez et al., 2007, Verdaasdonk and Bloom, 2011, Fazzio and 

Panning, 2010). However, whether this rigid chromatin environment might 

necessitate an ATP-dependent CENP-A histone remodeler in order to exchange 

earmarked H3.3 histones with CENP-A remains to be identified. Finally, the RSF 

complex (Rsf1 and Snf2h) and Mgc-RacGap stabilize newly deposited CENP-A 

nucleosomes (Perpelescu et al., 2009, Lagana et al., 2010). This maturation 

process helps to generate centromeric chromatin sufficiently stable to support 

kinetochore assembly and chromosome segregation during mitosis (Perpelescu et 

al., 2009, Lagana et al., 2010, Nechemia-Arbely et al., 2012). The cell cycle 

dependent deposition of CENP-A nucleosomes, as well as the maintenance of 

centromere identity, are fundamental processes for cell viability that demand a 

detailed understanding of the proteinaceous environment of centromeric 

chromatin.  
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 Aims of the Work 

Centromere identity in nearly all eukaryotes is epigenetically defined and based 

on the physical properties of CENP-A containing nucleosomes. During DNA 

replication CENP-A levels at each daughter centromere are halved. The directed 

redistribution of CENP-A nucleosomes may require a specific deposition 

machinery like histone-modifying enzymes, chromatin remodelers and other 

structural and regulatory proteins. Furthermore, the approximate twofold dilution 

requires the replenishment of the CENP-A pool to maintain CENP-A levels and 

centromere identity. The current hypothesis assumes that the gaps resulting from 

the distribution of CENP-A nucleosomes to daughter centromeres in S-phase are 

filled by H3 nucleosomes, which serve as placeholders for CENP-A deposition. 

Centromere propagation by maintaining a constant number of CENP-A 

nucleosomes through generations suggests that CENP-A itself templates the 

incorporation of new CENP-A histones at the exit of mitosis. The molecular basis 

of the remarkable accuracy of the underlying CENP-A replenishment mechanism 

has not yet been fully understood. Preexisting CENP-A nucleosomes and CENP-C 

recruit the MIS18 complex that, together with acetyltransferases, marks H3.3 

nucleosomes for replacement by new CENP-A nucleosomes. Recognition of the 

spatial proximity between the CENP-A and an H3.3 nucleosome may be 

accomplished by the CCAN protein CENP-C and post-translational histone 

modifications. In addition to selectively assemble and stabilize the kinetochore on 

CENP-A nucleosomes, the CCAN proteins might have a role in recruiting the 

replacement machinery which directs the exchange of the neighboring H3.3 

nucleosome.  

In this project I aimed to identify key proteins that establish the molecular bases 

of the mechanisms that redistribute CENP-A after replication and facilitate its 

deposition at the M/G1 transition. Notably, the redistribution of CENP-A after 

replication fork passage and the histone remodeling in G1-phase is enigmatic. 

Previous studies tried to tackle these questions by cell biological assays and 

fluorescence microscopy. The identification of time-resolved cell cycle specific 

protein interactions of CENP-A might be instrumental to assess the importance of 

these candidate proteins by cell biology. In this work, I established the time-

resolved analysis of CENP-A copurifying protein complexes to monitor 

quantitative alterations of centromere-associated proteins. I aimed to address the 

following questions: 
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● How is the centromere associated proteome changing throughout the cell 

cycle? 

● What are the candidate proteins necessary for CENP-A partitioning to 

sister chromatids subsequent to DNA replication?  

● Is there a CENP-A specific histone remodeler and what CENP-A specific 

chromatin remodelers may have a role in CENP-A deposition and 

maintenance? 
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 Results 

Although CENP-A has been subjected to intense studies for the past decade, little 

is known about modulation and mechanisms of CENP-A itself and interacting 

partners. To identify the CENP-A interactome in a comprehensive manner, I 

established a cell cycle arrest release protocol followed by chromatin-

immunoprecipitation (ChIP) of Micrococcal Nuclease (MNase) digested 

chromatin to obtain mono- or oligonucleosomes. To purify the low abundant 

CENP-A histone from centromeric chromatin, doxycycline-inducible stable HeLa 

cell lines expressing either N-terminal Flag-HA-6xHis (pEWS-Nfl) CENP-A or 

histone H3.3 were established. Here the Flp-IN-T-REx expression system was 

used, which incorporates the gene of interest (GOI) at a single loci that showed 

near endogenous expression levels (Tighe et al., 2004). The expression of pEWS-

CENP-A and pEWS-H3.3 was confirmed in a protein immunoblot against HA-

antibody from whole-cell extracts, comparing induced and non-induced 

asynchronously cycling cells. Chromatin-associated proteins are tightly 

interacting with DNA and have to be solubilized by DNA digestion. I used 

controlled incomplete MNase digestion. MNase is a calcium-dependent 

endonuclease that cuts in the linker regions between nucleosomes in chromatin. 

Partial digestion with MNase results in a periodic pattern, resembling the spacing 

of nucleosomes. Since the size of centromeric chromatin varies between a single 

nucleosome and several hundred, I titrated the MNase amount to obtain either 

mostly mononucleosomes or ~30N oligonucleosomes. To assess the quality of 

chromatin, the DNA was deproteinized and analyzed by agarose gel 

electrophoresis. 
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Figure 36. Workflow of CENP-A and H3.3 Purification from MNase 

Digested Nuclei.  

CENP-A/H3.3 was expressed in HeLa FlpIN T-Rex cells using a Doxycycline 

inducible cell expression system. The expression was confirmed by western 

blot (M.18). Nuclei were isolated, and the DNA was digested with MNase, 

which selectively cuts the DNA regions between nucleosomes. The time of 

MNase digestion was titrated to obtain mononucleosomes or 

oligonucleosomes. Subsequently, CENP-A or H3.3 were purified by tandem 

affinity purification and subjected to tryptic digest for tandem mass 

spectrometry analysis. 

5.3.1 Oligo-Nucleosome Chromatin Immunoprecipitation 

(ChIP) Can Purify Human Centromeres 

CENP-A, as the epigenetic mark of centromere identity, is the most upstream 

component of kinetochore assembly. Accordingly, the CCAN proteins should be 

interacting with CENP-A throughout the cell cycle. By tandem affinity purification 

of CENP-A, either solubilized as mononucleosomes or in larger stretches of 

oligonucleosomes, I compared whether chromatin immunoprecipitation ChIP) a 

single CENP-A nucleosome is sufficient to stabilize the CCAN in such a manner 

that it is detectable by tandem mass spectrometry (MS/MS). The low abundance 

of CENP-A and expression levels of the system require to take a total cell mass of 

1・109—4・109 cells.  

The overall protein identifications (IDs) of three biological replicates is 

comparable, as there were 735 IDs in the oligonucleosome ChIP sample versus 703 

IDs in the mononucleosome ChIP sample (excluding Razor- and potential 

contaminant proteins). Out of the 386 IDs common to both experiments, CENP-
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A as the bait protein was the only protein of the inner kinetochore that was 

identified in the mononucleosome preparation. In contrast, all CCAN proteins, 

CENP-B, and CENP-A were identified in the oligo-nucleosome sample (Figure 37). 

Taken together, since proteins associated with kinetochores, the cell cycle, or DNA 

replication were only found in the oligo-nucleosome ChIP, only oligo-nucleosome 

preparations (~10-30 meres) were used in further experiments. 

 

Figure 37. Oligonucleosome Purification Achieves a Higher Quality 

of Inner Kinetochore Proteins.  

Comparing oligo- and mononucleosome purification indicates that 

oligonucleosomes maintain centromere protein distribution. While the total 

number of protein identifications remains relatively similar, the number of 

centromere and especially kinetochore proteins is higher when purifying 

larger stretches of centromeric chromatin. The Venn diagram shows total 

protein identifications in both experiments. The bar plot indicates the 

identification of CENP-A, CENP-B, and CCAN proteins. 

5.3.2 The Cell Cycle can be Resolved by Distinct Arrest Release 

Protocols  

Over the course of the cell cycle, centromeric chromatin is dynamically modified, 

especially during S-phase, where CENP-A is equally distributed between sister 

chromatids. In addition, the deposition of CENP-A during G1-phase is dependent 

on important cell cycle driving mechanisms and PTMs. To identify the cell cycle 

stage-specific CENP-A associated proteome, I performed oligo-nucleosome 

CENP-A-ChIP experiments from HeLa cells arrested at the following cell cycle 



5. A Time-Resolved Proteomic Analysis of the Human Centromeric Chromatin 

5.3 Results   | 111 

stages: 1. Early G1 phase (lovastatin arrest), 2. G1- to S-phase transition (21 h 

thymidine arrest), 3. early S-phase (21 h thymidine arrest/2 h after wash and 

deoxycytidine release), 4. mid-S-phase (21 h thymidine arrest/3 h after wash and 

deoxycytidine release), 5. late S-phase (21 h thymidine arrest/4 h after wash and 

deoxycytidine release), 6. Early G2-phase (21 h thymidine arrest/6 h after wash 

and deoxycytidine release) (Figure 34, Figure 38, Material and Methods).  

For each cell cycle stage, the CENP-A associated interactome was identified by 

tandem MS from three biological replicates. 

 

Figure 38. Timing of the Induction of Protein Expression and Cell 

Arrest Protocols.  

HeLa FlpIN T-Rex cells, either expressing CENP-A or H3.3, were seeded 72 

hours in advance. The Protein expression was induced 48 hours before either 

harvest or release. Cells were Either Thymidine arrested for 22 hours or 

Lovastatin arrested for 16 hours. (Deoxy-) thymidine is a nucleoside composed 

of the pentose sugar deoxyribose, joined to the pyrimidine base thymine that 

can, by (tri-) phosphorylation, be converted to deoxythymidine triphosphate 

(dTTP). This is one of the four nucleoside triphosphates that are used in the in 

vivo synthesis of DNA. By adding an excess of thymidine, dTTP becomes an 

allosteric inhibitor of the ribonucleotide reductase, which eventually leads to 

a depletion of dCTP and stalls the DNA replication machinery. The cell cycle 

was restored with the washout of thymidine in the culture medium and the 

addition of 24µM deoxycytidine after the thymidine block. To capture the cells 

in different cell cycle states, the cells were harvested either 21h after the 

addition of 2mM Thymidine for G1 to S-Phase transition, 2h after release for 

early S-Phase, 3h for mid-S-phase, 4h for late S-phase or after 6 hours for early 

G2-phase (Ma and Poon, 2011). Lovastatin reduces the proteasome activity, 

leading to an accumulation of CDK inhibitors p21 and p27 and to subsequent 

G1-phase arrest, as seen in cells of different cancer lines. The morphology of 

the cells changed to an elongated tapered shape. Similar to the thymidine 

arrest, the cells were harvested by trypsinization, and the flag-fusion CENP-A 

containing nucleosomes were tandem purified as oligonucleosomes in 

triplicates (Ma and Poon, 2011). 
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After establishing the arrest and arrest-release protocols to capture HeLa cells in 

distinct cell cycle stages, I purified CENP-A as described previously. 

5.3.3 Analysis of G1-Arrested Cells Provides Insight into CENP-

A Maintenance 

CENP-A maintenance is vital for faithful chromosome segregation and cell 

viability. The incorporation of newly synthesized CENP-A histones is a key process 

of centromeric inheritance and is restricted to early G1-phase. Although some 

components involved in these mechanisms are identified, the putative specific 

chromatin remodeler and the factors mediating centromere specificity, required 

for discrete nucleosome disassembly and exchange of histone H3 variant by 

CENP-A are not identified. In order to analyze the protein environment of 

centromeres during G1-phase, Hela cells were arrested by the addition of 

Lovastatin and oligo-nucleosome ChIP purifications, using either CENP-A or 

histone H3.3 as bait was performed and analyzed by tandem MS. The Intensity 

Based Absolute Quantification (iBAQ) values were extracted, and the abundance 

(fold change [log2]) and significance (adjusted P-value [-log10]) of the identified 

proteins in three biological replicates were visualized in a volcano plot. The iBAQ 

values estimate the absolute amount of each identified protein by incorporation of 

individual peptide MS signals and theoretical peptides and subsequently 

normalize by the number of observable peptides of the protein. 

During G1-phase, 388 proteins were identified to be significantly enriched for 

CENP-A over histone H3.3 in all three biological replicates (excluding Razor- and 

potential contaminant proteins). Amongst the most significant and abundant 

proteins, all of the previously described CCAN proteins of the human kinetochore 

were identified. Also, the CENP-A specific chaperone HJURP was identified, 

which indicated sufficiently high sensitivity. As a histone-modifying protein, the 

histone deacetylase HDAC4 was highly enriched for CENP-A interaction in G1-

Phase. Also, various other chromatin-modifying proteins show significant 

enrichment for CENP-A, including the E3 ubiquitin-protein ligase UHRF1 that 

contains PHD and RING finger domains. Most histones are recruited and 

incorporated into chromatin by specialized protein environments that include 

histone chaperones interacting with histone remodeling complexes. Purification 

of such proteins is in the nature of ChIP experiments. However, the 
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ATP-dependent helicase SWI/SNF-related matrix-associated actin-dependent 

regulator of chromatin subfamily A member 5 (SMARCA5 also Snf2h) is a central 

player in various histone remodeling complexes and was specifically enriched in 

CENP-A ChIP experiments during G1 (Figure 39). Histone or nucleosome 

specificity for most histone remodelers is achieved by interaction with a specific 

protein network. In the pulldown experiments presented in this work, most 

abundant for CENP-A interactions were proteins associated with the Wich 

chromatin remodeling complex (Figure 39). In particular, these proteins are 

Baz1b, which forms the core of the Wich-complex in association with Snf2h 

(Bozhenok et al., 2002). Associated with this complex are a number of proteins 

that are summarized as the B-WICH-complex (Bozhenok et al., 2002). Additional 

chromatin factors enriched in CENP-A ChIP experiments are the histone H2A, 

H2B chaperoning Fact-Complex (SP16H and SSRP1), the heterochromatin 

associated nucleophosmin (NPM), Chromatin accessibility complex protein 1 

(Chrac1), and SWI/SNF complex subunit SMARCC1 (SMCR1). Furthermore, AT-

rich DNA sequence binding proteins were enriched like, e.g., DNA-binding protein 

SATB1. Also, several transcription factors were co-immunoprecipitated with 

CENP-A during G1. Most prominent were Lin37, ZBTB9, JUNB, and ERR2. 

Furthermore, I also identified proteins that were previously described to be 

involved in the CENP-A deposition process, like RbAp46/48 or Rsf1 (Stellfox et 

al., 2013).  
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Figure 39. Comparison of Protein Identifications Purified from 

H3.3 vs. CENP-A Oligonucleosomes From G1 Arrested Cells.  

Cells were arrested in G1-phase, nuclei were extracted, oligonucleosomes were 

purified and analyzed as described (M22, M23, M25, M26, M27, and M28). 

Proteins were identified with MaxQuant from three biological replicates. In 

the volcano plot, the significance, tested by a two-sample t-test, is plotted 

versus the log2 transformed fold change of intensity. Proteins enriched in H3.3 

ChIP experiments (yellow) were compared to proteins enriched in CENP-A 

ChIP experiments (blue). Proteins that were significant for neither pull-down 

or below a threshold of 2 are gray. Highlighted are proteins of the B-WICH 

chromatin remodeling complex: SMCA5 (p-val: 0.00332/FC: 1.188), BAZ1B 

(p-val: 0.03119/FC: -0.659), DEK (p-val: 0.02474/FC: 1.427), SF3B1 (p-val: 

0.00812/FC: 2.697), DDX21 (p-val: 0.0000084/FC: 21.396), MBB1A (p-val: 

0.000298/FC: 21.48711). 

These data reveal a significant difference for the proteins quantified from ChIP 

experiments of CENP-A and H3.3 oligonucleosomes. 
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5.3.4 The CENP-A Proteome at the Beginning of DNA-

Replication (G1- to S-Phase Transition) 

To analyze the CENP-A specific proteome during initiation of DNA-replication, 

HeLa cells were single thymidine arrested and treated as described earlier. CENP-

A ChIP experiments are tested against H3.3 pull-downs and quantified for 

significance and abundance illustrated as a volcano plot (Figure 40). The analysis 

identified 758 proteins in three biological replicates in CENP-A ChIP experiments. 

197 proteins were significantly enriched in CENP-A ChIP samples, of which 137 

were identified in all three CENP-A replicates. The majority of the protein 

identifications (557 IDs) were found in both (CENP-A and H3.3) pull-down 

experiments.  

The most abundant proteins in CENP-A experiments were again the CENP-A 

chaperone HJURP, the CCAN members. Some of the proteins, significantly 

enriched during early G1-phase, were also identified during late G1 to S-phase 

transition, however not of particular significance for either histone, such as NPM. 

This protein is directly interacting with nucleophosmin-3 (NPM3), which was 

specifically found in CENP-A pull-downs. Also, the unknown transcription factor 

ZBTB9 was highly abundant and significantly enriched in CENP-A experiments. 

Additionally, the transcription factor JUNB was identified again. However, most 

of the identifications that overlap with those identified in G1-phase were not 

significantly enriched in CENP-A ChIP experiments since most were more general 

chromatin interacting proteins.  

Of the chromatin-modifying proteins, the most prominent CENP-A interactors 

were Kat6b, a Histone Acetyl Transferase (HAT), which has a histone H3 

acetyltransferase activity and Chromodomain-Helicase-DNA-binding protein 7 

(CHD7), a transcription regulator, that also has ATP binding properties and may 

be involved in higher-order chromatin structure. Another transcription factor, 

Negative Cofactor 2 Beta (NC2B), is also a component of the ATAC complex, a 

complex with histone acetyltransferase activity on histones H3 and non-histone 

proteins. Also, a significant interaction of the DNA methylation proteins DNA 

(cytosine-5)-Methyltransferase 3a and b (DNMT3A/B) was observed, which are 

required for genome-wide de novo methylation and are essential for the 

establishment of DNA methylation patterns (Figure 40). 
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Most members of the putative replicative helicase MCM complex were identified 

in CENP-A and H3.3 ChIP experiments but MCM4 was exclusively identified in 

CENP-A experiments. The mitotic kinase PLK1 plays a major part during G2/M-

transition as well as during mitosis. Also, in single thymidine arrested HeLa cells 

with induced CENP-A expression, the kinase was significantly enriched.  

 

Figure 40. Comparison of Changes in Protein Identifications 

Purified from H3.3 vs. CENP-A Oligonucleosomes from Cells in G1- 

to S-phase transition.  

Three replicates of thymidine arrested cells expressing either CENP-A or H3.3 

were purified from MNase digested nuclei. The ChIP purified proteins were 

identified by MaxQuant, analyzed in R, and visualized as a volcano plot. Here, 

the significance of a protein identification was tested in a two-sample t-test 

and plotted versus the fold-change of the respective protein. Proteins enriched 

in H3.3 ChIP triplicates are yellow, Proteins enriched in CENP-A ChIP 

triplicates are blue, and proteins below a 2-fold threshold are grayed out. 

Highlighted here are the de-novo methyltransferases DNMT3A (p-val: 

0.0137/FC: 0.987) and DNMT3B (p-val: 0.00245/FC 1.286) 

In summary, the CENP-A associated proteins identified during G1- to S-phase 

transition expressing CENP-A were primarily associated with either chromatin or 
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the kinetochore. Interestingly, the function of most of the novel identifications in 

the interactome of centromeres is largely unknown.  

5.3.5 The CENP-A Associated Proteome During Early S-Phase 

By the release of single thymidine arrested HeLa cells into dCTP, the cells actively 

and synchronously replicate DNA. I employed the previously described protocol 

to capture this early state of DNA replication and analyze the proteome at the 

centromere by comparing CENP-A against H3.3 ChIP experiments using tandem 

mass spectrometry. In early S-phase, 678 proteins were identified in CENP-A pull-

down experiments. 197 of these were statistically significantly enriched, whereas 

159 of these were only identified in the CENP-A replicates. 

Most abundant and significant in CENP-A ChIP experiments compared to histone 

H3.3 were the CCAN proteins and HJURP. Similar in terms of abundance and 

significance in CENP-A experiments is again transcription factor ZBTB9. Several 

other transcription factors were enriched in CENP-A pull-downs; among these are 

zinc finger protein ZN562, steroid hormone receptor ERR2, or transcription 

initiation protein NC2B, and transcription regulation protein Max. 

There are several chromatin-modifying proteins identified as significant for 

CENP-A interaction. Amidst these is histone H3.3 chaperone Death domain-

associated protein 6 (DAXX) and the transcriptional regulator ATRX, which has 

ATP-dependent DNA translocase activity and catalyzes the replication-

independent deposition of histone H3.3 in heterochromatin domains. CENP-A 

pull-downs from cells in G1- to S-phase transition showed enrichment for CHD7, 

whereas those cells in early S-phase additionally showed significant enrichment of 

CHD2, -6, -7, -8, and -9 over histone variant H3.3.  

Analysis of the dataset also showed significant enrichment of Chromatin 

accessibility complex protein 1 (Chrac1) and an accessory subunit of the DNA 

polymerase epsilon complex (DPOE3). These two proteins form a complex that 

binds naked DNA, which can then be incorporated into chromatin by association 

with Acf1 (ATP-dependent chromatin-remodeling protein) and Snf2h, resembling 

the Chrac-complex. Acf1 and Snf2h were also identified as all CENP-A ChIP 

replicates, yet not with high abundance and significance.    
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The DNA mismatch repair proteins MSH2 and MSH6 were also enriched in CENP-

A ChIP experiments compared to histone H3.3 in all three biological replicates. 

These proteins are recruited to chromatin in G1- and early S-phase via its PWWP 

domain that specifically binds trimethylated histone H3 on lysine 36 

(H3K36me3). In this cell cycle stage, again, Plk1 was significantly enriched for 

CENP-A interaction as well as the E3 ubiquitin-protein ligase Trim21. 

 

 

Figure 41. Chromatin Factors are Enriched at Centromeric 

Chromatin in Early S-Phase.  

Protein intensities of three biological replicates were extracted from the 

analysis of ChIP experiments of cells expressing either H3.3 or CENP-A that 

were arrested with thymidine and released for 2 hours before harvesting. 

Protein abundances in CENP-A were averaged, and the significance of their 

FC to the three biological replicates of H3.3 were assessed by a two-sample t-

test. The resulting adj. p-val was plotted versus the respective FC in a volcano 

plot. The proteins two-fold enriched in H3.3 are indicated in yellow and in 

CENP-A ChIP experiments in blue, respectively. Highlighted are chromatin 

interacting proteins involved in remodeling processes. DAXX (p-val: 0.00021/ 

FC: 25.1823), ATRX (p-val: 0.00074/ FC: 2.2881), DPOE3 (p-val: 0.3476/ FC: 

1.323), CHRC1 (p-val: 0.0310/ FC: 2.2154), MSH2(p-val: 1.42E-06/ FC: 
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24.8661), MSH6(p-val: 4.92E-06/ FC: 25.1049), ZBTB9 (p-val: 26.7088/ FC: 

2,26E-06), ZN562(p-val: 5,19E-06/ FC: 23.1856 ). 

Taken together in early S-phase, several chromatin factors were significantly 

enriched in centromeric chromatin as represented by CENP-A ChIP experiments, 

in comparison to chromatin domains that harbor histone variant H3.3. 

5.3.6 The CENP-Associated Proteome in Mid S-Phase 

To further characterize the centromere during active DNA replication, HeLa cells 

either expressing histone variant CENP-A or H3.3 were harvested after 3 hours of 

release. Overall, 855 proteins were identified in the three biological replicates of 

CENP-A ChIP samples. 476 proteins were significantly enriched in CENP-A ChIP 

samples over H3.3 ChIP samples, and 376 of these were unique for the CENP-A 

interactome. Amidst the most abundant and significant proteins in the CENP-A 

ChIP replicates compared to histone variant H3.3 are the CCAN proteins and 

HJURP along with transcription factor ZBTB9 and transcription initiation protein 

NC2B. The histone H3.3 chaperone DAXX was again more abundant in CENP-A 

experiments. Also, NPM3, which showed histone chaperone function before, and 

mitotic kinase Plk1 was identified (Chang et al., 1998, Ito et al., 1996). Chromatin 

modifying proteins like CHD were not significantly enriched in CENP-A 

experiments in comparison to H3.3. The E3 ubiquitin-protein ligase CUL4b was 

exclusively identified in CENP-A ChIP experiments as well as ubiquitin carboxyl-

terminal hydrolase 10 (UBP10), which is able to remove conjugated ubiquitin from 

target proteins.  
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Figure 42. Ubiquitin ligases are Enriched at Centromeric 

Chromatin in Mid S-Phase.  

Cells, released in S-phase for 3 hours, expressing either H3.3 or CENP-A, were 

analyzed by ChIP and MS/MS. Protein intensities of three biological replicates 

were extracted, and protein abundances in CENP-A ChIP samples were 

averaged, and the significance of their FC to the three biological replicates of 

H3.3 ChIP samples were assessed by a two-sample t-test. The resulting adj. p-

val was plotted versus the respective FC in a volcano plot. The proteins two-

fold enriched in H3.3 are indicated in yellow and in CENP-A ChIP experiments 

in blue, respectively. Highlighted is the E3-ubiquitin ligase CUL4 (p-val: 

0.00095/FC: 21.955). 

HeLa cells in mid-S-phase showed a significant increase of CENP-A associated 

proteins involved in ubiquitination and de-ubiquitination. Whether the identified 

candidates are of functional relevance for a certain centromeric environment has 

to be further elucidated. 

5.3.7 The CENP-A Associated Proteome in Late S-Phase 

DNA replication is an essential event occurring once per cell cycle and which 

necessitates specialized protein-protein interactions that are spatiotemporally 

organized. Here I analyzed the proteome of the specific chromatin domain of the 
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centromere by comparing the histone variants CENP-A against H3.3 during a late 

stage of transcription. In three biological replicates of HeLa cells that were 

released from a single thymidine arrest for 4 hours, I was able to identify 508 

proteins interacting with CENP-A. Of these, 223 were significantly enriched in 

CENP-A experiments, and 48 were exclusive for CENP-A interaction.  

Most significantly enriched in CENP-A ChIP experiments compared to histone 

H3.3 were the 16 CCAN proteins as well as HJURP and the putative transcription 

factor ZBTB9. Also, several other transcription factors were enriched in CENP-A 

ChIP experiments compared to H3.3. Among these were again Nc2b and ZN562. 

Also, Plk1 was again among the most abundant and significant protein 

identifications in CENP-A pull-down experiments.  

Among the chromatin-modifying proteins identified as statistically enriched in 

CENP-A ChIP experiments over H3.3 were NPM3, NPM, Histone-lysine N-

methyltransferase SETDB1, and H3.3 chaperone DAXX. The catalytic component 

of the DAXX: ATRX complex, however, was not significantly enriched. The 

centromere binding proteins RbAp46/48 were again more abundant and 

significant in CENP-A experiments. After release into S-phase for 4 hours, the 

ATPase Snf2h, along with Acf1, as members of the Chrac-complex, were of high 

abundance (Figure 43). The Wich-complex member Baz1b was highly abundant in 

CENP-A, however not statistically significant in three biological replicates. 

Likewise, the chromatin assembly factor (CAF1) was equally abundant in CENP-

A, and H3.3 replicates. Evaluation of the dataset also showed a high abundance 

and significance for MSH2 and Trim21. There is also a slightly higher abundance 

for PCNA in CENP-A experiments, indicating an active DNA-replicating state. For 

all other arrested or arrest-release states in S-phase, PCNA was more abundant in 

H3.3 experiments, indicating an active replication of the centromere during late 

S-phase, which should be reflected by a 4 hours release (Nechemia-Arbely et al., 

2019).  
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Figure 43. Chromatin Remodeling Factors are Enriched at 

Centromeric Chromatin in Late S-Phase.  

Cells, released to S-phase for 4 hours, expressing either H3.3 or CENP-A, were 

analyzed by ChIP and MS/MS. Protein intensities of three biological replicates 

were extracted, and protein abundances in CENP-A samples were averaged, 

and the significance of their FC to the three biological replicates of H3.3 

samples were assessed by a two-sample t-test. The resulting adj. p-val was 

plotted versus the respective FC in a volcano plot. The proteins two-fold 

enriched in H3.3 are indicated in yellow and in CENP-A ChIP experiments in 

blue, respectively. Highlighted are proteins involved in chromatin remodeling: 

HJURP (p-val: 8.7E-06 /FC: 27.142), BAZ1A (p-val: 0.00685 /FC: 2.093), 

BAZ1B (p-val: 0.4057 /FC: 1.950), SMCA5 (p-val: 0.151 /FC: 3.247), RBBP4 

(p-val: 0.0151 /FC: 1.584), RBBP7 (p-val: 0.02076 /FC: 1.582),  NPM (p-val: 

0.0127 /FC: 6.868), DAXX (p-val: 0.012 /FC: 25.207), ATRX (p-val: 0.142 

/FC: 5.073), CAF1 (p-val: 0.159 /FC: 1.037). 

In summary, in late S-phase, there were several chromatin-modifying proteins 

enriched in CENP-A ChIP experiments in comparison to H3.3. Some of them act 

in remodeling complexes, which are potential candidates to promote a 

redistribution of CENP-A histones after the replication fork, probably in an 
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interplay with CAF1 (Petryk et al., 2018). Whether these can be validated is a 

matter of further research.  

5.3.8 The CENP-A Associated Proteome in Early G2-Phase 

After DNA replication, the cell prepares for cell division during G2-phase. I 

analyzed this particular stage by the release of single thymidine arrested cells for 

6 hours. According to this protocol, cells should be in the transition from S- to G2-

phase or in an early G2-phase. In total, 665 proteins were identified in the three 

biological replicates of CENP-A experiments. Of these compared to H3.3-ChIP 

experiments, 137 were of statistical significance, and 99 were unique for CENP-A 

nucleosome interaction.  

The most significantly enriched proteins were the CCAN proteins and HJURP, as 

well as the putative transcription factor ZBTB9 (Figure 44). In addition, Plk1, 

which has a significant role in centromeres during G2/M-transition, was enriched. 

In contrast, CHD proteins were most dominantly found in H3.3 but not in CENP-

A pull-down experiments.  

 

Figure 44. CCAN is Enriched at Centromeric Chromatin Over the 

Cell Cycle.  
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Cells released in S-phase for 6 hours, expressing either H3.3 or CENP-A, were 

analyzed by ChIP, followed by MS/MS. Protein intensities of three biological 

replicates were extracted, and protein abundances in CENP-A experiments 

were averaged, and the significance of their FC to the three biological 

replicates of H3.3 experiments were assessed by a two-sample t-test. The 

resulting adj. p-val was plotted versus the respective FC in a volcano plot. The 

proteins two-fold enriched in H3.3 are indicated in yellow and in CENP-A 

ChIP experiments in blue, respectively. Highlighted are kinetochore proteins. 

Strikingly, also in early G2-phase, the putative transcription factor ZBTB9 showed 

high abundance and significant enrichment in CENP-A pull-down samples. The 

analysis of the spatiotemporal dynamics of the human centromere identified a 

variety of chromatin-modifying proteins, transcription factors, and other effector 

proteins. However, their relevance for CENP-A maintenance and inheritance has 

to be further investigated.  

5.3.9 The Time Course of the Inner Kinetochore 

CCAN proteins remain associated with centromeric chromatin over the course of 

the cell cycle. Likewise, CCAN protein intensities remained relatively stable 

compared to the CENP-A histone. Besides the inner kinetochore proteins, only a 

few proteins were identified in all experiments that have a statistical significance 

for CENP-A. Comparably abundant to other CCAN proteins was the transcription 

factor ZBTB9, which was found in all ChIP experiments of CENP-A. Most protein 

interactions happen exclusively during a particular phase of the cell cycle, 

reflecting the complex nature of dynamic protein-protein interactions, higher-

order chromatin states, and posttranslational modifications. 
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Figure 45. The Time-Resolved Abundance of Inner Kinetochore 

Proteins.  

The log2 transformed intensities of inner kinetochore proteins from ChIP 

purifications of three replicates from MNase digested nuclei of cell cycle 

arrested cells expressing CENP-A were plotted in a line plot. The intensities of 

inner kinetochore proteins are comparably high with respect to CENP-A 

intensity (red). ZBTB9 (purple), a virtually uncharacterized protein, shows 

similar distribution with respect to the other CCAN components.  

In this part of my thesis, I presented a time-resolved cell cycle-specific proteomic 

analysis of the human centromere to identify candidate proteins involved in 

maintaining the sophisticated environment of this specific chromatin domain. I 

used distinct cell cycle arrest and arrest-release protocols to capture synchronized 

HeLa cells at time-points during the cell cycle. Amongst the known CENP-A 

interacting proteins, I was able to identify several novel members of the 

centromeric interactome. Selected candidates will be analyzed for their relevance 

in centromere maintenance in the future. 

 



 

|   5.4 Discussion    126 

 Discussion 

The self-templated duplication of centromeric chromatin that is independent of 

DNA sequence features requires distinct protein interactions to provide stable 

transmission across multiple cell division cycles. Despite intense research, crucial 

steps in this process have not been comprehensively understood. In this work, I 

analyzed the proteome specifically associated with- CENP-A in a cell cycle-

dependent manner to further characterize how CENP-A is (1.) assembled into 

chromatin, (2.) stably transmitted during DNA replication, and (3.) which proteins 

are necessary to promote centromere identity. To gain insight, I performed a 

comprehensive analysis, comparing CENP-A containing oligonucleosomes with 

H3.3 oligo-nucleosomes to identify chromatin-associated proteins required for 

maintaining centromeric chromatin at discrete cell cycle moments.  

Among the top-ranking interactors, I found proteins involved in centromere and 

kinetochore function as expected. These imply all CCAN proteins. The 

functionality of the CCAN is dependent on centromeric chromatin and vice versa. 

Assembly of CENP-A is dependent on the CCAN proteins, which was shown in 

multiple studies (Hori et al., 2013, Dambacher et al., 2012, Moree et al., 2011, 

Carroll et al., 2009). Most importantly, an intact CCAN is required to prevent 

CENP-A eviction induced by disruptive stress such as DNA replication. 

Accordingly, CENP-C as the cornerstone and central hub of the inner kinetochore 

stabilizes CENP-A nucleosomes, as shown both in vivo and in vitro (Falk et al., 

2015, Klare et al., 2015). The constitutive association of the CCAN was confirmed 

by the ChIP experiments performed in this work. The relative abundance of all 

components remained stable in comparison to CENP-A levels for all monitored 

time points. Moreover, the identification of all inner kinetochore proteins 

indicates that my pull-down experiments are capable of snapshotting the stably 

associated protein environment of centromeric chromatin. A constitutively 

associated protein network such as the CCAN particularly serves two purposes. 

Maintaining pre-assembled CENP-A providing a template for CENP-A 

replenishment during G1-Phase and counteracting neocentromere formation 

induced by CENP-A misplacement. On this note, to avoid an excess of CENP-A 

containing nucleosomes, CENP-A protein-degradation may need to be regulated 

by an yet unknown mechanism (Hoffmann et al., 2016, Lomonte et al., 2001, Mitra 

et al., 2020b). Chromatin regulatory proteins such as chromatin remodelers, 
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chromatin readers and writers, transcription factors, or histone chaperones might 

also depend on this centromere proximal protein network to achieve CENP-A 

specificity. Therefore, this work also aimed to expand the view on proteins 

interacting with centromeric chromatin.  

Some ATP dependent motors and other chromatin remodeling factors that play an 

integral role in nucleic-acid biology were particularly enriched in CENP-A ChIP 

experiments over H3.3. Especially abundant among proteins selectively isolated 

with CENP-A in early G1-phase arrested HeLa cells and in late stages of DNA 

replication was SMARCA5 as part of the SWI/SNF-subfamily of helicase proteins. 

Motors of this subfamily can catalyze a variety of nucleosome structure changes 

and are organized in large, multi-subunit complexes (Kadoch and Crabtree, 2015). 

In the presence of free DNA, SWI/SNF ATPases can transfer the entire histone 

octamer to an acceptor DNA, however only disassemble nucleosomes in the 

presence of specific histone chaperones (Lorch et al., 2006, Lorch et al., 1999). 

Thereby the proteins associated with the ATP-dependent motor proteins define 

the functionality and specificity of the remodeling complexes. In my CENP-A pull-

down experiments of early G1-phase arrested cells, proteins of the B-WICH 

complex (SMARCA5, BAZ1B, NM1, DDX21, DEK, SF3B1, MBB1A) were 

specifically enriched. This chromatin remodeler has also been found to be 

abundant at heterochromatin (Bozhenok et al., 2002). In particular, BAZ1B was 

found to be enriched at metaphase chromosomes, which distinguishes it from 

other remodeling factor subunits that are excluded from condensed chromosomes 

(Bozhenok et al., 2002). Furthermore, BAZ1B was shown to bind acetylated 

histone H3 on lysine 14 (H3K14ac) (Fujiki et al., 2005). This histone acetylation 

mark is particularly important for H3/CENP-A turnover/exchange and mediated 

by histone acetyltransferase KAT7 that directly interacts with Mis18BP and 

positively regulates CENP-A replenishment in G1-phase (Ohzeki et al., 2016). 

Ectopic tethering of KAT7 recruited RSF chromatin remodeling complex, which 

also purifies with CENP-A nucleosomes, as shown before (Perpelescu et al., 2009). 

RSF1 and KAT7 tethering was sufficient to assemble overexpressed CENP-A to an 

ectopic alphoidtetO DNA site; however, it failed to mediate de novo endogenous 

CENP-A assembly (Shono et al., 2015). The data presented here, strongly suggests 

that the RSF complex acts in a multistep mechanism together with B-WICH to 

promote the exchange of earmarked histone H3 with nascent CENP-A. However, 

this has to be validated in an in vivo experiment that monitors CENP-A 

incorporation after B-WICH knock-down. Furthermore, the HAT KAT6B which is 
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specifically enriched in thymidine arrested cells in my experiments also harbors a 

potential role in acetylating H3 histones to promote CENP-A exchange.  

Recent publications showed that the polymerase epsilon complex accessory 

proteins POLE3 and POLE4 possess histone H3-H4 chaperone activity and 

facilitate nucleosome reassembly after the replication fork during DNA replication 

(Bellelli et al., 2018). A potential role for the leading strand polymerase epsilon 

complex (POL) has been proposed multiple times (Iida and Araki, 2004, Tackett 

et al., 2005, Li et al., 2011, He et al., 2017). In my experiments, I also observed an 

enrichment of POL subunits with CENP-A, which implies that the cells were 

actively replicating and confirmed the involvement of POL. Interestingly, I also 

detected Chrac1 along with BAZ1A and SMARCA5 during S-phase, resembling the 

CHRAC-complex (SMARCA5, BAZ1A, DPOE3, Chrac1), which also has been 

proposed to be involved in chromatin inheritance before (Iida and Araki, 2004). 

POL and the CHRAC remodeling complex have been proposed to interact with 

each other to maintain and inherit proper chromatin states during DNA 

replication in yeast (Iida and Araki, 2004). In Drosophila, DPOE3 was proposed 

to functionally and physically interact with CENP-A, as depletion of DPOE3 

resulted in ectopic translocation of CENP-A to sites of DNA repair, which caused 

chromosome segregation defects (Mathew et al., 2014). The histone fold domains 

of DPOE3 have similarities with those of CENP-T/-W and enable the CHRAC 

complex to slide nucleosomes (Nishino et al., 2012, Hartlepp et al., 2005). 

However, the POL and CHRAC complexes act independently from each other 

(Iida and Araki, 2004). As Chrac1 and POLE4 share some sequence homology, it 

is feasible that POLE3 and Chrac1 form a centromere-specific complex acting with 

POL and the CHRAC complex to redistribute CENP-A after the replication fork. 

My data provides additional evidence that both protein complexes are involved in 

chromatin inheritance during DNA replication. Whether Chrac1 provides CENP-

A specificity to either of these protein complexes has to be investigated.  

Incorporation of replication-independent histone variant H3.3 depends on HIRA 

and the ATPase activity of CHD1 in euchromatin and DAXX: ATRX in 

heterochromatic regions (Konev et al., 2007, Lewis et al., 2010, Zink and Hake, 

2016). However, CENP-A mistargeting to ectopic sites leading to the formation of 

neocentromeres is mediated by DAXX upon overexpression of CENP-A (Lacoste 

et al., 2014). The enrichment of DAXX for CENP-A can hence be explained as an 

effect of tetracycline induced overexpression. It also cannot be ruled out that 
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DAXX binding of CENP-A might fulfill a role in CENP-A handling during DNA-

replication since the centromere-specific chaperone HJURP is low abundant.  

In mammalian cells, the knock-down of CHD1 has also been associated with 

centromere function as it led to a decrease of CENP-A (Okada et al., 2009). The 

CHD chromatin remodeler family consists of 9 proteins subdivided into 3 classes 

(class I: CHD1/2; class II: CHD3/4/5; class III: CHD6/7/8/9). They all contain 

two chromodomains tandemly arranged in the N-terminus (Marfella and 

Imbalzano, 2007). Class I CHD proteins have AT-rich DNA binding affinity, Class 

II proteins contain PHD-finger domains that recognize methylation marks, the C-

terminal BRK region of class III CHD proteins is still not fully understood (Rother 

and van Attikum, 2017). CHD2, which was significantly enriched in CENP-A 

pulldowns from cells arrested at the G1- to S-phase transition and in early S-phase, 

was shown to be involved in histone H3.3 deposition (Adam et al., 2013, Siggens 

et al., 2015). The class III CHD proteins that were all specifically enriched for 

CENP-A after 2 hours release from thymidine are very variable, and CHD8 also 

had an impact on CENP-A maintenance in a microscopy-based genetic screen 

(Mitra et al., 2020a). The CHD family is highly conserved, yet the function of these 

proteins remains widely unknown. Notably, the SNF2-like ATPase domain, their 

chromatin recognition patterns, and the connection with CENP-A maintenance 

make them interesting candidates whose specific role in CENP-A deposition has 

to be addressed.  

ATP hydrolysis may be an important hallmark to exchange histone variants. The 

abundant phosphoprotein NPM1 acts as a chaperone for histone H2B, H3, and H4 

and can bind ATP. In Drosophila, NPM1 can also function as a chromatin 

remodeler, and its specific association with CENP-A hints at a functional relevance 

in CENP-A maintenance (Ito et al., 1996, Chang et al., 1998). In my pull-down 

experiments, NPM1 was enriched but not very significant for CENP-A interaction. 

This is not surprising considering the histone H3 chaperone activity of NPM1. 

However, NPM1 was already identified as a direct interactor of CENP-A with 

unknown function and a promising candidate for centromere anchoring (Foltz et 

al., 2006). NPM1 functions in a variety of cellular processes, including DNA repair, 

transcription, ribosome biogenesis, or centrosome duplication, and is 

predominantly located to the nucleolus (Lindstrom, 2011). A hypothesis of how 

NPM1 is able to act in such a diverse manner is that it is regulated by PTMs, 

variants, or through interaction with other proteins, including members of the 
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NPM family (Frehlick et al., 2007). In a yeast two-hybrid screen, a major binding 

partner of NPM1 was its protein family member nucleoplasmin 3 (NPM3) (Huang 

et al., 2005). NPM3 was highly abundant and significant for CENP-A in my 

experiments, especially during DNA-replication. Interestingly, when NPM1 is in 

complex with NPM3, the ribosomal biogenesis activities of NPM1 are decreased. 

Whether the histone chaperoning properties of the NPM1-NPM3 complex are 

increased upon interaction is not known. In Drosophila, the oligomerization of 

NPM homologs is necessary for centromere targeting (Anselm et al., 2018). Here, 

the proteins show a distinct pattern, filling the loci in between CENP-A containing 

chromatin domains, which revealed distinct centromeric subdomains (Anselm et 

al., 2018). The functionality and influence of these observations is matter of 

ongoing research and should be addressed in future experiments.  

Related to chromatin remodelers are proteins involved in transcriptional 

regulation. Among the most significant and abundant interactors of CENP-A over 

the time-course of my pull-down experiments was ZBTB9, a zinc-finger and BTB 

domain-containing protein. Though highly conserved, not much is known about 

this protein. In my ChIP experiments, it showed a very high significance for CENP-

A and similar abundances as the CCAN members (Figure 45). BTB domains are 

very common for zinc finger motif-containing proteins and mostly induce protein 

dimerization. Many of the proteins containing a BTB domain are transcriptional 

regulators, acting on chromatin structure (Zollman et al., 1994). The zinc finger 

motif, first identified as DNA sequence binding, are small protein motifs that exist 

in a large variety (Klug, 2010). A vast majority of zinc finger motifs function as 

interaction modules that bind RNA, DNA, amino acids, or other small molecules 

(Klug, 2010). Their modular organization and variations in structure primarily 

serve to alter the binding specificity of the protein containing these motifs (Klug, 

2010). Between the N-terminal BTB domain and the C-terminal Zinc finger motif, 

ZBTB9 contains a stretch of acidic amino acids that might mediate an interaction 

with basic proteins such as histones. Thus far, the only protein of human inner 

kinetochores that is capable of binding DNA in a sequence-specific manner is 

CENP-B, which binds a 17 bp DNA motif, called ‘CENP-B box,’ that exists in every 

other -satellite DNA (Tanaka et al., 2001). The DNA-binding domain of CENP-B 

is located in the N-terminus, while the C-terminal end of the protein consists of 

highly acidic amino acids (Tanaka et al., 2001). While unconfirmed, it is very likely 

that this domain of CENP-B mediates the direct interaction with the N-terminal 

tail of CENP-A (Fachinetti et al., 2015). Like CENP-B, ZBTB9 has, therefore, the 
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potential to recruit histones in a DNA sequence-specific manner to support 

centromere stabilization downstream of CENP-B dependent CENP-A recruitment, 

especially in chromatin domains lacking ‘CENP-B-boxes’. Thus, it is very tempting 

to further validate ZBTB9 sequence and interaction specificity by pull down 

experiments and EMSA to test -satellite DNA specificity. Furthermore, it would 

be interesting to knock down ZBTB9 by RNAi and investigate CENP-A 

incorporation and maintenance over the cell cycle. Using high resolution 

microscopy, it would be feasible to investigate the localization of ZBTB9 to see 

whether it is a constitutive interactor of human inner kinetochores. 

A second zinc finger motif-containing protein, ZN562, is particularly interesting 

as it is highly significant and enriched during DNA-replication and in late S-phase, 

when centromeres are replicated (Nechemia-Arbely et al., 2019). Remarkably, 

CENP-A is retained to the exact sites of -satellite DNA before and after 

replication (Nechemia-Arbely et al., 2019). Hence, DNA-replication not only 

functions to duplicate the genetic information but retains the specificity of 

chromatin domains by removing CENP-A from ectopic sites during early and mid- 

S-phase (Nechemia-Arbely et al., 2019). Ectopic sites of CENP-A incorporation 

would cause major problems for the cells, as shown in multiple cancer cell lines 

(Hasson et al., 2013, Zhang et al., 2016, Sun et al., 2016). These chromatin sites 

containing CENP-A nucleosomes were also able to recruit CCAN components and 

act as functional centromeres during mitosis, which are therefore not solely 

responsible for retaining CENP-A during S-phase (Lacoste et al., 2014, Gascoigne 

et al., 2011, Van Hooser et al., 2001). The mechanism of how this highly specific 

retention of centromeric proteins is achieved is not comprehensively understood. 

Thus far, it has been shown that knock-down of the CENP-A chaperone HJURP in 

early S-Phase reduces CENP-A retention during replication (Zasadzinska et al., 

2018). HJURP also interacts with MCM2 of the MCM complex in a histone 

independent manner, indicating a co-chaperone function during DNA-replication. 

MCM2 was shown to evict the histone dimers H3-H4 as well as CENP-A-H4 and 

promote parental histone positioning to the lagging strand after the replication 

fork in cooperation with ASF1 (Petryk et al., 2018, Huang et al., 2015). Since 

neither of these proteins has centromere specificity and HJURP binds CENP-A 

and not centromeric DNA, the uncharacterized protein ZN562 with its zinc finger 

motif could provide protein and/or DNA sequence specificity to achieve this 

accuracy of CENP-A redeposition. 
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Another protein that was significantly enriched for CENP-A in my pull-down 

experiments was NC2B, also known as DR1, which acts in several protein 

complexes. DR1 forms a heterodimer with DRAP1, which can associate with TATA-

box Binding Protein (TBP) to repress the transcription of class II genes (Goppelt 

et al., 1996). Thereby, the DR1/DRAP1 heterodimer has a direct binding affinity 

for DNA and can affect the DNA conformation via histone fold domains. In the 

absence of DRAP1, DR1 also interacts with the ATAC complex, which has histone 

H3 acetylation activity (Wang et al., 2008). In vitro, the ATAC complex 

preferentially acetylates both free and nucleosomal histone H3. However, it has no 

activity towards H4 (Wang et al., 2008). Interactors of the ATAC complex are, 

among others, DPOE3 and DPOE4 (Wang et al., 2008). Thus, the DPOE3/DPOE4 

or DPOE3/Chrac1 histone fold dimers may act in either of the Pol, ATAC, or 

CHRAC complexes in DNA, centromere, and/or nucleosome specific manner 

(Wang et al., 2008). Furthermore, ADA3 of the ATAC complex is a direct 

interactor of CENP-B and has a role in centromere regulation (Mohibi et al., 2015). 

Knock down of ADA3 may result in a change of the acetylation state of histone H3 

and non-histone proteins and therefore impairs CENP-A incorporation in G1 

(Mohibi et al., 2015). Since NC2B is enriched in single thymidine arrested and 

released HeLa cells, expressing CENP-A, over the course of DNA-replication, I 

hypothesize that the ATAC complex acts complementary to the association of 

KAT7 with the MIS18 complex and acetylates histone H3 for CENP-A deposition. 

As a histone “reader” and “writer,” ATAC may maintain the acetylation marks 

during DNA-replication. This is underlined by the direct interaction of ATAC with 

CENP-B, which resulted in CENP-B diminishing and chromosome segregation 

defects upon ATAC knock down in mouse embryonic fibroblasts and immortalized 

breast cancer cells (Mohibi et al., 2015). Whether the ATAC complex also has an 

impact on histone redeposition during DNA-replication or modifies kinetochore 

proteins is not known. 

An interesting candidate involved in acetylation patterns and recruitment of 

chromatin remodeling complexes that is enriched for CENP-A ChIP experiments 

during G1-phase is the AT-rich DNA sequence binding protein - SATB1 (Yasui et 

al., 2002). In particular, it was shown that in vitro SATB1 directly interacts with 

BAZ1A and SMARCA5 and is, therefore, a targeting factor of the CHRAC complex 

specific proteins (Yasui et al., 2002). Bearing this feature, it is assumed that SATB1 

links higher-order chromatin packing to gene regulation by guiding several 

chromatin remodeling factors to entry sites of chromatin at regions with high base 
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unpairing propensity for a mechanism of global transcriptional regulation (Yasui 

et al., 2002). Therefore, it might also direct higher-order chromatin structure 

formation in the centromeric region. SATB1 also recruits HDACs to maintain a 

hypoacetylated state of the chromatin, which is required for constitutive 

heterochromatin (Yasui et al., 2002, Casas-Delucchi et al., 2012). While 

kinetochore architecture and microtubule attachment are well studied, less is 

known about centromere organization and chromatin structure. In fact, 

centromeres have been described to be distinct from bulk chromatin structures 

and are forming a linear chromatin structure termed ‘centrochromatin’ (Sullivan 

and Karpen, 2004, Lam et al., 2006, Bergmann et al., 2011). Whether this distinct 

higher-order chromatin structure of centromeres enables to withstand the forces 

of chromosome segregation is unknown as well as how this chromatin structure is 

established. Whether SATB1 plays a role in this organizational process remains to 

be investigated. 

The transcriptional repressor SETDB1 was significantly enriched for CENP-A in 

late S-phase (Wang et al., 2000). SETDB1 acts as a histone methyltransferase that 

specifically tri-methylates lysine 9 of histone H3 (H3K9me3), which is a mark of 

silent chromatin (Martins et al., 2016). In particular, the centromeric domain is 

flanked by pericentromeric heterochromatin that is enriched for H3K9me3 

(Martins et al., 2016, Sullivan and Karpen, 2004). H3K9me3 induces 

transcriptional repression by recruitment of heterochromatin factor HP1, which 

also is abundant in my experiments. HP1 generates a highly compact chromatin 

structure, most likely by linking several nucleosomes, in a process that is not 

comprehensively understood (Jenuwein and Allis, 2001). Previous studies 

reported that tethering of SETDB1 to alphoidtetO-HAC sites reduced CENP-A levels 

(Shono et al., 2015, Cardinale et al., 2009, Nakano et al., 2008, Ohzeki et al., 2012). 

A similar reduction of CENP-A levels was observed for HDAC4, which was highly 

enriched and significant for CENP-A in G1-phase in my experiments (Shono et al., 

2015, Hassig and Schreiber, 1997). As mentioned earlier, histone acetylation is an 

important mark for centromere maintenance and histone turnover during G1-

phase. HDAC4 might, therefore, be involved in these critical roles of CENP-A 

inheritance. Interestingly, a microscopy-based genetic screen of CENP-A also 

identified HDAC4 as an important factor in CENP-A maintenance of ‘old’ 

nucleosomes at the centromere (Mitra et al., 2020a). This suggests an unknown 

role in CENP-A maintenance for these chromatin-modifying proteins that might 

be investigated in future experiments.  
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In addition to transcription factors, I found several chromatin-modifying proteins 

enriched in centromere ChIP experiments. Importantly, for CENP-A deposition, 

the MIS18 complex has been shown to directly interact with CENP-C, DNMT3A, 

and DNMT3B and to enhance DNA methylation within centromeric chromatin 

and CENP-A assembly (Gopalakrishnan et al., 2009). DNA methylation as a 

heritable mark of transcriptional repression and has also been shown to be 

important for chromatin structure and genome stability, especially during mitosis 

(Gopalakrishnan et al., 2009). Methylation is generally mediated by the genome-

wide collaboration of the three DNA-methyltransferases DNMT1, DNMT3A, and 

DNMT3B (Goll and Bestor, 2005). In my experiments, DNMT3A and B were 

significant for CENP-A interaction in early S-Phase. This aligns with the 

observation that DNMT3B is interacting with the CCAN protein CENP-C 

(Gopalakrishnan et al., 2009). The knock down of either protein resulted in 

increased chromosome misalignment and transcription of the centromeric DNA 

region (Gopalakrishnan et al., 2009). Also, cancer cells showed elevated 

expression of alternatively spliced DNMT3 versions that lack the N-terminal 

CENP-C binding region (Ostler et al., 2007). This could result in altered 

methylation patterns, which in turn causes genomic instabilities, predisposing to 

cancer. Epigenetic determination of the centromere plays a pivotal role in cell 

viability since -satellite DNA lacks consensus sequences. Bearing in mind that 

methylation patterns of both, DNA and histones, are important for genomic 

stability transcriptional regulation and chromatin structure, DNMT3A, and B de-

novo methylation might be of significant importance to establish a dense 

centromeric chromatin structure by recruiting factors like condensin or HP1 

(Gopalakrishnan et al., 2009).  

Besides the MIS18 complex and CENP-C, DNMT3A and B may be recruited by 

UHRF1, which is slightly enriched with CENP-A in my experiments and has a role 

in the progression of replication of heterochromatic DNA regions in S-Phase 

(Arima et al., 2004, Papait et al., 2007, Bonapace et al., 2002). UHRF1 is an E3 

ubiquitin ligase, bridging DNA methylation, and chromatin modification and 

ensures faithful propagation of DNA methylation patterns through DNA 

replication (Bostick et al., 2007). The role of UHRF1 is presumably to restore a 

heterochromatic state important for the higher-order structure of 

‘centrochromatin’ after replication fork passage (Arima et al., 2004, Bonapace et 

al., 2002, Papait et al., 2007). 
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CENP-A ubiquitination on lysine 124 (CENP-AK124ub) is an important histone 

maintenance mark and indispensable for cell viability (Niikura et al., 2019). This 

histone mark was found to be mediated by the CUL4A-RBX1-COPS8 E3-ubiquitin 

ligase complex by RNAi mediated knock down experiments (Niikura et al., 2015). 

The CENP-AK124ub is epigenetically inherited through dimerization in a 

templated process after new CENP-A is deposited and before the next round of 

deposition in G1-phase (Niikura et al., 2016). In my experiments, CUL4A and B 

were identified in H3.3 and CENP-A experiments. However, CUL4B was 

significantly enriched in CENP-A pull-down experiments in mid-S-phase after 3 

hours of release before replication of the centromere. CUL4A and CUL4B share 

84% sequence identity and act in the same pathways, which suggests redundant 

or overlapping function (Higa et al., 2003). Both, CUL4A and CUL4B interact with 

RBX1/ROC1 via their C-terminal RING domains. Here, CUL4 is thought to be a 

scaffold protein that acts in multiple cullin-RING-based E3 ubiquitin-protein 

ligase complexes. With the N-terminal region, the CUL4 proteins interact with 

several adaptor proteins that achieve substrate specificity. One of these is DNA 

damage-binding protein 1 (DDB1), which was shown to be constitutively 

associated with centromeric DNA in a proteomic analysis (Obuse et al., 2004). 

However, knock down of DDB1 did not affect CENP-A maintenance in HeLa cells 

(Niikura et al., 2015). In contrast, the depletion of COPS8 resulted in reduced 

CENP-A localization (Niikura et al., 2016, Niikura et al., 2015). As CUL4A and B 

are constitutively associated with H3.3 as well as CENP-A, I hypothesize that 

CENP-A along with histone H2A, H3, and H4 is ubiquitinated during S-phase, 

since a ubiquitination activity of the CUL4 proteins was also observed on these 

histones (Guerrero-Santoro et al., 2008, Wang et al., 2006). The ubiquitination of 

CENP-A is conserved in budding yeast, which is mediated by the E3 RING finger 

ligase Psh1 (Hewawasam et al., 2010). Given the importance of this mark, in 

budding yeast, ubiquitination underlies a control mechanism that involves 

ubiquitin protease Ubp8 (Canzonetta et al., 2015). Correspondingly, there are 

observations that suggest a similar control mechanism in humans, as CENP-A 

K124 is acetylated at the transition from G1-/S-phase (Bui et al., 2012). This 

covalent modification might “prime” CENP-A for the ubiquitination mark and 

blocks lysine 124 for ubiquitination before the next G1-phase (Niikura et al., 2015). 

As lysine 124 is acetylated at the transition of G1-/S-phase, this would necessitate 

a ubiquitin protease similar to budding yeast (Bui et al., 2012, Canzonetta et al., 

2015). A candidate for de-ubiquitination that is specifically enriched with CENP-
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A in my experiments is USP10, a hydrolase that can remove conjugated ubiquitin 

from target proteins.  

Ordered nucleosome disassembly and reconstruction is a required trait during 

DNA replication. To achieve this, several chromatin acting factors are necessary. 

Among these factors are histone chaperones, by promoting specific histone-DNA 

and histone-histone interactions in an ATP-independent manner. While an intact 

nucleosome is stable enough to halt transcription and replication machineries at 

the DNA elongation step during S-phase, histones have to be evicted before and 

reassembled after the passage of replication forks (Bondarenko et al., 2006). The 

pivotal histone chaperone Facilitates Chromatin Transcription (FACT) was 

initially identified in HeLa cells and is conserved in all eukaryotes (Gurova et al., 

2018). Human FACT is a heterodimer comprised of the multi-domain proteins 

SPT16 (Suppressor of Ty 16) and SSRP1 (Structure-Specific Recognition Protein 1) 

(Orphanides et al., 1999). Initially, FACT was identified for its role during 

transcription, to allow RNA polymerase II (RNAPII) to progress through 

nucleosomes while preserving nucleosome integrity (Belotserkovskaya et al., 

2003). In Drosophila, RNAPII was required for CENP-A deposition (Chen et al., 

2015). In this process, FACT interacts with CAL1 (the functional HJURP homolog 

in Drosophila) to drive the DNA-sequence independent transcription of RNAPII 

(Chen et al., 2015). In earlier pull-down experiments as well as my time resolved 

analysis, FACT was stably associated with CENP-A nucleosomes (Foltz et al., 

2006). In my experiments, the interaction was most significant during G1-phase, 

when CENP-A is deposited and most abundant in late S-phase, when the 

centromeric chromatin is replicated. In budding yeast, FACT facilitates PTM of 

CENP-A. In Drosophila, it probably has a direct role in CENP-A deposition, while 

in chicken, it is required for CENP-A localization (Okada et al., 2009, Deyter and 

Biggins, 2014, Chen et al., 2015). This indicates that FACT has a conserved role 

during CENP-A deposition and redistribution (Chen et al., 2015). Furthermore, it 

appears that FACT has a role in restricting CENP-A occupancy to centromeres 

(Choi et al., 2012, Deyter and Biggins, 2014). FACT can interact with the H3-H4 

tetramer with several domains and increases nucleosome accessibility, even in the 

absence of H2A and H2B (Xin et al., 2009). Most likely, FACT acts as a nucleosome 

destabilizer to allow RNAPII passage, which in turn interacts with the CENP-A 

specific histone chaperone (Hondele and Ladurner, 2013). However, which of 

these features would enable FACT to discriminate between histone variants and 

especially centromeric nucleosomes is an intriguing question to be tackled in 



5. A Time-Resolved Proteomic Analysis of the Human Centromeric Chromatin 

5.4 Discussion   | 137 

future experiments. It also remains elusive whether the transcripts of RNAPII 

produced during CENP-A maintenance are a byproduct of chromatin re-

organization or are important specifiers of centromeric identity (Quenet and 

Dalal, 2014, Rosic et al., 2014, Topp et al., 2004). 

Finally, the mismatch repair proteins MSH2 and MSH6 were highly abundant and 

significant, especially in early S-phase in my ChIP experiments. These proteins 

also led to a reduced CENP-A maintenance in a recent microscopy-based RNAi 

screen (Mitra et al., 2020a). MSH2 forms a heterodimeric complex with MSH6, 

which is the most abundant mismatch-binding factor and also known as MutS as 

part of the post-replicative DNA mismatch repair system (MMR) (Jiricny, 2006). 

Interestingly, MutS has been shown to exclude nucleosomes and to counteract 

histone H3 chaperones HIRA and CAF1 chromatin assembly activity in Xenopus 

egg extracts (Terui et al., 2018). This could potentially exclude the replication-

independent histone deposition from centromeric chromatin and support the cell 

cycle-specific deposition of CENP-A exclusively during early G1-phase. Whether 

the MutS specifically interacts with the centromere may be validated either by 

ChIP-seq of MSH2 or MSH6 or a centromere-specific qPCR. Also, it would be 

interesting to investigate whether a conditional knock down of MSH2 or MSH6 

results in atypical CENP-A deposition or loss of centromeric identity.  

The setup of the CENP-A specific interactome presented herein allows to 

differentiate between different cell cycle stages and, therefore, between proteins 

associated with CENP-A during the deposition in G1-phase and DNA-replication 

in late S-phase (4hours after thymidine release). I, therefore, summarized and 

incorporated the candidates identified in this study in the CENP-A deposition and 

redistribution pathway in the following model, which is based on the prevailing 

literature (Figure 46). After mitosis, when CDK activity decreases, the Mis18 

complex is recruited to centromeres by association with CENP-C and leads to 

acetylation of CENP-A proximal histone H3 by Kat7 and potentially Kat6b and the 

ATAC complex. The acetylation mark of H3K14ac is recognized by BAZ1B, which 

assembles the B-WICH complex, potentially exchanging H3 for CENP-A. These 

nucleosomes are subsequently stabilized and spaced by the RSF complex. 

At the beginning of S-phase, while CDK activity is still low, DNMT3A/B associate 

with the MIS18 complex to methylate centromeric DNA to establish a 

transcriptionally repressed state that also induces the higher-order structure of 
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‘centrochromatin.’ As S-phase commences, also PTMs of centromeric histones are 

propagated, priming the chromatin state for inheritance during DNA replication. 

Among these may be ubiquitination by CUL4, acetylation by the ATAC complex, 

or ATP-dependent remodeling by NPM1-NPM3 and other chromatin factors. 

When the replication machinery arrives at the centromere, the nucleosomes are 

disassembled in a process that involves the MCM2-7 helicase. The chromatin is 

disrupted by ATP-dependent remodeling complexes and the MCM2-7 helicase, 

which results in the eviction of parental histones. The disassembly of chromatin 

may be aided by the interaction of histone chaperones FACT and ASF1 with the 

MCM2-7 complex, which also results in the separation of H2A-H2B dimers and 

(H3-H4)2 tetramers. In this process, ASF1 is chaperoning H3-H4, splits tetramers 

into dimers, and associates them to CAF1 for deposition to either the leading or 

lagging strand after the replication fork. CAF1 is tethered to either strand by 

interaction with PCNA. A semi-conservative deposition of parental histones may 

be promoted by MCM2, and, speculatively for CENP-A, the CHRAC chromatin 

remodeling complex, which might be tethered to the replication fork directly. 

Newly synthesized H3-H4 dimers are likewise delivered to CAF1 by ASF1. For 

H2A-H2B, FACT would facilitate the retention of parental histone dimers, and 

NAP1 handles newly synthesized H2A-H2B dimers. The epigenetic marks of 

centromeric chromatin are restored by the interplay of several chromatin factors, 

which eventually reestablish the higher-order chromatin structure of the 

‘centrochromatin.’ 
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Figure 46. Schematic Overview of the CENP-A Deposition and 

Redistribution Pathway in G1 and S-phase, Respectively.  

Towards the end of mitosis, when CDK levels begin to drop, the MIS18 

complex assembles on CENP-C. Acetyltransferases like Kat7 and potentially 

KAT6B are recruited to earmark histone H3.3 in the vicinity of CENP-A 

containing nucleosomes. The acetyl mark of histone H3.3 recruits chromatin 

remodeling machineries like B-WICH that promotes the exchange of histone 

H3 for CENP-A. Afterward, RSF and Mgc-RacGap stabilize and space the 
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deposition of the new CENP-A at the centromere. Subsequently, the chromatin 

has to be organized in a translationally repressed, heterochromatic state, 

probably by centromere-specific PTMs. The important ubiquitination mark of 

CENP-A K124ub is mediated and maintained by CUL4 during early S-phase. 

When the replication machinery arrives, nucleosomes are disassembled before 

and reassembled into chromatin after the replication fork. This happens in a 

semi-conservative manner distributing the histone dimers to the leading and 

lagging strand in a process that is not well understood but potentially involves 

the Chrac chromatin remodeling complex.  

It should be noted that the candidates reported in this part of my thesis remain to 

be validated for their role in CENP-A dynamics before a putative function or 

mechanism can be claimed in centromere biology. Therefore, I propose a 

microscopy-based RNAi screen of the candidates presented in this work (Bodor et 

al., 2014). Analyzing the CENP-A associated proteins in vivo by knock down 

experiments would further reveal the importance of centromere associated 

proteins in chromatin biology and will help to understand the impact of the CENP-

A protein environment comprehensively. In this part of my thesis, I presented the 

identification of a variety of proteins that previously have only vaguely been 

associated with centromere function or CENP-A maintenance. These candidates 

act selectively for CENP-A while some bind constitutively, and some bind the 

centromeric region at distinct moments during the cell cycle. This underlines the 

dynamic nature of centromeric chromatin. The identification of these CENP-A 

interacting proteins serves as a source for further investigation to elucidate the 

dynamics of CENP-A deposition, maintenance, and centromeric inheritance.  
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 Materials and Methods 

5.5.1 Materials 

5.5.1.1 Devices 

Description      Supplier 

-20°C freezer      Liebherr 

-80°C freezer      Eppendorf 

4°C fridge      Liebherr 

37°C incubator (bacteria)    Binder 

37°C (human cells)     Thermo 

Centrifuges      5424R, Eppendorf 

       5810R, Eppendorf 

       EvolutionRC, Sorvall 

Cell Counter      Vi-Cell XR, Beckmann Coulter 

Chromatography Systems    Äkta Pure25, GE-Healthcare 

       Äkta micro, GE-Healthcare 

       Äkta start, GE-Healthcare 

       Äkta explorer10, GE-Healthcare 

       Easy-nLC 1000, Thermo 

Developer machine     Amersham Imager 600, GE-

Healthcare 

Dounce homogenizer     Satorius 

Gel documentation system    Intas GelDoc 

Hood       BDK 

Incubation shaker (37°C)    New Brunswick 

Magnetic separation rack    NEB/ Permagen 
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Mass Spectrometer     Orbitrap Elite, Thermo 

Mini Trans Blot cell     BioRad 

pH meter      Mettler 

Pipetboy      Integra 

Pipettes       Gilson 

Protein gel chamber     BioRad 

Rotating wheel      Sunlab 

Scales       Sartorius 

Sonicator      Branson 

Spectrophotometer     NanoDrop 2000c, Thermo 

Thermomixer      Thermomixer comfort, 

Eppendorf 

Thermomixer C, Eppendorf 

Vortex        Bender&Hobein AG 

5.5.1.2 Chemicals and Consumables 

Description      Supplier 

1.5 ml reaction tubes     Sarstedt 

2 ml reaction tubes     Sarstedt 

1.5 ml low binding tubes (DNA and protein)  Sarstedt 

15 ml and 50 ml tubes     Sarstedt 

Acetic acid      Sigma-Aldrich 

Acetonitrile      Honeywell 

Agarose       Biozym 

Ampicillin (Amp)     Roth 

Blasticidin S HCl     Thermo 

LB Agar      VWR 
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BSA 98%      Sigma-Aldrich 

C18 cartridges, Sep-Pak    Waters 

CaCl2       Sigma-Aldrich 

Cell culture plates     Thermo 

Complete Protease Inhibitor Cocktails Tablets (PI) Roche 

Coomassie Brilliant Blue    Sigma-Aldrich 

Cryovials      Th.Geyer 

Developer      AGFA 

Deoxycytidine      Sigma 

DMEM       Thermo 

DMSO       Sigma-Aldrich 

DNA oligonucleotides     Sigma-Aldrich, Metabion 

dNTP mix      NEB 

DTT       Roth 

Dynabeads Protein G     Thermo 

ECL Western Blotting detection reagents  Amersham 

EDTA       Roth 

EGTA       Roth 

Ethanol, absolute     Roth 

FCS       Thermo 

Filter paper Whatman 3MM    Whatman 

Filter tips      Star Lab 

Formic Acid      Fisher 

Formaldehyde (37%)     Roth 

GelRed       Biotrend 

Glycerol      Roth 
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Glycine       VWR 

Halt™ phosphatase inhibitor    Thermo 

HEPES       Sigma-Aldrich 

Hygromycin B      Thermo 

IPTG       Roth 

Isoamyl alcohol      Merck 

Kanamycin sulfate (Kan)    Roth 

KCl       Roth 

Lipofectamine LTX     Thermo 

Lovastatin      Selleckchem 

MaXtract High Density Column    Qiagen 

ß-mercaptoethanol     Sigma 

Methanol      Sigma 

MgCl2       Roth 

NaCl       Roth 

NP-40       Sigma 

Opti-MEM Reduced-Serum Medium    Thermo 

Phenol/chloroform/isoamylalcohol   Roth 

Pipette tips       Star Lab 

Ponceau S solution      Sigma 

Protein gels - precast      BioRad 

Nitrocellulose Transfer Membrane    Merck 

Silver nitrate      Roth 

Sodium Dodecyl Sulfate (SDS)    Serva 

Thymidine      Roth 

Trifluoroacetic acid (TFA)    Thermo 
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Tris       Roth 

Triton X-100      Sigma 

Trypsin/EDTA (cell culture)     Sigma/ Thermo 

Tween20      Sigma 

Water (MS-grade)     Honeywell/ Fisher 

X-ray films      Amersham 

Zeocin       Thermo 

5.5.1.3 Kits, Enzymes, Markers and Antibodies 

Description      Supplier 

50 bp ladder      NEB 

1 kb ladder      NEB 

Broad range Protein Marker    NEB 

Gateway BP clonase enzyme mix    Thermo 

Gateway LR clonase II enzyme mix   Thermo 

Gel extraction Kit     Macherey-Nagel 

Midiprep Kit      Macherey-Nagel 

Micrococcal nuclease (MNase)    Roche 

NucleoSpin® Plasmid EasyPure Kit   Macherey-Nagel 

Lysyl Endopeptidase (LysC)     Wako 

Phusion High Fidelity DNA polymerase   NEB 

Proteinase K      Thermo 

RNase A      Thermo 

Trypsin       Promega 

Q5 DNA Polymerase     NEB 

Q5 site-directed mutagenesis kit    NEB 

Restriction endonucleases     NEB 
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Taq DNA Polymerase     NEB 

5.5.1.3.1 Antibodies 

Name (product #)  Supplier  Application 

 Dilution 

Mouse α-CENP-A (ab13939) Abcam   WB  

 1:10000 

Mouse α-HA (115838160001) Roche   WB   1:8000 

Mouse α-Tubulin (T6199) Sigma   WB   1:2000 

α-mouse IgG-HRP (SC2005) Santa Cruz  WB  

 1:10000 

Mouse α-Flag M2 (F1804) Sigma   IP (see M23)  1:2.5 

5.5.1.4 Plasmids 

Name   Source  Description   Marker 

pOG44   Thermo  Expression of Flp recombinase Amp 

pDONOR221  Thermo  Entry plasmid for gateway cloning Kan 

pDONOR221-CENP-A this thesis Entry plasmid     Kan 

carrying full length CENP-A 

pDONOR221-H3.3 this thesis Entry plasmid     Kan 

carrying full length H3.3 

pEWS   Herzog et al. Expression plasmid   Amp 

for FlpIN T-Rex system (Thermo) 

N-term Twin-Strep-HA-tag-6xHis-GOI 

pEWS-Nfl  this thesis modified from pEWS   Amp 

N-term 6xFlag-tag-HA-tag-6xHis-GOI 

pEWS-Nfl-CENP-A this thesis Expression plasmid,   Amp 

carrying full length CENP-A in frame 

pEWS-Nfl-H3.3  this thesis Expression plasmid,   Amp 
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carrying full length H3.3 in frame 

5.5.1.5 Oligonucleotides 

Name 3’-Sequence-5’ Description 

OGH18 TAAAGATGATGATGATAAAGATTATAAAGATG

ATGATGATAAAGGACATCACCATCACCATCAC 

Forward Primer 

Introduction of 3xFlag in 

pEWS 

OGH19 TAATCTTTATCATCATCATCTTTATAATCCGCGC

CTCCGGCGCCACCGGCATAGTCAGGAACATC 

Reverse Primer 

Introduction of 3xFlag in 

pEWS 

OGH141 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAG

CTCGTACCAAGCAGACTGC 

Forward Primer Cloning 

of H3.3 into pDONR221 

OGH142 GGGGACCACTTTGTACAAGAAAGCTGGGTCTT

ACGCCCTCTCCCCACG 

Reverse Primer Cloning 

of H3.3 into pDONR221 

OGH145 TCTCCGTCGTCAGGATCATCCCACCACCACCAC

CACCACGGATC 

Forward Primer Cloning 

of CENP-A into 

pDONR221 

OGH146 CCGCCGTCGTCGACAAGCCGGCATGGTGGCCT

TAAGTTAAACG 

Reverse Primer Cloning 

of CENP-A into 

pDONR221 

5.5.1.6 Cell Lines, Yeast- and Bacterial-Strains 

5.5.1.7 Human Cell Lines 

Cell line   Origin     Source 

HeLa FlpIN T-Rex   cervical cancer    Thermo 

1B12 – Nfl-CENP-A  cervical cancer    this thesis 

4C07 – Nfl-H3.3  cervical cancer    this thesis 
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5.5.1.8 E.coli Strains 

Strain Genotype Supplier 

E.coli DH5a fhuA2 Δ(argF-lacZ)U169 

phoA glnV44 Φ80 

Δ(lacZ)M15 gyrA96 recA1 

relA1 endA1 thi-1 hsdR17 

NEB 

E.coli DH5a-T1R F- φ80lacZ∆M15 ∆(lacZYA-

argF)U169 recA1 endA1 

hsdR17(rk - , mk + ) phoA 

supE44 thi-1 gyrA96 relA1 

tonA 

Thermo 

5.5.1.9 Software 

Application    Software 

Image Processing   Adobe Photoshop CS6 

     Adobe Illustrator CS6 

Primer Design    Benchling (web-browser based) 

Protein identification   MaxQuant (vers.1.6.5.0) 

     Xquest (vers.1.2.3) 

     OpenMS (vers.2.1.0) 

Statistical Analysis   R Studio / R (3.0.2) 

Sequence Alignment   ClustalW, ClustalOmega 

5.5.1.10 Buffers 

Ampicillin stock solution   100 mg/ml Ampicillin (1000x) 

Blocking solution    5% Milk powder (w/v)  

TBS + 0.1 % Tween20 

Coomassie staining solution    10% Acetic acid (v/v) 

      50% Methanol (v/v) 
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      0.1% Coomassie Brilliant Blue (w/v) 

Coomassie destaining solution   10% Acetic acid (v/v) 

      30% Methanol (v/v) 

4x Laemmli loading buffer   250 mM Tris 

(adjust pH to 6.8 with HCl)   40% Glycerol (v/v) 

      8% SDS (w/v) 

      20% beta-Mercaptoethanol (v/v)  

      0.01% Bromphenol blue 

SDS-PAGE running buffer   25 mM Tris 

      192 mM Glycine 

      0.1% SDS (w/v) 

LB Agar plates     1.5% LB Agar 

LB medium     1.0% Tryptone (w/v) 

      0.5% yeast extract (w/v) 

      1.0% NaCl (w/v) 

Phosphate buffered saline (PBS)   140 mM NaCl 

      2.7 mM KCl  

      10 mM Na2HPO4 

      1.8 mM KH2PO4 

TBE      45 mM Tris 

      45 mM Boric acid 

      1 mM EDTA 

Transfer Buffer (SDS gel electrophoresis) 48 mM Tris 

      39 mM Glycine 

      0.0375% SDS (w/v) 

      20% Methanol (v/v) 
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TE      10 mM Tris 

      1 mM EDTA 

5.5.2 Methods 

5.5.3 Molecular Biology Methods 

M14. Mutagenesis of pEWS to Generate pEWS-Nfl 

The pEWS plasmid was used to substitute the N-terminal twin strep-tag for a N-

terminal 3xFlag-Tag with the Q5 site-directed mutagenesis kit (NEB). Primer 

pairs, carrying the desired substitution were used for PCR amplification with the 

following conditions:  

Table 1: Composition of reagents for site-directed mutagenesis. 

Template (25 ng/µl) 1 µl 

Primer fwd (10 µM) 1.25 µl 

Primer rev (10 µM) 1.25 µl 

Q5 Hot Start High-Fidelity 2X Master Mix 12.5 µl 

H2O 9 µl 

Total volume 25 µl 
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Table 2: Conditions for site-directed mutagenesis of pEWS 

  Temperature Duration Cycles 

Initial denaturation 98°C 30 s 1 

Denaturation  98°C 10 s 

25 Annealing 57°C 1 min 

Elongation 72°C 3:30 min 

Final Elongation 72°C 5 min 1 

After PCR, 1 µl of the PCR product were subjected to KLD reaction mix (NEB) in 

order to eliminate the parental template DNA not carrying the mutation. Next, 5µL 

of the KLD treated DNA was transformed into competent E. coli DH5a-T1R cells. 

Finally, the isolated DNA of several clones was analyzed by sequencing (Eurofins) 

and the obtained DNA sequence was investigated by the ClustalW sequence 

alignment program in order to determine whether it contains the desired 

mutation. 

M15. Cloning of CENP-A and H3.3 into Entry Vector pEWS-Nfl 

In order to clone histone variants H3.3 and CENP-A into pEWS-Nfl, the vector 

used for expression in HeLa FlpIN T-Rex cells, the DNA was amplified with 

primers containing attL overhangs for gateway cloning (see Table 3, Table 4 and 

6.1.1.5), and cloned into pDONR221 entry vector (Thermo). 
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Table 3: Reagents used for PCR to clone CENP-A and H3.3 into entry vector 

pDONR221. 

CENP-A / H3.3 (1ng/µl) 1 µl 

5x HF buffer 10 µl 

dNTPs 1 µl 

Primer fwd (10 µM) 0.5 µl 

Primer rev (10 µM) 0.5 µl 

Polymerase (Q5) 0.5 µl 

H2O 36.5 µl 

Total volume 50 µl 

 

Table 4: PCR conditions for amplification of Entry mutant constructs. 

  Temperature Duration Cycles 

Initial denaturation 95°C 30 s 1 

Denaturation  95°C 30 s 

30 Annealing 55°C 1 min 

Elongation 72°C 1 min 

Final elongation 72°C 7 min 1 

 

Obtained PCR products were PCR purified and subjected to Gateway Cloning 

according to the manufacturer’s protocol. Briefly, 50-150 ng of the purified PCR 
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product was mixed with 150 ng of pDONR221 vector and filled up to 8 µl with TE 

buffer. 2 µl of BP Clonase enzyme mix (Thermo) was added to this mixture and 

incubated at 25°C for 1 hour. Afterward, 1 µl of Proteinase K was added and 

incubated at 37°C for 10 minutes. Finally, 2 µl of the final mix was transformed 

into competent E. coli cells. DNA of the received bacterial clones was isolated with 

the NucleoSpin Plasmid EasyPure Kit, sent for sequencing (Eurofins), and 

analyzed with the help of the ClustalW sequence alignment program. 

Positive entry clones were subsequently used to generate expression plasmids. To 

do this, 50-150ng of entry vector was mixed with 150ng of pEWS-Nfl expression 

vector and filled to 8µL with TE buffer. 2µL of LR clonase II enzyme mix (Thermo) 

was added to this mixture, briefly mixed, and incubated for 1 hour at room 

temperature. Subsequently, 1µL of Proteinase K was added and incubated at 37°C 

for 1 minute. 2µL of the LR reaction was transformed into 50µL competent E. coli 

cells. DNA of the received bacterial clones was isolated with the NucleoSpin 

Plasmid EasyPure Kit, sent for sequencing, and analyzed with the help of the 

ClustalW sequence alignment program. Positive clones were used to transfect 

HeLa FlpIN T-Rex cells.  

5.5.4 Biochemical and Cell Biology Methods 

M16. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Proteins were separated with 4-20% precast gels from BioRad by SDS-

polyacrylamide gel electrophoresis. NEB and BioRad broad range marker were 

used to determine the size of the respective proteins. Before loading, samples were 

boiled 5-10 min at 95°C in 4x Loading Dye and then ran for approximately 1.5 

hours at 150-235 V. Afterwards, the gel was either used for Coomassie staining, 

Silver staining, or subsequent immunoblotting. 

M17. Coomassie Staining of Polyacrylamide Gels 

In order to visualize proteins separated by SDS-PAGE, the polyacrylamide gel was 

stained for 1 hour or overnight in the Coomassie staining solution. Subsequently, 

the gel was destained in destaining solution or water until the protein bands 

became apparent. After washing the destained gel with water, it was scanned. 
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M18. Silver Staining of Polyacrylamide Gels 

To visualize proteins that were separated by SDS-PAGE, the gel was fixed in a 

fixing solution for 20 minutes. Subsequently, the gel was washed twice in 50% 

ethanol, twice in 30% ethanol, and incubated in 0.02% sodium thiosulfate. The gel 

was washed three times with water for 1 minute and stained with silver nitrate for 

20 minutes. Finally, the gel was developed by the addition of developing solution 

until the protein bands are sufficiently visible. The reaction was stopped by adding 

10% acetic acid, and the gel was stored in water.  

Fixing Solution:  45%  Methanol (v/v) 

   10%  Acetic Acid (v/v) 

Sodium Thiosulfate: 0.8mM  Sodium thiosulfate 

Silver Nitrate:  12mM   Silver nitrate 

   0.04%   Formaldehyde (v/v) 

Developer:  1.5%   Sodium carbonate (w/v) 

   0.016mM Sodium thiosulfate 

   0.03%  Formaldehyde (v/v) 

M19. Immunoblotting 

Polyacrylamide gels were blotted onto a nitrocellulose membrane with a wet 

blotting device. The polyacrylamide gel, a nitrocellulose membrane, and Whatman 

papers were equilibrated for 5 min in transfer buffer prior to the formation of a 

blotting sandwich in the following order: Whatman paper, membrane, gel, 

additional Whatman paper. The sandwich was blotted for 1.5 hours at 400 mA at 

4°C. Subsequently, the membrane was blocked for at least 1 hour in blocking 

solution. The primary antibody was diluted in a blocking solution (see 6.1.1.3.1 for 

details) and incubated overnight at 4°C, followed by three washing steps à 10 min 

with TBS-T the next day. After washing, the membrane was incubated with the 

secondary antibody diluted in blocking solution (see 6.1.1.3.1 for details) and 

incubated for 1 hour at room temperature (RT). Afterward, the membrane was 

again washed three times with TBS-T. Next, respective proteins were detected by 

incubation with ECL detection reagent for 2-10 min. The bands were developed in 
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Amersham Imager600 (GE-Healthcare) blot documentation system in auto 

exposure mode.  

M20. Generation of FlpIN T-Rex HeLa cells expressing H3.3 or CENP-A 

HeLa FlpIN T-Rex cells were cultured, cells cultivated in Dulbecco’s modified 

Eagle medium (DMEM) plus 10% FCS and 4 µg/mL Blasticidin and 10 µg/mL 

Zeocin (before transfection) at 37°C and 5% CO2. To establish FlpIN T-Rex HeLa 

cell lines stably expressing 6xFlag-Ha-6xHis-tagged histone proteins, 1.5 x 105 

cells were seeded into 6-well plates without antibiotics. The following day, the cells 

should have reached a confluency of approximately 70%. 1 µL (80ng/µL) pEWS 

and 1 µL (720ng/µL) pOG44 (Thermo) plasmid DNA was mixed with 0.8µL Plus 

reagent (Thermo). 3 µL Lipofectamine (Thermo) was mixed with 97 µl Opti-MEM 

(Thermo) before this transfection mix was added to the plasmid DNA and 

incubated for 30-45minutes at room temperature. Additionally, one negative 

control sample was set up that contained water instead of plasmid DNA. 

Subsequently, the transfection mix was added dropwise to the cells. The plates 

were mildly shaken to distribute the transfection mix into the cell medium, and 

the cells were then incubated for 48 hours. The cells were trypsinized and 

transferred to a T75 cell culture flask. The following day, cells were selected by the 

addition of 200 µg/mL Hygromycin and 4 µg/mL Blasticidin. The medium was 

changed every 2-3 days. When colonies appeared, the cells were trypsinized, 

singularized, and transferred to a 150mm dish. The cells were grown to confluency, 

split once 1:8, and after reaching 70-90% confluency, the cells were back frozen 

until further use. To do so, trypsinized cells were resuspended in FCS + 10% 

DMSO. Usually, 1 x107 cells were resuspended in 3 ml FCS + 10% DMSO and 

separated into three 1 ml aliquots, transferred to cryovials, and frozen at -80°C. 

For long term storage, cells were relocated to liquid nitrogen. In the case of 

thawing, the frozen cells were put into a 37°C water bath for quick melting, 

transferred to a 150 mm dish, and 20 ml DMEM + FCS was added. 

M21. Protein expression and purification from FlpIN T-Rex HeLa cells 

Three days before harvest, the cells were seeded with ~30% confluency. A 2 

mg/mL doxycycline stock solution was prepared in 95% ethanol. For induction, a 

20 µg/mL working solution was prepared in DMEM. After 24 hours, protein 

expression was induced at ~50% by the addition of doxycycline working solution 

to a final concentration of 1 µg/mL. The cells were incubated to a 95-100% 

confluency and harvested by trypsinization.  
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M22. Cell Cycle Arrest and Arrest/Release of FlpIN T-Rex HeLa cells 

To synchronize cells by single thymidine block, the cells were grown to a 

confluency of ~40-50% before thymidine was added to a final concentration of 

2mM. The cells were incubated for 21 hours before either harvesting (S0h) or 

release. To release the cells, the medium was aspirated, and the cells were washed 

twice with PBS. Subsequently, DMEM containing 24 µM deoxycytidine was added 

for release. The cells were incubated either for 2, 3, 4, or 6 hours before harvesting. 

Synchronization of HeLa cells in early G1-phase was performed with Lovastatin. 

Before synchronization, lovastatin was activated by dissolving 52 mg in 1.04 mL 

ethanol. 813 µL sodium hydroxide (1M) was added and neutralized with HCl (1M) 

to reach pH 7.2. The solution was filled to 13 mL for a 10mM lovastatin stock. To 

synchronize cells, the cells were grown to a confluency of ~40-50% before 

lovastatin was added to a final concentration of 20 µM. The cells were incubated 

for 24 hours before harvesting. Cells were harvested by trypsinization and 

collected on ice. The cells were counted, and 8•107  were aliquoted. The cell aliquots 

were washed twice with PBS and snap-frozen until further use.  

M23. Coupling of Flag-M2 Antibody to Magnetic Beads 

To couple Flag-M2 Antibody (Sigma-Aldrich) to magnetic beads, 5mL of 

Dynabeads Protein-G (novex) were pipetted in a 50mL falcon. The beads were 

washed with HEPES-buffer (25mM HEPES pH 8; 150 mM KCl; 5% Glycerol (v/v); 

0.02% NP-40), collected on a magnetic rack, and the supernatant was aspirated. 

40mL HEPES-buffer containing 2mL of Flag-M2 antibody were pipetted to the 

beads and incubated for 30minutes on a rotation wheel at room temperature. The 

beads were collected on a magnetic rack, the supernatant was aspirated, and the 

beads were washed with 50mL 0.2M Borate (pH 9). Subsequently, the beads were 

crosslinked by adding 50mL Borate (pH 9) containing 250mg DMP (Thermo) and 

incubation for 30min at RT in the dark. The solution was split in half, and the 

reaction was quenched by adding 6.25mL 1M Tris (pH 7.5) and incubated for 

5minutes. The beads were collected on a magnetic rack, washed with wash buffer 

(50mM Tris (pH7.5); 150mM KCl; 5% Glycerol (w/v); 0.02% NP-40) for 

15minutes. The beads were pooled and collected on a magnetic rack before the 

supernatant was aspirated, and 5mL of storage buffer (50mM Tris (pH 7.5); 

150mM KCl; 50% Glycerol (w/v); 0.02% sodium azide) was added and stored at 

4°C. 
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M24. Oligonucleosome Preparation 

The implemented protocol was initially developed by (Sansoni et al., 2014). HeLa 

FlpIN T-Rex cells were harvested, counted with the cell counter, and aliquots of 

8•107 cells were separated into 15 ml falcon tubes, frozen in liquid nitrogen, and 

stored until further use at -80°C. All the following steps were done on ice. A total 

cell count of 1-4•109 cells were thawed in Aliquots and lysed for 10 min with 5 ml 

PBS + 0.3% Triton X-100 + complete protease inhibitors (PI) at 4°C. Nuclei were 

pelleted by centrifugation for 5 min at 2000 rpm and washed in 6 ml PBS + PI. 

Nuclei were resuspended in 500 µl EX100 buffer, CaCl2 was added to a final 

concentration of 2 mM, and the mixture was transferred to a low-binding reaction 

tube. 150 U micrococcal nuclease (MNase) was added to each of the reaction mixes 

and incubated for 16-18h min at 4°C, ~1400rpm. Adding EGTA to a final 

concentration of 10 mM and 0.05% Tween-20 stopped the reaction. Afterward, the 

samples were centrifuged for 30 min at 21130 rcf; the supernatant (S1) was joined 

and used for subsequent analysis (M25). First, 25 µl of S1 were boiled for 5 min at 

95°C in 4x loading dye to serve as input. Second, 25 µl of S1 were subjected to DNA 

extraction (see M25). Finally, the rest was used for chromatin 

immunoprecipitation (ChIP) (see M26). 

EX100 buffer:  10 mM HEPES pH 7.6 

  100 mM KCl 

  1.5 mM MgCl2 

  0.5 mM EGTA 

  10% (v/v) Glycerol 

  10 mM β-Glycerol phosphate 

prior to use: 1 mM DTT 

  1 x Protease inhibitor 

M25. Purification of MNase Digested DNA 

In order to determine the MNase digestion degree, DNA was extracted from the S1 

fraction obtained after MNase digestion (see M24). Initially, nucleic acids were 

isolated by phenol/chloroform/isoamyl alcohol extraction, followed by the DNA 

precipitation by ethanol. First, 175 µl 5 mM Tris-HCl was added to 25 µl S1, then 
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400 µl phenol/chloroform/isoamyl alcohol (ratio 25:24:1) were added, the 

mixture was vortexed and transferred to maXtract tubes (Qiagen). The aqueous 

and organic phases were separated by centrifugation at 13 000 rcf. The aqueous 

phase containing nucleic acids was used for subsequent DNA precipitation: after 

the addition of glycogen to reach a final concentration of 200 µg/ml, sodium 

acetate (final concentration 0.3 M), and 500 µl 100% ethanol, the DNA was 

precipitated for at least 20 min at -20°C. Centrifugation for 20 min at 20000 rcf 

at 4°C pelleted the DNA. The pellet was washed twice with 500 µl 70% ethanol and 

dried at RT for at least 10 min. After drying, the DNA pellet was resuspended in 

30 µl double distilled water (ddH2O). The DNA concentration was analyzed by the 

Nanodrop spectrophotometer (Thermo). 500 ng DNA were analyzed regarding the 

digestion degree on a 2% agarose gel. 

M26. Chromatin Immunoprecipitation (ChIP) of Oligonucleosomes 

Oligonucleosomes from HeLa FlpIN T-Rex cells were prepared as described in 

M20, M21, M22, and M24 and then subjected to immunoprecipitation. All the 

following steps were done on ice or at 4°C. A total cell count of 1-2•109 were used 

for immunoprecipitation with 100µl slurry Flag-M2 conjugated magnetic beads 

(M23). First, 100 µl slurry of Flag-M2 beads were equilibrated in EX100 buffer 

containing 0.05% Tween-20 in a protein and DNA low-binding tube. Next, the S1 

fraction containing the oligonucleosomes was added to the Flag-M2 magnetic 

beads and incubated for 2.5 hours at 4°C on a rotation wheel. The mixture was 

then magnetically separated, and the supernatant was kept as “non-bound.” The 

beads were washed once in 5 ml wash buffer 1 for 5 min and twice in 1mL to 

transfer in a 2mL low binding tube. After washing beads were magnetically 

separated, the supernatant was removed, and the bound proteins were eluted with 

200µl Elution buffer for 2.5 hours at 4°C on a rotation wheel. The mixture was 

then magnetically separated, and 10µl of the supernatant was kept as “Flag eluate.” 

The remaining eluate was added to 30µl of Ni-NTA slurry (Qiagen), prewashed 

twice with wash buffer 1, and incubated for 2 hours at 4°C on a rotation wheel. The 

Ni-NTA beads were washed once in 1 ml wash buffer 1 for 5 min and twice in 500µl 

wash buffer 2. Finally, 30µl of wash buffer 2 was added, 10µl was saved for analysis 

on a silver-stained SDS-PAGE gel (see M16), and 20µl were subjected to protein 

digest.  

Wash buffer 1: 10 mM Tris pH 7.5 

  150 mM KCl 
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  5% Glycerol 

  0.05% Tween-20 

prior to use: 1 mM DTT 

  1 x CPI 

Elution buffer 1: 10 mM Tris pH 7.5 

  150 mM KCl 

  5% Glycerol 

  0.05% Tween-20 

  1mg/ml Flag peptide 

Wash buffer 2: 10 mM Tris pH 7.5 

  150 mM KCl 

  5% Glycerol 

M27. On-Bead Tryptic Digest 

Immunoprecipitated proteins were subjected to on-bead tryptic digestion. To do 

so, the beads were incubated for 20 minutes at 25°C in wash buffer 2. 

Subsequently, the sample was denatured by the addition of two sample volumes 

of 8M urea (Sigma). The sample was reduced by adding 5mM tris(2-

carboxyethyl)phosphine (TCEP, Thermo) for 15 minutes at 35°C shaking and 

alkylated by addition of 10mM iodoacetamide for 30 minutes at room temperature 

in the dark. Proteins were digested with lysyl endopeptidase (Wako) at an enzyme: 

substrate ratio of 1:50 (w/w) at 35°C for 2 hours. The sample was diluted with 

50mM ammonium bicarbonate to a urea concentration of 1M, 1/50 (w/w) trypsin 

(Promega) was added and then incubated at 35°C, shaking overnight. The next 

morning concentrated trifluoroacetic acid (TFA) was added to the reaction to stop 

the tryptic digest to a final concentration of 1%, and acetonitrile was added to a 

final concentration of 3%. The pH was checked with an indicator strip (Merck) to 

be around pH 2 and proceeded to peptide clean-up. 
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M28. Peptide Clean-Up 

Tryptic digested peptides were purified by solid-phase extraction (SPE) using C18 

cartridges (Sep-Pak, Waters). The columns were activated by the addition of 1mL 

100% acetonitrile and washed twice with 3% acetonitrile, 0.2% formic acid before 

applying the sample twice. The column was washed with 3% acetonitrile, 0.2% 

formic acid, and the peptides were eluted by adding 400µL of 60% acetonitrile, 

0.2% formic acid twice. The eluate was lyophilized in a SpeedVac and sored at -

20°C until further use.  

M29. Protein analysis and mass spectrometry 

Liquid chromatography coupled to mass spectrometry (LC-MS/MS) analysis was 

carried out on a Thermo Nano UHPLC 1000 connected to a Thermo Orbitrap Elite 

mass spectrometer, equipped with a standard nanoelectrospray source. 

Lyophilized samples were reconstituted in the mobile phase 

(water/acetonitrile/formic acid, 97/3/0.1). 3.5µL of the digest was injected onto 

an Acclaim PepMap™ RSLC 15cm x 75µm I.D. (Thermo). Peptides were separated 

at a flow rate of 0.3 µL/min, ramping a gradient from 5% to 35% mobile phase B 

(water/acetonitrile/formic acid, 2:98:0.1). The mobile phase was directly applied 

to the mass spectrometer. The spray voltage was adjusted to 1.6-1.9 kV and the 

capillary temperature to 220°C. Data acquisition was performed in ‘data-

dependent mode.’ Precursor ion scan acquired data at 120.000 resolution in the 

range of m/z 250-1800 with an AGC target of 1E06 and an injection time of 20 ms. 

Top10 ion spectra were selected for fragmentation with an isolation window of 5 

m/z and fragmented by CID (Collision Induced Dissociation) with a normalized 

collision energy of 35 % and an activation q of 0.25. Dynamic exclusion was 

activated with a repeat count of 1, an exclusion duration of 30 seconds, a list size 

of 500, and a mass window of ±50 ppm. MS2 spectra were acquired at 10.000 

resolution with an AGC target value of 1E04 ions and 120 ms injection time. 

M30. Raw Data analysis 

RAW data files were searched against the UniProtKB human proteome database 

(Swissprot date of download: July 3rd, 2019) and a database containing frequently 

detected contaminants, using the MaxQuant software (vers.1.6.5.0). Two missed 

cleavages and a protein false discovery rate of 1 % were set as analysis parameters. 

Carbamidomethylation of cysteine residues was defined as fixed modification and 

methionine oxidation and N-terminal acetylation as variable modifications. Label-
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free quantification (LFQ) was set to a minimum ratio count of 1, and Raw files of 

the same cell cycle arrest were analyzed using the match between runs option. 

5.5.5 Bioinformatic Analysis 

M31. Oligonucleosome ChIP Data analysis 

Protein intensities obtained by the software suite MaxQuant of 3 biological 

replicates were extracted, merged by protein name, and loaded to the statistical 

analysis environment Rstudio (vers.1.1.463). Proteins detected in a single replicate 

were eliminated as well as hits to the reverse database, contaminants, proteins 

with one or less razor. Unique peptides and single peptide identifications present 

in at least 1 triplicate were included. LFQ intensities were normalized to the 

peptide count, and log2 transformed. Missing values in the data matrix were 

assigned to values representing a normal distribution close to the detection limit 

of the mass spectrometer. Protein abundances in the CENP-A pulldowns were 

averaged, and the significance of their fold-changes (FC) to the 3 Histone H3.3 

experiments were assessed by a two-sample t-test. Protein identifications were 

identified as true if their enrichment to H3.3 was at least two-fold. Respective p-

values were plotted against their FC differences in volcano plots. 
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8. Abbreviations 

Abbreviation Explanation 

AEBP2 Adipocyte Enhancer-Binding Protein 2 

AP-MS Affinity Purification Mass Spectrometry 

APC Anaphase-Promoting Complex  

ASF1 Anti-Silencing Function Protein 1 

ATP Adenosine Triphosphate 

ATPase Adenosine Triphosphatase 

ATRX Alpha Thalassemia/Mental Retardation syndrome X-
linked 

BAZ1 Bromodomain Adjacent to Zinc Finger Domain 

BS2G Bis-Sulfosuccinimidyl Glutarate 

BSA Bovine Serum Albumin 

BTB Broad-Complex, Tramtrack and Bric a brac 

CAF1 Chromatin Assembly Factor 1 

CAL1 Chromosome Alignment Defect 1 

CATD CENP-A targeting domain 

CCAN Constitutive Centromere Associated Network 

CDE Centromere DNA Elements 

CDK Cyclin-dependent Kinase 

CENP Centromere Protein 

CH Calponin Homology 

CHD Chromodomain-Helicase-DNA-Binding Protein 

ChIP Chromatin-Immunoprecipitation 

CHRAC Chromatin Accessibility Complex 

CID Collision Induced Dissociation 

COMA Ctf19, Okp1, Mcm21, and Ame1 

CPC Chromosomal Passenger Complex 

CSE4 Chromosome Segregation 4 

DAXX Death Domain-Associated Protein 6 

DDB1 DNA Damage-Binding Protein 1 

DDX21 DExD-Box Helicase 21 

DMEM Dulbecco’s Modified Eagle’s Medium 

DMSO Dimethyl Sulfoxide 

DNA Deoxyribonucleic Acid 

DNMT DNA-Methyltransferases 

DPOE DNA Polymerase Epsilon Complex 

DR1 Down-Regulator of Transcription 1 
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Abbreviation Explanation 

DRAP1 DR1 Associated Protein 1 

DTT Dithiothreitol 

dTTP deoxythymidine triphosphate 

EDTA Ethylenediamine Tetraacetic Acid 

EED Embryonic Ectoderm Development 

EGTA Ethylene Glycol Tetraacetic Acid  

EM Electron Microscopy 

EMSA Electrophoretic Mobility Shift Assay 

EZH2 Enhancer of Zeste 2 Polycomb Repressive Complex 2 
Subunit 

FACT Facilitates Chromatin Transcription  

FCS Fetal Calf Serum 

FRB FKBP-Rapamycin Binding 

FRET Fluorescence Resonance Energy Transfer 

GLEBS Gle2-Binding-Sequence 

GTPase Guanosine Triphosphatase 

HAT Histone Acetyl Transferase 

HCl Hydrogen Chloride 

HDAC Histone Deacetylase 

HEPES N-2-hydroxyethylpiperazine-N-ethanesulfonic acid 

HIRA Histone Regulator A 

HJURP Holliday Junction Recognition Protein 

HORs Higher-Order Repeat 

HP1 Heterochromatin Factor 1 

HRP Horseradish Peroxidase 

iBAQ Intensity Based Absolute Quantification 

INCENP Inner Centromere Protein 

IP Immunoprecipitation 

IPTG Isopropyl β- d-1-Thiogalactopyranoside 

ITC Isothermal Titration Calorimetry 

JARID2 Jumonji and AT-Rich Interaction Domain Containing 2 

KAT K (lysine) Acetyltransferase 

KMN KNL1/MIS12/NDC80 

KNL1 Kinetochore-Null Protein 1 

LC-MS Liquid Chromatography Mass Spectrometry 

LFQ Label-Free Quantification 

Mad2 Mitotic Arrest Deficient 2 

MCC Mitotic Checkpoint Complex 

MCM Minichromosome Maintenance Complex 

MELT Methionine, Glutamic acid, Leucine, Threonine 
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Abbreviation Explanation 

MHC Major Histocompatibility Complex 

MMR Mismatch Repair 

MNase Micrococcal Nuclease 

MPS1 Monopolar spindle protein 1 

MS Mass Spectrometry 

MSH MutS Protein Homolog  

NAP1 Nucleosome Assembly Protein 1 

NC2B Negative Cofactor 2-Beta 

NCP Nucleosome Core Particle 

NHS N-Hydroxysuccinimide 

NPM Nucleophosmin 

PBD Polo Box Domain 

PBS Phosphate Buffered Saline  

PCNA Proliferating Cell Nuclear Antigen  

PCR Polymerase Chain Reaction 

PEST Rich in Proline (P), Glutamic Acid (E), Serine (S), and 
Threonine (T) 

PGK1 Phosphoglycerate Kinase 1 

PHD Plant Homeodomain 

PLK1 Polo-Like Kinase 1 

POL Polymerase 

PP Protein Phosphatase1 

PPIs Protein-Protein Interactions 

PRC2 Polycomb Repressive Complex 2 

pre-RC pre-Replication Complex 

PTM Post-Translational Modifications 

qXLMS Quantitative Mass Spectrometric Analysis of Crosslinked 
Proteins 

rASA Relative Accessible Surface Area 

RbAp46/RBBP7 Retinoblastoma Binding Protein 7 

RbAp48/RBBP4 Retinoblastoma Binding Protein 4 

RBX1 Ring-Box 1 

RING Really Interesting New Gene 

RIPI Relative Interface Propensity Index  

RacGap Rac GTPase activating protein 

RNA Ribonucleic Acid 

RNAi RNA interference 

RNAPII RNA Polymerase II  

RNase Ribonuclease 

RPA Replication Protein A 
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Abbreviation Explanation 

RSF Remodeling and Spacing Factor  

RT Room Temperature 

RWD domain in RING finger and WD repeat containing proteins 

RZZ Rod, Zwilch, ZW10 

SAC Spindle Assembly Checkpoint 

SATB1 Special AT-Rich Sequence-Binding Protein 1 

SD Standard Deviation 

SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel 
Electrophoresis 

SEC Size Exclusion Chromatography 

SETDB1 SET Domain Bifurcated Histone Lysine Methyltransferase 
1 

SILAC Stable Isotope Labeling By/With Amino Acids in Cell 
Culture 

SMARCA5 SWI/SNF-Related Matrix-Associated Actin-Dependent 
Regulator of Chromatin Subfamily A Member 5 

SMARCC1 SWI/SNF Related, Matrix Associated, Actin Dependent 
Regulator of Chromatin Subfamily C Member 1 

SMC2 Structural Maintenance of Chromosomes Protein 2 

SNF Sucrose Nonfermenting 

SPR Surface Plasmon Resonance  

SPT16 Suppressor of Ty 16 

ssDNA Single Stranded DNA 

SSRP1 Structure-Specific Recognition Protein 1 

SUZ12 Suppressor of Zeste 12 Protein Homolog 

SWI/SNF Switch/Sucrose Nonfermenting 

TBP TATA-Box Binding Protein 

TOPP-qXL The OpenMS Proteomics Pipeline-quantitative XLMS 

UBP10 Ubiquitin Carboxyl-Terminal Hydrolase 10 

UHRF1 Ubiquitin Like with PHD And Ring Finger Domains 1 

USP10 Ubiquitin Specific Peptidase 10 

WICH WSTF-ISWI chromatin remodeling complex 

XRCC5 X-Ray Repair Cross Complementing 5 

Y2H Yeast Two-Hybrid Screening 

YPD Yeast Extract-Peptone-Dextrose 

ZBTB9 Zinc Finger and BTB Domain Containing 9 

ZW10 Zeste-white 10 
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