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Abstract

Moral rules allow humans to cooperate by indirect reciprocity. Yet,

it is not clear which moral rules best implement indirect reciprocity and

are favoured by natural selection. Previous studies either considered only

public assessment, where individuals are deemed good or bad by all oth-

ers, or compared a subset of possible strategies. Here we fill this gap by

identifying which rules are evolutionary stable strategies (ESS) among all

possible moral rules while considering private assessment. We develop

an analytical model describing the frequency of long-term cooperation,

determining when a strategy can be invaded by another. We show that

there are numerous ESSs in absence of errors, which however cease to

exist when errors are present. We identify the underlying properties of

cooperative ESSs. Overall, this paper provides a first exhaustive evolu-

tionary invasion analysis of moral rules considering private assessment.

Moreover, this model is extendable to incorporate higher-order rules and

other processes.

Introduction1

Morality states which action can be considered good, which action is deemed2

to be rewarded and which action should be punished. Moral rules are pervasive3

in human societies. They can be observed in a range of examples from the4

behaviours of eight month-old infants [1] to the moral norms of societies [2].5
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The pervasiveness of these rules could be explained by their capacity to create6

cooperation by indirect reciprocity [3]. Indirect reciprocity describes a form of7

reciprocity where the action of an individual is reciprocated by a third party in8

future interactions. In its simplest form, cooperators get rewarded by receiving9

future cooperation, and defectors get punished by future defection [4]. Indirect10

reciprocity can be beneficial as it is one of the few mechanisms that can create11

cooperation [3, 5, 6] even when the interactions are not repeated or between12

related individuals.13

Indirect reciprocity explains well the emergence of moral rules but it is not14

clear which moral rules best implement indirect reciprocity, and thus, which15

moral rules should be observed in the real world. The number of possible rules16

can quickly become staggering. When individuals judge the action of another,17

they can take into account not only the action observed, but also the reputation18

of the individuals involved in the interaction. For instance, helping someone is19

generally seen as a positive action, but helping a criminal can be deemed bad.20

Do individuals use only a few rules among all the possible rules, or do a wide21

variety of rules coexist? Are there features common to all these rules and if yes,22

what are they? For instance, ones could expect that successful rules are simple23

ones as observed in direct reciprocity [7, 8], while others argued that rules could24

be so complex that it drove the evolution of larger brains [9].25

Tackling this problem, previous works have compared the evolutionary suc-26

cess of a large number of rules. Their results show that only few strategies27

stand out in term of evolutionary success and the frequency of cooperation28

they enforce [4, 10, 11]. These previous works have been a major contribution29

but its conclusions are limited. First, they did not consider the evolution of30

different assessment rules, i.e. how an individual is judged. Assessment rules31

were fixed in a group by moral norms, and all individuals within a group judge32

someone else actions in the same way. Although individuals within a group can33

share moral rules because they conform to common norms, evidence suggests34

that moral rules are also strongly determined by individual characteristics and35

thus, can differ between individuals. For instance, infants [12, 13] and toddlers,36

which were almost not exposed to social norms, already exhibit signs of indirect37

reciprocity [14, 15]. Second, these previous models consider that the opinions38

and assessments are public. This means that individuals are considered either39

exclusively good or exclusively bad by all others at a given time. Yet, in the40

real world, individuals can disagree in their judgements because they have dif-41

ferent moral rules or because they get contradictory information. For instance,42

2



hunter-gatherers exhibit reciprocity and moral [16] , but often disagree on who43

exhibit these moral values [17].44

The limits of the assumption of public assessment are well acknowledged but45

models considering private assessment have been limited by analytical complex-46

ity. Indeed, disagreement between individual opinions can itself result in future47

interactions being judged differently by the actor and an observer, fuelling more48

disagreement. As a result, previous work that considered private assessment or49

individual assessment rules limited their analysis to a small set of strategies,50

usually the ones that have been shown successful in models with public assess-51

ment [18–21]. Recently, [22] developed a model to explore the success of a large52

number of assessment rules against strategies that always cooperate or defect53

[23]. Yet, an exhaustive study which confronts all possible rules with each other54

is still missing.55

In this paper, we aim to fill this gap by identifying the evolutionary stable56

strategies among all possible moral rules. The contributions of this paper are57

two-fold. First, we provide the first exhaustive evolutionary invasion analysis of58

moral rules considering private assessment. We show that few moral rules stand59

out and we identify the common features of these rules. Second, we provide a60

model which describes the dynamics of opinions and provide the frequency of61

cooperation of an individual given its strategy with private assessment. This62

model can be extended to incorporate higher order rules and other processes,63

e.g. communication [24].64

Model description65

The model describes a well-mixed and infinitely large population of individuals66

that play a one-shot dyadic donation game. In this game, a randomly chosen67

individual called ’donor’ decides whether to cooperate with another randomly68

chosen individual called ’recipient’. If the donor cooperates, it pays a cost c to69

provide a benefit b to the receiver, while if it defects nothing happens. This70

game is a social dilemma as we consider b > c, because all would benefit if all71

individuals donated, but individuals are not willing to pay the cost.72

Individuals hold private opinions on each other individual except themselves.73

Opinions are either 1 or 0, i.e. good or bad. Individuals use these opinions to74

apply their strategies. A strategy consists of a set of action rules, A, and two75
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sets of assessment rules, C and D,76

A =

(
a1

a0

)
, C =


c11

c10

c01

c00

 , D =


d11

d10

d01

d00

 , (1)

where ai, cij , dij ∈ {0, 1} ∀ i, j ∈ {0, 1}. The action rules determine how the77

individual will behave when it is chosen as a donor and meets a recipient it78

thinks to be good (a1) or bad (a0). For example, a1 = 1 means to cooperate79

with someone good and a0 = 0 to defect with someone bad. The assessment80

rules determine how the individual updates its opinions when it observes an81

interaction between two other players. The action of the donor and the current82

opinions of the observing individual (toward the two observed players) are con-83

sidered. For example, the rule c10 = 1 means that a good donor cooperating84

with a bad recipient is regarded as good afterwards. Assessment rules are di-85

vided into two here for simplicity (C applies to the case where donor cooperates86

and D applies to the case where donor defects). The opinion about the recipi-87

ent is not updated. Errors may occur during assessment or while implementing88

an action. Following literature [25], we consider (i) execution errors, at a rate89

µe, where an individual does the opposite of what it intended (i.e. determined90

by her strategy) and (ii) assessment errors, at a rate µa, where an individual91

assigns the opposite opinion of what her assessment rules would suggest.92

A large number of strategies are possible, and each strategy can differ in its93

evolutionary success. We want to compute the evolutionary success of different94

strategies and see if particular strategies stand out. Our method consists in95

deriving the long-run average proportion of good opinions others have on an96

individual, i.e. the individual’s h-score. We use this h-score to calculate the97

frequency of cooperation from and towards this individual which determinate98

its fitness. We apply this method to compare the h-score and the fitness of99

individuals in a population with a resident strategy and a single mutant strategy100

to perform an ESS analysis.101
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Results102

Monomorphic population103

We confirm that the analytical model correctly approximates the h-score and104

the probability of cooperation at equilibrium, by comparing the predictions of105

the analytical model with agent-based simulations for any possible strategies in106

a monomorphic population. Some pairs of strategies are equivalent (as formally107

defined in the mirror image section of the extended method). They simply assess108

and act upon opinions in an opposite way (what one would call good is called109

bad by the other). After keeping one instance of each pair, we are left with 258110

strategies including 256 discriminator strategies, unconditional cooperator and111

unconditional defector. The simulations implement the aforementioned model112

with a population of 100 individuals and one observer per interaction. The113

results of the simulations are taken after 4×105 interactions, and averaged over114

105 interactions and 30 independent replicates. We run analysis considering115

that (i) the error rate is negligible and (ii) the error rate is not negligible. In116

the former, we consider that the error rate is equal to 0 in the analytical model117

and we keep a very low error rate in simulation (namely, 10−4). In the latter,118

we do not vary independently the execution and assessment error rates because119

we are interested in testing the robustness of the conclusion obtained from the120

model without errors, rather than describing the effect of a particular type of121

error.122

The results show that the analytical model well approximates the h-score123

and the probability of cooperation at equilibrium. The mean difference between124

the h-score predicted and simulated is 0.014 in absence of error and 0.005 in125

presence of error. The mean difference between the frequency of cooperation126

predicted and simulated is 0.01 in absence of error and 0.0009 in presence of127

error. The detailed results are provided in SI. The results of the simulations128

are illustrated in supplementary Figure S1 and summarised in supplementary129

Figure S2.130

Evolutionary invasion analysis131

We now use the analytical model to conduct an evolutionary invasion analysis (in132

short, ESS analysis). As common assumptions in ESS analysis [26], we assume133

that i) mutations are rare and thus, there is at most one mutant strategy m at134

a time in a population of individuals with resident strategy r, ii) the mutant’s135
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Figure 1: Number of ESS as a function of the benefit to cost ratio, b/c. The
colour represents the probability of cooperation between residents. The results
are presented for different initial h-scores h(t0) (0.1, 0.5 and 0.9, in top, middle
and bottom rows, respectively).

effect is negligible on the dynamics and iii) population size is large enough so that136

stochasticity in selection is negligible. To know if a strategy can be invaded or137

not by another, we compute the difference of absolute fitness between a mutant138

strategy in a population of resident strategy. If the fitness of the mutant is lower139

or strictly equal, the mutant disappears and the resident resists invasion. If a140

strategy resists invasion from all other possible strategies, it is an ESS. Unlike141

the previous section, fitness and h-score are now directly computed rather than142

simulated. We consider that any differences in fitness less than 10−4 are equal143

to 0 because of the floating point error.144

In absence of errors145

First, we consider that the errors are negligible, that is µa = 0 and µe = 0.146

Figure 1 shows that there are multiple evolutionary stable strategies (ESS),147

that is strategies that can not be invaded by others. Supplementary Figure S3148

shows that some strategies are not ESS for all studied initial h-score h(t0). We149

focus on strategies that are ESS for all three initial h-scores.150

The ESS can be divided in two groups, strategies which cooperate and avoid151
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Name a1 a0 c11 c10 c01 c00 d11 d10 d01 d00
Minimum ratio

benefit on cost
C-1 1 0 1 1 1 1 0 1 0 1 1

C-2 1 0 1 1 1 1 0 1 0 0 1

C-3 1 0 1 1 1 1 0 0 0 1 1

C-4 1 0 1 1 1 0 0 1 0 1 1

C-5 1 0 1 1 1 1 0 1 1 1 2

C-6 1 0 1 1 1 1 0 1 1 0 2

C-7 1 0 1 1 1 1 0 0 1 1 2

C-8 1 0 1 1 1 1 0 0 1 0 2

C-9 1 0 1 1 1 0 0 1 1 1 2

C-10 1 0 1 1 1 0 0 1 1 0 2

C-11 1 0 1 1 1 0 0 0 1 1 2

C-12 1 0 1 1 0 1 1 1 0 1 1/(1-h(t0))

C-13 1 0 1 1 0 1 1 1 0 0 1/(1-h(t0))

C-14 1 0 1 1 0 1 1 0 0 1 1/(1-h(t0))

C-15 1 0 1 1 0 0 1 1 0 1 1/(1-h(t0))

Figure 2: List of strategies that are cooperators and ESS for any initial h-score
and at least one value of the benefit to cost ratio, b/c. The last column represents
the minimum ratio for which the strategy is ESS for any initial h-score.

exploitation, and those which defect and efficiently exploit others. There are152

strategies that have an intermediary probability of cooperation but they are153

only ESS for a specific benefit to cost ratio so we do not discuss them further154

here. We present the 15 strategies that are ESS and cooperators in Figure 2,155

with the minimum benefit to cost ratio required for a strategy to be an ESS. We156

present the 38 strategies that are defectors in supplementary Figure S4, with157

the maximum benefit to cost ratio required for a strategy to be ESS. We call158

the ESS cooperator and defector strategies respectively C-* and D-*. We name159

each ESS cooperator, with C1 representing the first ESS cooperator in the table,160

C2 the second, and so on.161

First, we look closely at the ESS cooperators. In term of behaviours, a162

distinctive feature of the ESS cooperators is that they fully cooperate with each163

other while cooperating less with mutant defectors. By cooperating with each164

other, they sustain the highest possible fitness for cooperators. By cooperating165

less with mutant defectors, they limit the fitness of the mutant to be less than or166

equal to their fitness, providing that the benefit of cooperation is high enough.167

First, all the ESS cooperators have c11 = 1 and c10 = 1. It means that they168
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Figure 3: Differential equation of h-score of resident on mutant for the three
types of ESS cooperators when mutant is always defect (AllD). From left to
right, strategies that are ESS for a ratio of 1, 2 and 1

1−h(t0) .

consider that cooperation from an individual seen as good is always rewarded169

by future cooperation. Ultimately, this results in a population of individuals170

which see each other as good and always cooperate with each other. This allows171

the strategies to maintain cooperation once established.172

Second, the ESS cooperators have either d11 = 0 or d01 = 0, or both. This173

means that they will consider individuals defecting towards good individuals as174

(partly or totally) bad. Because the ESS cooperators consider each other as175

good once h-score of 1 is reached, this allows ESS cooperators to defect with176

individuals that defect with them. ESS cooperators differ in their capacity177

to efficiently reciprocate defection. First, there are strategies that have both178

d11 = 0 and d01 = 0. They are ESS on the whole range of benefit to cost ratios179

(C1-C4). It is because they have an average opinion of 0 on defectors, and thus180

will always defect with them, as shown in the left panel of Figure 3. Second,181

there are strategies that have both d11 = 0 and d01 = 1, which are ESS if the182

benefit is at least twice larger than the cost (C5-11). These strategies have half183

of the time good opinion (and cooperating) with mutant defectors, and half184

of the time bad opinion (and defecting) with mutant defectors. Finally, there185

are strategies which have d11 = 1 and d01 = 0 (C12-15) and for which their186

evolutionary stability depends of the initial h-score. For instance, they are ESS187

for a ratio b/c > 10 if the initial h-score is 0.9 or ESS for a ratio b/c > 2 if the188

initial h-score is 0.5. These strategies have in common that their opinions of189

mutant defecting with good individuals remain roughly the same. For instance,190

one strategy gives 0 to bad individuals defecting and gives 1 to good individuals191

defecting. Thus, the frequency of cooperation received by mutant defectors is192
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approximately the initial h-score h(t0) and their fitness h(t0)b. Strategies C12-193

15 can not be invaded by a defector when their fitness b − c > h(t0)b. This194

equation can be rearranged, leading to b/c > 1/(1− h(t0)).195

To summarise, the rules of ESS cooperators make them efficiently reciprocate196

once cooperation is fully established. The first pattern maintains cooperation197

while the second makes them defect with mutant defectors. Yet, this does not198

assure that they reach cooperation in the first place. For that, we can observe199

that ESS cooperators, besides c11 = 1 and c10 = 1, judge a number of other200

encounters as good. This number and the type of encounters can vary but they201

judge enough cases as good so that the h-score of an individual with a resident202

strategy seen by other individuals with the same strategy, increases towards 1203

(the differential equation is always positive). This ensures that they go towards204

full cooperation even in presence of initial disagreement. For instance, the first205

three strategies (C1-C3) consider that cooperating is good and at least one other206

case as good. Because these strategies cooperate with a probability h, it ensures207

that the differential equation is always positive h + p(d?0) − h ≥ 0. Another208

example is C4, which might appear surprising as they consider one cooperation209

as bad c00 = 0. However, this case is very rare and it leads to the differential210

equation remaining positive.211

In short, the strategies that are evolutionary stable and cooperators have212

rules that (i) establish full cooperation with each other, (ii) sustain full coop-213

eration when established, and (iii) reduce the frequency of cooperation with214

mutant defectors. Note that the presence of a single of these features in a215

strategy does not mean that the strategy will be ESS. Indeed, we looked at the216

common patterns among the ESS rather than correlating the rules with the suc-217

cess of strategies. Finally, we observe a diversity of rules because first, strategies218

can differ in their capacity to defect with defectors, and second, different rules219

can lead a population to full cooperation on the long term.220

We now look at defector strategies that are ESS. Again, there are numerous221

strategies fulfilling these conditions but they have similar behaviour. Their222

distinctive feature is that they have a lower probability to cooperate with the223

mutant, than the mutant have with the resident. The rules have in common224

the pattern that d10 = d00 = 0. In other words, they always defect with225

individuals defecting with individuals they see as bad. This allows them to avoid226

cooperation when individuals do not cooperate with them. Again, defectors can227

be separated into different types as a function of the maximum ratio of benefit228

to cost required for them to be ESS. First, the defectors that are ESS for the229
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whole range of benefit studied (D1 - D16) never cooperate with each other nor230

with the mutant. They are behaviourally equivalent to strategies that always231

defect. This means that they do not pay any cost and thus no strategies can232

have a higher fitness than them. They also all have in common that c10 = c00 =233

0. This means that any strategy interacting with them (that they consider234

as bad) will be considered bad, and receive future defection. Second, some235

defectors are ESS only for a very limited range of the benefit to cost ratio.236

These strategies cooperate with mutant, but at a lesser rate than mutant with237

resident. This means that mutant can invade if the benefit they received by238

cooperation outweighs the cost of their cooperation. Without going into the239

details, these strategies do not have the rules of c10 = c00 = 0 as previous240

strategies, and thus are not perfect defectors.241

We notice that there are a large number of cases of polymorphism among242

these strategies. In the cases where these strategies can be invaded, there are243

between 75.5% to 88.4% of cases with polymorphism against 5% to 17% when244

looking at any strategies. The reason is that if the benefit that mutant provides245

to resident is negligible when mutant are a minority, it is not the case anymore246

when they compose most of the population. Thus, defector strategies that are247

ESS for only a limited set of the benefit to cost ratios could still be frequent for248

other ratios.249

In presence of errors250

When the errors are not negligible, the previously identified ESS are not evo-251

lutionary stable anymore except for always defect (AllD). This is because the252

errors in assessment lead discriminating cooperators to cooperate less, and dis-253

criminating defectors to defect less. For instance, the previously ESS cooper-254

ators maintain a lower level of cooperation between each other (and thus are255

easier to invade). In addition, the errors create disagreement and can have an256

effect on the long term. As a result, C-* can cooperate more with mutant than257

with themselves, even when mutant are strong cooperators e.g. judge good258

all except d00. This is because the cooperation of such strategy breaks down259

only in specific cases, which allow them to quickly get their h-score back to260

1. AllD is still an ESS even if it sometimes cooperates by mistake, because it261

is not affected by assessment errors and thus has still the lowest frequency of262

cooperation possible.263

To gain further insights, we look at the difference of fitness between mutant264
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Figure 4: Difference of fitness between mutant and resident wm−wr, for different
strategies that are ESS when there are no errors. We differentiate between
strategies that were cooperators, defectors and the strategy that always defect
(AllD), which is the only ESS in presence of errors. The results are presented
for a high benefit to cost ratio (b/c = 20) to highlight the difference of fitness.
Results for other, smaller benefit to cost ratios, can be found in supplementary
figures S5 and S6, showing the same trend.
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and resident for different resident strategies. This difference of fitness gives us265

hints on the success of strategies when evolution is stochastic, that is when in-266

vasion is a probability based on the difference of fitness. We show the results267

for a high benefit to cost ratio in Figure 4 and for other ratios in supplementary268

Figures S5 and S6. First, Figure 4 shows that in absence of error, ESS coop-269

erators have a higher difference of fitness as the benefit increases. This result270

suggests that ESS cooperators could be more prevalent than ESS defectors when271

selection is weak and if the benefit of cooperation is sufficiently high. Second,272

Figure 4 shows the same (but weaker) trend when errors are not negligible. In273

particular, the difference of fitness is higher for C15 than the only ESS with274

error: always defect against the majority of mutants. This suggests that if in275

presence of errors, C15 is not ESS anymore, it could still be a very frequent276

strategy (and more frequent than always defect).277

Discussion278

Among the large number of possible moral rules, previous work shows that only279

a few of them stand out and should be observed in the real world [11]. Yet,280

models studying the evolution of moral rules considered either public assessment281

or a limited number of strategies and it still lacks of an exhaustive evolutionary282

analysis of moral rules with private assessment. In this paper, we fill this gap283

by building an analytical model to describe the change in opinions as a function284

of time. We used this model to study the invasibility of any strategies by any285

other strategies up to third-order assessment rules, and identify the evolutionary286

stable strategies.287

Previous results suggested that considering private information breaks down288

cooperation and limits the evolution of cooperative moral rules by creating289

disagreement [27]. However, our results show that there are evolutionary stable290

rules implementing cooperation even when assessment is private. This result is291

explained by the fact that some rules are capable to suppress disagreement on292

the long term. Second, our results show that the number of ESS in our study293

can even be higher than the number of ESS previously found when considering294

public information [11]. This is because multiple rules can end up implementing295

the same level of cooperation on the long term. For instance, strategies C-1 and296

C-3 differ in their rules about good individuals defecting with bad individuals297

(d10) but they still end up with full cooperation at equilibrium. Note that these298
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Table 1: Presentation of the main strategies identified in the literature, i.e.
image scoring, standing strategy and the leading eight; and the ESS cooperators
identified in our analysis C1-15. * mark wildcards. Note that all C1-15 have
an additional restriction: p(o, r, r) > hr,r̄ , which ensures that the h-score hr,r̄
increases up to 1 (see Equation 4). This means that a maximum of one of
the wildcards can be equal to 0 for C1-4 and C12-15, and a maximum of two
wildcards can be equal to 0 for C5-11.

c11 c10 c01 c00 d11 d10 d01 d00

Image scoring 1 1 1 1 0 0 0 0
Standing strategy 1 1 1 1 0 1 0 1
Leading 1-8 1 * 1 * 0 1 0 *
C1-4 1 1 1 * 0 * 0 *
C5-11 1 1 1 * 0 * 1 *
C12-15 1 1 0 * 1 * 0 *

conclusions rely on the assumption that interactions are long enough so that299

initial disagreement is negligible. When interactions are shorter, it is likely that300

other mechanisms are required for indirect reciprocity to evolve such as empathy301

[20] or public institutions [21].302

Second, we identify the important properties of the rules that are ESS and303

cooperators. These strategies consider (i) good cooperators as good, (ii) all or a304

part of defectors towards good individuals as bad, and (iii) a varying number of305

other cases as good. The last rule allows the strategy to converge toward a full306

population of good cooperators, and the first two rules allow them to efficiently307

reciprocate once good reputation is established.308

How do these successful rules compare to rules previously identified in the309

literature? To answer this question, we present the main rules in the compar-310

ative Table 1. A significant part of previous work has focused on two famous311

strategies, image scoring [4], that is cooperate with cooperators and defect with312

defectors, and standing [10, 28], that is cooperate with cooperators, cooperate313

with defectors towards defectors and defect with defector towards cooperators314

(see Table 1). Image scoring was historically one of the first strategies to suc-315

cessfully implement indirect reciprocity [4], but later work showed that standing316

is more evolutionary successful [10]. Our results concur as we found the stand-317

ing strategy to be evolutionary stable for any benefit superior to cost (standing318

strategy is C1), while image scoring is not an ESS. Note that image scoring319

would be an ESS if initial h-score is exactly 1.320

In addition, our results show that the important rules of the standing strat-321
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egy are ”cooperate with good cooperators” and ”defect with defectors against322

good”, and that the part ”cooperate with defectors against bad” can vary. This323

distinction provides important new insights into the ongoing debate. Indeed,324

some experimental evidence supports the presence of standing strategy in nat-325

ural populations [29] while others [30] appear to be against. In laboratory326

experiments [30], researchers compared the amount of defection received by an327

unconditional defectors and a ”justified” defectors, that is individuals that de-328

fect with previous defectors. Their results showed that the difference is not329

strong enough to support standing strategy. As pointed out [10], these conclu-330

sions could be limited as they do not measure the amount of defection received331

by individuals that refuse to help previous donors. Our results show rigorously332

here that it is this amount of defection towards defectors against good indi-333

viduals that matters for the success of the standing strategy rather than the334

cooperation toward justified defectors as measured in the experiments. Thus,335

our results suggest that further experiments with different measures is required336

to reject or accept the prevalence of standing strategy.337

Our work also follows the exhaustive evolutionary analysis which showed338

eight successful strategies (called leading eight [11]). A direct comparison of the339

leading eight and the ESS described here is limited because this previous study340

focused on the evolutionary success of different action rules, i.e. what is the best341

action rule for a given assessment rule, while the model presented here focuses342

on assessment rules, i.e. how to judge someone. Yet, it can shed light on main343

differences between private and public assessment. First, the C-* strategies344

require that c10 = 1, a rule which is shared by only half of the leading eight.345

This rule is crucial with private assessment to avoid cooperators loosing their346

good standing. Those leading eight strategies which do not share this rule were347

shown to suffer greatly by private assessments before [27]. Second, C*- rules348

also require that enough cases are considered good so that the full population349

converge towards being good cooperators. On the other side, C-* rules can vary350

in cases where leading eight can not. For instance, the leading eights always351

consider defection towards a good individual as bad. This is shared by the most352

successful strategies found here. However, the C-* strategies can also consider353

defection in one situation (d11 or d01) as good and still be ESS given that the354

benefit of cooperation is high enough. This is because such a rule in public355

assessment would lead to all individuals cooperating with defectors while this356

happens partially with private assessment.357

Third, we find that the presence of errors breaks down the evolutionary358
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stability of the previously identified strategies. This is because the property of359

these rules that allow them to converge toward full cooperation, also makes them360

vulnerable to errors. This result suggests that private assessment rules could361

not evolve when errors are frequent, and that public assessment for instance362

supported by an institution could be preferred in this case [21]. However, this363

result is mitigated by two points. First, we have considered that any difference364

of fitness, however small, leads to invasion or not. This is a classic assumption365

of ESS analyses but in the real world, selection can be weaker and stochasticity366

can result in non-ESS to be frequent. Important first steps have been made367

by a recent paper which considered stochastic evolution of a population mixing368

one discriminator strategy, with unconditional cooperators and defectors [22].369

An extension could consider a population of different discriminator strategies370

in co-presence. Second, the effect of errors could be suppressed by additional371

mechanisms. Evidence shows that not only the outcome of an action plays a372

role in assessments but also the intention behind this action [31, 32], and thus373

errors in actions could have a limited effect. Another example is the role of374

communication and conformity which could counterbalanced the effect of errors375

and drive the h-score towards a general agreement. Further work integrating376

these mechanisms would provide a more realistic model and test if the strategies377

identified here could be frequent in presence of errors.378

Results from models of indirect reciprocity can be confronted to the donor379

game conducted in laboratory experiments. For instance, experiments con-380

ducted by [33] showed that information about the partners’ previous partners’381

reputation increases the level of cooperation. This is in agreement with our382

results that all the C-* use second-order information. Second, recent exper-383

iments have studied the strategies employed by individuals [34]. They show384

that individuals often requested second-order information, and at a higher fre-385

quency when their partner has previously defected. We find some similarity in386

our results. All the C-* require to know the past interactions of their partner387

to judge its action when the partner defected, while only eight strategies re-388

quire this information when the partner cooperated. This goes to 3 against 1389

if we considered the most successful strategies C1-4. Last but not least, they390

showed a strong variation in behavioural strategies. This is in line with ours391

results, which show that diverse behavioural strategies can be employed. How-392

ever, these comparisons are limited as our model considers a large group size393

and long interactions, which are both assumptions often absent in laboratory394

experiments. A more promising path to test our results would be in study in395
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natural populations.396

We have made a number of assumptions in this model that need to be397

discussed. First, we approximated the reputation dynamics by a deterministic398

approach. This required two main assumptions, that the size of the population is399

infinitely large and that the number of observers is finite. The first assumption400

means that the results in this paper are applicable only to cases where the401

population is sufficiently large. The second assumption results naturally from402

physical limits of the number of observers, e.g. it is likely that an increase of403

ten fold of group size does not mean an increase of ten fold of the number of404

observers. However, it is important to note that there are possible exceptions, in405

particular systems where actions are widely shared e.g. e-commerce or medieval406

merchant guilds [35].407

Second,we have considered that the initial h-scores are the same for all indi-408

viduals, including the resident and mutant strategies. In real world, the opinion409

of an individual on a newly met individual could be part of the individual strat-410

egy (in the same way that tit-for-tat could play cooperate or defect at the first411

round). We did not consider this here to keep the number of strategies reason-412

able and we focused on the strategies that are ESS for diverse initial h-scores.413

Future work could integrate the initial h-score in the strategy and replicate the414

evolutionary analysis.415

To conclude, the contribution of this paper is two fold. First, it provides a416

first exhaustive evolutionary analysis of moral rules with private assessment. It417

provides more realistic results, as a large number of real-world situations (in-418

cluding most of laboratory experiments) includes private assessment. Second, it419

provides an analytical model that describes the opinion dynamics when assess-420

ment is private and allows further investigation of the issue accurately and at421

a faster speed than with simulations, enabling exhaustive analyses. The model422

can easily be extended to integrate other mechanisms. A natural progression423

of this work is (i) to study strategies up to second-order action rules where424

action also depends of actor’s reputation to compare results with the previous425

exhaustive evolutionary analysis with public assessment [11], and (ii) integrate426

the effect of communication and conformity [36] as it plays a prevalent role in427

indirect reciprocity [24] and can be easily integrated in the model [37].428
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Method429

We build a deterministic model that approximates the average fitness of an430

individual of a given strategy. We first consider a monomorphic population431

where all individuals have the same resident strategy. We do so to introduce432

the method in its simplest form. We consider that the number of interactions433

is large enough, and thus, the fitness w∗
i of a focal individual i is its average434

payoff (N is the population size):435

w∗
i =

1

N − 1

N−1∑
r=1

(bp∗(ci,r)− cp∗(cr,i)) . (2)

The fitness of an individual i is the benefit b received when other individuals436

cooperate with the individual i, discounted by the cost c paid when the focal437

individual i cooperates. The probability that an individual r cooperates with438

individual i is denoted by p(ci,r). The superscript ∗ denotes that the fitness439

and probability of cooperation considered are at equilibrium. This probability440

itself depends on the many opinions that individuals have on each other, which441

is difficult to track analytically. Instead of describing all the opinions, we define442

a h-score of an individual i as the proportion of other individuals with opinion443

1 on i, or the average reputation of i.444

The h-score is useful because considering that the number of individuals is445

large enough and that the donor, recipient and observers are chosen randomly,446

the h-score also describes the probability that a random individual has an opin-447

ion of 1 on the focal individual i, that is hi,r = p(oir = 1). Thus, we can combine448

h-score and the action rules which describe how individuals act upon a given449

encounter, to describe the probability of cooperation:450

p∗(ci,r) = hi,ra1 + (1− hi,r)a0. (3)

Similarly, using the assessment rules, we can calculate the probability that h-451

score increases or decreases after an interaction p(or,r,r), and thus, the dynamics452

of h-score over time. The formula is given in Equation 9 in the detailed method453

in SI. Execution and assessment errors modify respectively the probability of454

cooperation or the probability of h-score to increase or decrease after an inter-455

action as described in the equations 12 and 13 of the extended method section456

(SI).457

So far, we derived the change in h-score for an individual with a given strat-458
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egy but we would like to derive the change in h-score for any individuals. Let459

us note that because individuals have the same strategy, the direction of change460

is similar across individuals and their h-score will converge towards the same461

equilibrium points. In addition, we make the assumption that the number of462

observers is small and independent of the population size. We also assume that463

the initial h-score of all individuals are the same. Following these two assump-464

tions, the differences in h-score between individuals due to stochasticity is small465

and negligible on the dynamics. Because the change in h-score is very small af-466

ter an interaction, it can be approximated by the following differential equation467

[38] (see details in SI)468

d(hr,r)

dt
= p(or,r,r)− hr,r. (4)

The average h-score at equilibrium can be found by solving the equation
d(hr,r)

dt =469

0. This equation is a polynomial of hr,r of a maximum degree of three (see Equa-470

tions 19 to 22 in SI). The stability of equilibrium points is determined by looking471

at the sign of the derivative at the equilibrium points [26].472

We now extend the analytical model to conduct an evolutionary invasion473

analysis (in short, ESS analysis). To know if a strategy can be invaded or474

not by another, we need to compute the difference of absolute fitness between a475

mutant strategy in a population of resident strategy. If the fitness of the mutant476

is greater than that of the resident, the mutant invades the population and477

becomes resident. If the fitness of the mutant is lower, the mutant disappears478

and the resident resists invasion. When the two values of fitness are equal, the479

resident also resists invasion because in an infinitely large population, a mutant480

strategy can not invade by drift. If two strategies can mutually invade, there481

will be polymorphism.482

The difference of fitness between a mutant wm and a resident wr is given as483

follows:484

∆w = wm − wr = p∗(cm,r)b− p∗(cr,m)c− p∗(cr,r)(b− c). (5)

The fitness of the mutant is the benefit received when a resident cooperates with485

the mutant discounted by the cost of the cooperation from mutant to resident.486

There are three different probabilities of cooperation. The probability of coop-487

eration between residents p(cr,r) is calculated as in the case of a monomorphic488

population. The two remaining probabilities of cooperation can be computed as489

previously using h-score and action rules (Equation 15 in SI). To find the prob-490
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ability of cooperation at equilibrium, we describe the dynamics of the h-score491

as previously492

d(hm,r)

dt
= p(om,r,r)− hm,r,

d(hr,m)

dt
= p(or,r,m)− hr,m.

(6)

The probabilities of h-score to increase after the observation of an interaction,493

p(o), can be described using the h-score and the assessment rules as previously494

(Equation 17 in SI). This system of two polynomial equations with two un-495

knowns are solved numerically. To determinate the stability of the equilibrium496

points, we look at the Jacobian matrix at the equilibrium of interest. The equi-497

librium is locally stable if the real part of the leading eigenvalue is negative498

[26]. Errors are integrated in the same way as in the case of monomorphic499

populations.500
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